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Abstract— This study points out some weaknesses of ex-
isting Quantum-Inspired Evolutionary Algorithms (QEA) and
explains in particular how hitchhiking phenomenons can slow
down the discovery of optimal solutions and encourage prema-
ture convergence. A new algorithm, called Versatile Quantum-
inspired Evolutionary Algorithm (vQEA), is proposed. With
vQEA, the attractors moving the population through the search
space are replaced at every generation without considering their
fitness. The new algorithm is much more reactive. It always
adapts the search toward the last promising solution found
thus leading to a smoother and more efficient exploration.
In this paper, vQEA is tested and compared to a Classical
Genetic Algorithm CGA and to a QEA on several benchmark
problems. Experiments have shown that vQEA performs better
than both CGA and QEA in terms of speed and accuracy. It is a
highly scalable algorithm as well. Finally, the properties of the
vQEA are discussed and compared to Estimation of Distribution
Algorithms (EDA).

I. INTRODUCTION

Quantum-Inspired Evolutionary Algorithms (QEA) apply

Quantum Computing Principles to enhance classical Evo-

lutionary Algorithms (EA). In the last ten years QEA re-

ceived a lot of attention and have already demonstrated their

superiority compared to classical EA for solving complex

benchmark problems such as combinatorial [7], numerical

[9], [2] and multiobjective optimization [17], as well as

real world problems namely disk allocation method [14],

face detection [12], rigid image registration [3], training

of multi layer perceptron [18], signal processing [15] and

clustering of gene expression data [21]. However QEA are

still poorly understood and their integration into the theory

of Evolutionary Computation is missing. The main reason

for that is probably because of a lack in an unified definition

of QEA.

We think that the most illustrative example of QEA is

the algorithm firstly proposed by Han and Kim in [7] where

some major principles of Quantum Computing are used such

as, the quantum and collapsed bit, the linear superposition

of states and the quantum rotation gate. This algorithm has

been studied several times in terms of both experimental and

theoretical behavior, and tested on ideal cases, on classical

optimization benchmarks but also on real world problems,

[7], [6], [14], [9], [12]and [10].

Nevertheless, we think that some specific characteristics of

QEA have not received enough attention yet. In section II-

A we recall briefly some basic quantum principles inspiring

QEA, then a revisited description of its features is provided

in section II-B. Some new tools for exploring the dynamics
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of QEA are proposed and a clear trend in promoting hitch-

hiking is demonstrated. In section II-B we introduce a novel

algorithm called Versatile Quantum-inspired Evolutionary

Algorithm (vQEA) which intends to remove elitism from

the evolutionary process. With vQEA the information about

the search space collected during evolution is not kept at the

individual level but continuously renewed and shared among

the whole population. In section IV, vQEA is tested on

different benchmark problems and compared to the classical

versions of EA and QEA. Finally in section V, the role of

elitism is discussed in the light of Estimation of Distribution

Algorithms (EDA).

II. QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM

Quantum-Inspired Evolutionary Algorithms (QEA) apply

Quantum Computing Principles to enhance classical Evolu-

tionary Algorithms (EA).

A. Quantum Computing Principles

The smallest information unit in today’s digital computers

is one bit being either in the state “1” or “0” at any given

time. The corresponding analogue on a quantum computer

is represented by a quantum bit or Qbit [11]. Similar to

classical bits, a Qbit may be in “1”-state or “0”-state but

additionally also in any superposition of both states. A Qbit

state |Ψ〉 can be defined as

|Ψ〉 = α |0〉 + β |1〉 =

[

α
β

]

(1)

where α and β are complex numbers defining probabilities

at which the corresponding state is likely to appear when a

Qbit is collapsed, i.e. read or measured. In another word,

the probability of a Qbit to collapse to state “0” and “1” is

|α|2 and |β|2 respectively1. In a more geometrical aspect, an

angle θ is defined such that cos(θ) = |α| and sin(θ) = |β|.

In order to modify the probabilities α and β, quantum

gates can be applied. We note that several quantum gates

have been proposed such as (controlled) NOT -gate, rotation

gate and Hadamard gate, see [11] for details.

