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Abstract

This paper presents a detailed description of a real-time correlation-based stereo al-
gorithm running completely on the graphics processing unit (GPU). This is impor-
tant since it allows to free up the main processor for other tasks including high-level
interpretation of the stereo results. We first introduce a two-view stereo algorithm
that includes some advanced features such as adaptive windows and cross-checking.
Then we extend it using a plane-sweep approach to allow multiple frames without
rectification.

By taking advantage of advanced features of recent GPUs the proposed algorithm
runs in real-time. Our implementation running on an ATI Radeon 9800 graphics
card achieves up to 289 million disparity evaluations per second including all the
overhead to download images and read-back the disparity map, which is several
times faster than commercially available CPU-based implementations.
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1 Introduction

Depth from stereo has traditionally been, and continues to be, one of the most
actively researched topics in computer vision. While some recent algorithms
have obtained excellent results by casting the stereo problem as a global opti-
mization problem, real-time applications today have to rely on local methods,
most likely correlation-based ones, to obtain dense depth maps in real time
and online.

⋆ Part of this paper has appeared in CVPR 2003 [29] and IEEE Workshop on Real
Time 3D Sensors and Their Use (in conjunction with CVPR 2004) [30].
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It is only recently that real-time implementations of stereo vision became pos-
sible on commodity PCs, with the help of rapid progress in CPU clock speed
and assembly level optimizations utilizing special extensions of the CPU in-
struction set, such as the MMX extension from Intel. While it is a tremendous
achievement that some of them could perform in the order of 100 million dis-
parity estimations per second (Mde/s) in software [12,13,22,15] 1 , there are
few CPU cycles left to perform other tasks including high-level interpretation
of the stereo results. In many real-time applications, such as robot navigation,
to calculate a raw depth map is only the first step in the entire processing
pipeline.

Recently, driven by consumer demands for better realism in computer-generated
images, the graphic processing unit (GPU) on the graphics board has be-
come increasingly programmable, to the point that it is now capable of ef-
ficiently executing a significant number of computational kernels from many
non-graphical applications.

In this paper, we present a correlation-based stereo algorithm that is im-
plemented completely on the GPU. We discuss in detail how to fit many
advanced features in stereo such as adaptive window and cross-checking to
the computational model and feature set available in today’s GPU. Our opti-
mized implementation is several times faster than the commercially available
CPU-based implementations. In addition, we have measured the accuracy of
our approach using the widely used ground truth data from Scharstein and
Szeliski [24]. When real-world images are used, our approach compares favor-
ably with several non real-time methods.

2 Related Work

In this section, we first present an overview of stereo algorithms, in partic-
ular, real-time ones. Then, for motivation and clarity, we explain the basic
architecture of modern GPUs.

2.1 Stereo Reconstruction

Stereo vision is one of the oldest and most active research topics in computer
vision. It is beyond the scope of this paper to provide a comprehensive survey.
Interested readers are referred to a recent survey and evaluation by Scharstein

1 The number of disparity evaluations per seconds corresponds to the product of
the number of pixels times the disparity range times the obtained frame-rate and,
therefore, captures the performance of a stereo algorithm in a single number.
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and Szeliski [25]. While many stereo algorithms obtain high-quality results
by performing optimizations, today only correlation-based stereo algorithms
are able to provide a dense (per pixel) depth map in real time on standard
computer hardware.

Only a few years ago even correlation-based stereo algorithms were out of reach
of standard computers so that special hardware had to be used to achieve real-
time performance [11,14,27,15,9].

In the meantime, with the tremendous advances in computer hardware, software-
only real-time systems begin to merge. For example, Mulligan and Dani-
ilidis proposed a new trinocular stereo algorithm in software [18] to achieve
3-4 frames/second on a single multi-processor PC. Hirschmuller introduced
a variable-window approach while maintaining real-time suitability [13,12].
Commercial solutions are also available. The stereo algorithm from Point Grey
Research [22] yields approximately 80Mde/s on a 2.8GHz processor, at 100%
utilization.

All these methods used a number of techniques to accelerate the calcula-
tion, most importantly, assembly level instruction optimization using Intel’s
MMX extension. While the reported performance is sufficient to obtain dense-
correspondences in real-time, there are few CPU cycles left to perform other
tasks including high-level interpretation of the stereo results.