B. Description of the QEA

In this section we propose a revisited description of the

QEA, originally published in [7], see [6] for a comprehensive

definition. QEA is a generational population-based search

method which behavior can be decomposed in three different

and interacting levels, see Figure 1.

1Normalization of the states to unity guarantees |α|2 + |β|2 = 1 at any
time.
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Fig. 1. Description of the QEA with three levels

1) Quantum individuals: The lowest level corresponds to

quantum individuals. A Qindividual i at generation t is noted

Qi(t) and corresponds to a string of λ concatenated Qbits:

Qi = Q1
i Q

2
i . . . Qλ

i =

[

α1
i α2

i . . . αλ
i

β1
i β2

i . . . βλ
i

]

(2)

Each Qindividual has to be viewed as a distribution of bit

strings of length λ. Even if a Qindividual is unchanged,

its fitness is reevaluated every generation according to a

realization of the distribution. For that purpose, each Qi is

first measured to form a binary individual Ci in a collapsed

state2 and then the fitness evaluation takes place. In the sense

of classical EA, Qi is the genotype while Ci is the phenotype

of a given individual.

To each individual Qi is also attached a binary string Ai

acting as an attractor for Qi. Indeed, every generation Ci and

Ai are compared in terms of both fitness and bit values. If

Ai is better than Ci and if their bit values differ, a quantum

2The way a Qi collaspes is described in [7]

gate operator is applied on the corresponding Qbits of Qi.

Thus the distribution Qi is slightly moved toward a given

solution Ai of the search space. We note that if Ci is better

than Ai the individual attractor is updated.

In classical EA variation operators like crossover or mu-

tation operations are used to explore the search space. The

quantum analogue for these operators is called a quantum

gate. In this study, the rotation gate is used to modify the

Qbits in a solution. The jth Qbit at time t of Qi is updated

as follows:
[

αj
i (t + 1)

βj
i (t + 1)

]

=

[

cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

] [

αj
i (t)

βj
i (t)

]

(3)

where the constant ∆θ is a rotation angle designed in

compliance with the application problem [8]. We note that

the sign of ∆θ determines the sense of rotation (clockwise

for negative values).

2) Quantum groups: The second level corresponds to

quantum groups. The population is divided into m Qgroups

each containing n Qindividuals having the ability of syn-

chronizing their attractors. For that purpose, the best attractor

(in terms of fitness) of a group, noted Bgroup, is stored at

every generation and is periodically distributed to the group

attractors. This phase of local synchronization is controlled

by the parameter Slocal.

3) Quantum population: The set of all n×m Qindividuals

forms the quantum population and defines the topmost level

of QEA. As for Qgroups, the individuals of a Qpopulation

can synchronize their attractors. For that purpose, the best

attractor (in terms of fitness) among all Qgroups, noted

Bglobal, is stored every generation and is periodically dis-

tributed to the group attractors. This phase of global syn-

chronization is controlled by the parameter Sglobal. We note

that in the initial population all the Qbits are fixed with

|α|2 = |β|2 = 1/2 so that the two states “0” and “1” are

equiprobable in collapsed individuals.

C. QEA on the OneMax problem

The OneMax Problem consists of maximizing the number

of ones of a bit string and the global optimum is noted 1λ. In

this section the behavior of QEA on the OneMax problem is

studied for λ=100. For that purpose new tools for monitoring

the dynamics of both Qindividuals and Qbits are used.

The setting of the evolutionary parameters is similar to the

settings proposed in [7], with a population of 10 individuals,

5 groups, ∆θ = ±0.01π, Slocal=1 and Sglobal=100. The

Figure 2 presents the typical evolution of the 100 Qbits of the

Qindividual Q6 on the OneMax problem. Each point Qj
6(t)

corresponds to a given Qbit j and a given generation t. The

color (gray scale) indicates the value of the corresponding

|β|2, from black for |β|2 = 0 to white for |β|2 = 1.0.

Thus, a Qindividual with all Qbits such that |β|2 ≃ 1.0 is

likely to collapsed into the global optimum 1λ. We see that

the evolutionary process starts by construction with initial

|β|2 values equal to 1/2. Most of the Qbits evolve toward

the optimum as the color changes to white. Nevertheless
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we can see clearly that some Q bits are rotated toward the

wrong direction as some very dark points appear. For the

vast majority of them, they finally move toward the expected

value with |β|2 close to 1, but one of them Q33
6 has converged

with |β|2 close to 0. For this run QEA was not able to find

the global optimum in 500 generations.

Fig. 2. Typical evolution of a Qindividual (value of |β|2) with QEA on
the OneMax problem

To understand this unappropriated behavior of Q33
6 , we

have plotted its evolution, i.e. values of |α| (doted line) and

|β| (solid line), as well as the states of the corresponding

collapsed bit C33
6 and attractor bit A33

6 , cf. Figure 3. We

see that the |β| value is converging toward 0 as of the first

generations and as a consequence the state of the collapsed

bit is most of the time 0. We note also that the state of the

attractor bit demonstrates few variations and is also most

of the time 0, except for two very short periods before

generation 100. An attractor is always chosen according to its

fitness. So the attractor A6 is always better than the collapsed

individual C6 even if the value of its 33th Qbit is not well

adapted.

D. Hitchhiking and the irreversible choice

A quantum individual Qi explores a given region of the

search space. If a good solution is found in this region,

this one is chosen as an attractor and the exploration will

concentrate on this new area. In the general case, two ways

exist for an attractor Ai to be updated, either when a better

collapsed individual Ci is found, or when a synchronization

phase occurs. At the individual level, when a new attractor

Ai is chosen in the search space, the corresponding Qi will

be slightly moved toward this point until a better Ci is found.

But what if not better Ci is found during this move ? Then

Fig. 3. Typical evolution of a Quantum bit, Collapsed bit and Attractor bit
with QEA on the OneMax problem

the algorithm is trapped and converges prematurely to this

point. The only opportunity for an individual to escape from

this attractor is that a synchronization phase replaces it with a

better attractor produced elsewhere. Otherwise it is possible

that the choice of a very good but non optimal attractor is

irreversible.

We think that the weakness of QEA described here is

similar to what happens in Classical Genetic Algorithms

(CGA) with the so called hitchhiking phenomenon firstly

described as a serious bottleneck for CGA in [4]. Hitchhiking

corresponds to the increase in frequency of a “bad” allele

at a given locus in the population due to the presence of

nearby highly fit alleles on the same chromosomes [5]. As

a consequence, the eventual better alleles at the same locus

(as the hitchhiking allele) tend to disappear in the population

and there is no way for the evolutionary process to retrieve

them. In CGA, random mutation and uniform crossover are

two known remedies against hitchhiking.

III. VERSATILE QUANTUM-INSPIRED EVOLUTIONARY

ALGORITHM

In this section we present an improved version of QEA,

called the Versatile Quantum-inspired Evolutionary Algo-

rithm (vQEA) avoiding the weaknesses reported above.

A. Description of vQEA

In order to prevent both the case of irreversible choice

and the hitchhiking phenomenon, the strategy for updating

attractors is modified. We introduce a new parameter control-

ling this strategy based on elitism. In the classical QEA, the

update procedure (called attractor update in Figure 1) applies

elitism such that an attractor Ai is replaced by Ci only if

Ci is better. With vQEA this parameter is simply switched

off. Therefore the attractors are replaced at every generation

without considering their fitness and so they demonstrate a

very high volatility. Moreover to ensure the convergence of

vQEA, the global synchronization is also performed every
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generation in such way that all the attractors are identical

and at generation t+1 corresponds to the best solution found

at generation t.
We note that with such a setting, the group size n and local

synchronization parameters Slocal do not affect the algorithm

anymore. With vQEA the information about the search space

collected during evolution is not kept at the individual level

but continuously renewed and shared among the whole

population3. Nevertheless we think that the concept of group,

which is similar to demes in classical EA, is interesting and

we do not intend to removed it definitely. In this study, we

avoid the tuning of n and Slocal and concentrate on the

effects of removing elitism from QEA. Thus the simplified

sequential procedure of vQEA is detailed in Algorithm 1.

The sets of all the quantum individuals, collapsed individuals

and attractors at generation t are noted Q(t), C(t) and A(t)
respectively.

Algorithm 1 The Versatile Quantum-inspired EA (vQEA)

1: t ⇐ 0
2: initialize Q(t) and A(t)
3: while not termination condition do

4: make C(t) by observing the states of Q(t)
5: evaluate C(t)
6: update Q(t) according to C(t) and A(t) using QGate

7: store the best of C(t) into Bglobal(t)
8: synchronize A(t) with Bglobal(t)
9: t ⇐ t + 1

10: end while

B. vQEA on the OneMax problem

The behavior of vQEA on the OneMax problem is studied

for λ = 100. The setting of the evolutionary parameters is

kept almost unchanged to allow fair comparison with QEA,

with a population of 10 individuals, ∆θ = ±0.01π, of course

no elitism and global synchronization every generation (local

synchronization and number of group being meaningless).

We have plotted Figure 4 the evolution of two illustrative

Qbits for QEA (dashed line) and vQEA (solid line) on the

OneMax problem. Actually the value of θ(t) is reported in

the polar coordinates system, the radius is given by t and the

angle corresponds to θ such that cos(θ) = |α| and sin(θ) =
|β|. For both algorithms a successful run is presented since

for both cases the angle θ finally reached an expected value

close to 90 degree, i.e. β close to 1.0. Nevertheless it is clear

that QEA and vQEA display a very different behavior. With

QEA strong decisions are made and when a rotation sense

is chosen this one is kept during several generations. In fact

this constancy is related to the strategy adopted for updating

the attractors that is based on elitism. Conversely for vQEA,

the trajectory of θ(t) is much more unsettled and during the

first 300 generations, a high number of variations is reported.

3It is worth noticing that an extra long term memory mechanism has been
added to store the best collapsed individual found ever, but this mechanism
does not influence the algorithm

Nevertheless, the overall evolution is much smoother than

with the classical QEA.

Fig. 4. Typical evolution of a Quantum bit (value of θ(t)) for QEA (dashed
line) and vQEA (solid line) on the OneMax problem

To illustrate this situation, we have also computed for both

algorithms the average total number of different attractors

used per individual during one run of 500 generations on

the OneMax problem. We found 25.5 for QEA and more

than 372 for vQEA, meaning that the “life duration” of an

attractor is around 19.6 generations for QEA and only 1.34

generation for vQEA .

The Figure 5 presents the typical evolution with vQEA

of the 100 Qbits of the Qindividual Q5 on the OneMax

problem. We can see a phase of more than 100 generations

where the Qindividual stay undecided. Then all the Qbits

evolve slowly toward the optimum as the color changes to

white. We note that for this run vQEA was able to find the

global optimum in 298 generations.

To understand this behavior of Qbits, we have plotted the

evolution of Q17
5 , i.e. values of |α| (doted line) and |β| (solid

line), as well as the states of the corresponding collapsed bit

C17
5 and attractor bit A17

5 , cf. Figure 6. We see that the |β|
value is slowly but continuously moving toward 1 which is

expected. Meanwhile the attractor bit reports many changes

of its state at the early generations then the frequency is

decreasing and finally the attractor bit converges to 1.

IV. EXPERIMENTS

In this section, vQEA is tested and compared to a Classical

Genetic Algorithm (CGA ) and to a QEA on two benchmark

problems. For both problems the fitness of the average best

solution found over 30 runs is presented. We use a statistical

unpaired, two-tailed t-test with 95% confidence to determine

if results are significantly different.
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Fig. 5. Typical evolution of a Qindividual (value of |β|2) with vQEA on
the OneMax problem

Fig. 6. Typical evolution of a Quantum bit, Collapsed bit and Attractor bit
with vQEA on the OneMax problem

A. Optimization of a 01-knapsack problem

This NP-hard problem consists in finding the most valu-

able subset among N items of different profits and volumes

that fit in a knapsack of limited capacity. In [8], QEA was

already evaluated on a 01-knapsack problem. For both CGA

and QEA, the same settings for the evolutionary parameters

are used here. We note that the population size is equal to

100 for the CGA and only 10 for both QEA and vQEA . For

vQEA of course the elitism was switched off and Sglobal

set to one. The results are reported in Table I for N=500

items. Our implementation of CGA and QEA found solutions

comparable to [8]. QEA significantly outperforms the CGA

but the best results came with vQEA. The improvement

of the average profit obtained when comparing vQEA to

QEA is almost equivalent to the improvement obtained when

comparing QEA to CGA.

TABLE I

AVERAGE PROFIT OF THE BEST SOLUTION FOUND ON THE 01-KNAPSACK

PROBLEM

λ = N = 500, 1000 generations

CGA QEA vQEA

2963.5(σ=19.7) 3013.5(σ=18.9) 3058.0(σ=15.9)

In Figure 7, the evolution of the average best profit is

plotted for the three algorithms. We see that during the first

306 generations the CGA reports the best profit then, until the

generation 1000, vQEA outperforms both CGA and QEA.

The solutions discovered by CGA and vQEA at generation

306 correspond to an average profit of 2932. This value is

reached by the QEA only at generation 454.

Fig. 7. Average profit of the best solution found on a 01-knapsack problem
with N=500

B. Optimization of NK-landscapes problems

In [13], Stuart Kauffman developed the NK-landscapes to

model systems which performance depends not only on the

states of their N components but also on the K interactions

between them. They have been used in theoretical biology

for example to study gene networks, evolution of proteins or

immune systems. The NK-landscapes define also a family

of combinatorial optimization problems that are now widely

used as benchmarks for EA. According to Weinberger [19],

the model affords a “tunably rugged” fitness landscape. The

parameter N determines the size of the search space while

K controls the number of local optima, from no local optima

for K = 0 to 2
N

N+1
for K = N − 1. In this study, the K

interactions between the N parts of the systems are chosen

randomly and the corresponding problem has been proved to

be NP-complete for K ≥ 1 [19]. The performances of the

three algorithms are studied for problems of increasing size

with N=256, 512, 1024, 2048 and 4096 and of increasing
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difficulty with K varying from 0 to 8. Each run corresponds

to 10, 000 generations.

The average fitness of the best solutions found with K=0

and 8 are plotted in Figure 8 (error bars corresponds to three

times the standard deviation). In part A, for K=0 and N=256

the problem is very simple and can be easily solved by the

three algorithms. While N increases, we see that both CGA

and QEA are outperformed by vQEA. Moreover the average

fitness of the solutions found with vQEA is almost unaffected

by N . In part B for K=8 the performances of the three

algorithms are not significantly different for N=256 and 512

but for higher N the trend reported for K=0 is still present.

These results demonstrate that vQEA is a highly scalable

algorithm even for difficult problems.

(A)

(B)

Fig. 8. Average fitness of the best solution found on NK-landscapes with
K=0 (part a) and 8 (part b)

In Figure 9 we have plotted the relative fitness of the best

solutions found for N=4096 and for different values of K ,

i.e. the results obtained by the CGA are used as a reference.

It is clear that the performance of vQEA compared to CGA

are almost independent of the difficulty with vQEA around

14% better than CGA. Conversely for QEA this ratio varies

from less than 8% for K=0 to nearly 5% for K=8. We note

also that the standard deviation reported for vQEA is the

smallest, indicating that most of the 30 runs have found

nearly the same good solution. For further inter-comparisons,

Fig. 9. Relative fitness of the best solution found on NK-landscapes with
N=4096

the overall numerical results obtained with CGA, QEA and

vQEA are reported Table II.

The Figure 10 presents two isofitness clouds. In these

clouds, each point of coordinates (genA, genB) corresponds

to the average number of generations, i.e. genA and genB ,

needed by two different algorithms, respectively A and B, to

reach the same fitness value. We introduce this kind of rep-

resentation to allow practical comparisons of computational

resources required by algorithms reporting different best

fitness values and different convergence speeds. In our case,

the isofitness clouds have been computed from all the ex-

periments on the NK-landscapes reported above. It is worth

noticing that the underlying assumption is that the resources

needed for computing one generation are equivalent between

all the algorithms tested, which is partly false. Indeed, when

CGA and QEA (same for vQEA) are compared, the size of

the populations are significantly different, respectively 100

and 10 individuals and so a generation is processed faster

with QEA or vQEA than with CGA.

In part (A) CGA and QEA are compared. We see that

most of the points are located under the line y = x showing

that QEA was faster than CGA. The biggest difference

in convergence speed is reported for points at the bottom

right corner of the figure meaning that it requires 10, 000
generations to CGA to discover solutions which fitness was

found by QEA around generation 1, 000. However we note

that for the early generations, i.e. before 1000, some points

indicate that CGA was the first to reach a given fitness level.

After studying the data, we have found that those points

correspond to the easiest problems with small values of N
(256 and 512) and K equal to 0. The part (B) displays the

isofitness cloud obtained for QEA vs vQEA. It is clear that

vQEA is almost always faster than QEA whatever the size

and the difficulty of the problem. We see also that, after the

generation 4,000, the “slope” of the cloud is nearly equal

to 0. This means that the QEA needs a very high number

(asymptotically an infinite number) of generations to find
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solutions as good as the solutions found by vQEA in less

than 2,000 generations.

(A)

(B)

Fig. 10. Isofitness Clouds: part (a) CGA vs QEA , part (b) QEA vs vQEA

V. DISCUSSION

According to [16], the algorithms that use a probabilistic

model of promising solutions to guide further exploration

of the search space are called Estimation of Distribution

Algorithms (EDA). We think that in QEA the Qindividuals

act as a probabilistic models and so, as it has already been

claimed in [20] and [10], QEA is a new approach belonging

to EDA. In this section the role of elitism in EDA is briefly

discussed.

In CGA elitism has been introduced as a protection mech-

anism to counteract the disruptive effects of genetic operators

such as the uniform crossover. In some EDA the probabilistic

models can undergo perturbations to explore the search space

but these perturbations do not have dramatic consequences

TABLE II

AVERAGE PROFIT OF THE BEST SOLUTION FOUND ON THE

NK -LANDSCAPES PROBLEM AFTER 10, 000 GENERATIONS

CGA QEA vQEA
K N = 256

0 0.655(σ=0.000) 0.655(σ=0.000) 0.655(σ=0.000)

1 0.677(σ=0.000) 0.677(σ=0.000) 0.677(σ=0.000)

2 0.679(σ=0.003) 0.680(σ=0.001) 0.680(σ=0.000)

3 0.682(σ=0.010) 0.679(σ=0.009) 0.674(σ=0.005)

4 0.690(σ=0.007) 0.694(σ=0.004) 0.695(σ=0.002)

5 0.689(σ=0.007) 0.691(σ=0.008) 0.683(σ=0.006)

6 0.686(σ=0.009) 0.692(σ=0.003) 0.691(σ=0.004)

7 0.690(σ=0.011) 0.691(σ=0.007) 0.695(σ=0.009)

8 0.683(σ=0.009) 0.688(σ=0.006) 0.680(σ=0.007)

K N = 512

0 0.657(σ=0.000) 0.658(σ=0.000) 0.658(σ=0.000)

1 0.681(σ=0.000) 0.682(σ=0.000) 0.682(σ=0.000)

2 0.671(σ=0.002) 0.673(σ=0.001) 0.673(σ=0.000)

3 0.673(σ=0.005) 0.676(σ=0.003) 0.678(σ=0.000)

4 0.681(σ=0.003) 0.683(σ=0.000) 0.683(σ=0.000)

5 0.679(σ=0.006) 0.684(σ=0.001) 0.685(σ=0.000)

6 0.687(σ=0.011) 0.692(σ=0.006) 0.687(σ=0.006)

7 0.678(σ=0.003) 0.680(σ=0.003) 0.680(σ=0.004)

8 0.688(σ=0.011) 0.693(σ=0.009) 0.690(σ=0.009)

K N = 1024

0 0.642(σ=0.001) 0.662(σ=0.000) 0.664(σ=0.000)

1 0.648(σ=0.001) 0.665(σ=0.002) 0.669(σ=0.002)

2 0.643(σ=0.001) 0.660(σ=0.001) 0.665(σ=0.000)

3 0.649(σ=0.002) 0.667(σ=0.002) 0.672(σ=0.002)

4 0.653(σ=0.003) 0.673(σ=0.003) 0.679(σ=0.000)

5 0.658(σ=0.003) 0.675(σ=0.002) 0.681(σ=0.001)

6 0.653(σ=0.002) 0.667(σ=0.003) 0.674(σ=0.003)

7 0.654(σ=0.004) 0.670(σ=0.003) 0.676(σ=0.003)

8 0.651(σ=0.003) 0.667(σ=0.003) 0.675(σ=0.004)

K N = 2048

0 0.613(σ=0.001) 0.650(σ=0.002) 0.665(σ=0.000)

1 0.612(σ=0.001) 0.645(σ=0.004) 0.665(σ=0.000)

2 0.617(σ=0.001) 0.649(σ=0.004) 0.671(σ=0.001)

3 0.617(σ=0.002) 0.650(σ=0.004) 0.673(σ=0.000)

4 0.623(σ=0.001) 0.655(σ=0.004) 0.678(σ=0.000)

5 0.617(σ=0.002) 0.647(σ=0.004) 0.671(σ=0.000)

6 0.624(σ=0.002) 0.653(σ=0.005) 0.678(σ=0.001)

7 0.623(σ=0.004) 0.653(σ=0.004) 0.678(σ=0.001)

8 0.620(σ=0.004) 0.647(σ=0.004) 0.675(σ=0.002)

K N = 4096

0 0.581(σ=0.001) 0.625(σ=0.002) 0.662(σ=0.000)

1 0.586(σ=0.001) 0.629(σ=0.003) 0.669(σ=0.000)

2 0.585(σ=0.001) 0.623(σ=0.004) 0.667(σ=0.000)

3 0.587(σ=0.001) 0.624(σ=0.005) 0.669(σ=0.001)

4 0.587(σ=0.001) 0.619(σ=0.006) 0.669(σ=0.001)

5 0.587(σ=0.001) 0.619(σ=0.005) 0.669(σ=0.001)

6 0.589(σ=0.001) 0.619(σ=0.004) 0.672(σ=0.002)

7 0.589(σ=0.003) 0.621(σ=0.006) 0.671(σ=0.002)

8 0.590(σ=0.003) 0.621(σ=0.004) 0.673(σ=0.001)

and elitism is not necessary. Moreover with some other EDA,

the probabilistic models are completely reconstructed every

generation and elitism is not used. Nevertheless we found

in [1] an interesting counter example where an EDA is

presented and better results are reported with elitism. But in

that case a uniform crossover is also applied to bit strings.

So we think that as far as no disruptive operators are

employed, there is no need for an EDA and so for a quantum

inspired algorithm to have recourse to elitism. This is one the
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reasons why vQEA performs better than QEA .

VI. CONCLUSIONS

The Quantum-Inspired Evolutionary Algorithm (QEA) in-

troduced in [7] and studied in this paper is elitist. The

exploration of the search space is driven by attractors cor-

responding to the best solution found so far either at the

individual, local or global level. If a non-optimal solution

is propagated to the global level then this solution starts

to attract the entire population. In that case, to avoid being

trapped, the algorithm has to discover a better solution before

converging to this global attractor.

To prevent the choice of an attractor from being irre-

versible, the Versatile Quantum-Inspired Evolutionary Al-

gorithm (vQEA) is proposed. With vQEA, the elitism is

switched off and the search at time t + 1 is driven by the

best solution found at time t. Simply removing elitism has

strong consequences. With vQEA the information about the

search space collected during evolution is not kept at the

individual level but continuously renewed and shared among

the whole population. In terms of both speed and accuracy

vQEA performs better than QEA on different benchmark

problems.

The dynamics of QEA and vQEA are very distinct. The

short term behavior of QEA is almost always constant

because preferential search directions are chosen and fol-

lowed during several generations. Conversely with vQEA, the

short term behavior is much more unsettled and the search

directions are reevaluated every generation. Thus the eventual

decision errors do not have long term consequences. vQEA is

continuously adapting the search to local information while

the quantum individuals act as memory buffers to keep track

of the search history. This leads to a much more smooth and

efficient long term exploration of the search space.

In this study, since all the attractors are synchronized

at every generation, the local level with the Qgroups are

meaningless. Nevertheless we think that the concept of

group, which is similar to demes in classical EA, is very

promising and further studies should address the setting of

both local and global synchronization.

In future work the relationship between Quantum-Inspired

Evolutionary Algorithms and Estimation of Distribution Al-

gorithms should be investigated strongly, some empirical

comparisons should be performed and an unified definition

should be proposed.
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