Recently, Yang et al [31] proposed a completely different approach. They pre-
sented a real-time multi-baseline system that takes advantage of commodity
graphics hardware. The system was mostly aimed at novel view generation
but could also return depth values. The approach used the programmability
of modern graphics hardware to accelerate the computation, but it was limited
to use a 1 × 1 correlation window so that multiple images had to be used to
disambiguate matching and achieve reliable results.

The method we propose in this paper is most related to this last approach. Our
algorithm takes full advantage of the tremendous image processing possibilities
of current graphics hardware. We propose to (a) use a pyramid-shaped corre-
lation kernel or adaptive window that strike a balance between large windows
(more system errors) and small windows (more ambiguities), (b) use cross-
checking to improve the accuracy and reliability, and (c) utilize new features
in the graphics hardware to improve speed. Compared to other approaches to
accelerate stereo computation on graphics hardware such as the one from Zach
et al. [5], our algorithm can be implemented completely on graphics hardware,
avoiding the I/O bottleneck between the host PC and the graphics board.

3



2.2 A Brief Review of Modern Graphics Hardware
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Fig. 1. Rendering Pipeline

GPUs are dedicated processors designed specifically to handle the intense
computational requirements of display graphics, i.e., rendering texts or images
over 30 frames per second. As depicted in Figure 1, a modern GPU can be
abstracted as a rendering pipeline for 3D computer graphics (2D graphics is
just a special case) [26].

The inputs to the pipeline are geometric primitives, i.e., points, lines, poly-
gons, and a user-specified “virtual camera” viewpoint, and the output is the
framebuffer – a two-dimensional array of pixels that will be displayed on screen.

The first stage operates on geometric primitives described by vertices. In this
vertex-processing stage vertices are transformed according to the desired view-
point, and primitives are clipped to the virtual camera’s viewing volume in
preparation for the next stage: rasterization. The rasterizer produces a series
of framebuffer addresses and color values, each is called a fragment, which rep-
resents a portion of a primitive and corresponds to a pixel in the framebuffer.
In essence, the rasterization stage converts a continuous mathematical descrip-
tion of primitives (lines, triangles, etc) into a series of discreet fragments that
a display device can accept.

Each fragment is fed to the next fragment processing stage before it finally
alters the framebuffer. Operations in this stage include texture mapping, depth
test, alpha blending, etc. Most important in this stage is the depth test, which
discards fragments that are occluded by other objects. Only fragments that are
visible from the desired viewpoint will be allowed to be sent to the framebuffer
for final display, resulting in a solid image with proper occlusion effect.

Until a few years ago, commercial GPUs, such as the RealityEngine from
SGI [2], implement in hardware a fixed rendering pipeline with configurable
parameters. As a result their applications are restricted to graphical computa-
tions. Driven by the market demand for better realism, the recent generations
of commercial GPUs, such as the NVIDIA GeForce FX [20] and the ATI
Radeon 9800 [3], added significant programmable functionalities in both the
vertex and the fragment processing stage (stages with double-line boxes in
Figure 1). They allow developers to write a sequence of instructions to modify
the vertex or fragment output. These programs are directly executed on the
GPUs to achieve comparable performance to fixed-function GPUs. For exam-
ple, the NVIDIA GeForce FX series can reach a peak performance of 6 Gflops
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Fig. 2. Stream programming for edge detection (an example).

in the vertex processor and 21 Gflops in the fragment processor [17].

Many researchers, including us, have recognized the computation power of
GPUs for non-graphical applications. Interested readers are referred to http:

//www.gpgpu.org for a collection of general purpose applications successfully
implemented on the GPU.

From a programming standpoint, a modern GPU can be abstracted as a stream

processor that performs computations through the use of streams and ker-
nels [8,4]. A stream is a collection of records requiring similar computation
while kernels are functions applied to each element of a stream. A streaming
processor executes a kernel over all elements of an input stream, placing the
results into an output stream. Many image processing tasks fit this streaming
programming model well. We will further illustrate this point with a simple
example—edge detection. As illustrated in Figure 2, our sample edge detec-
tion algorithm can be split into three kernels: gaussian smoothing, applying
the Sobel operators, and thresholding. The input stream is the original image,
and the output stream is the edge map. Every pixel will be fed to each kernel
sequentially. We can easily implement this algorithm on the GPU. The in-
put image I is stored as a texture map, and we simply draw a screen-aligned
rectangle using I as a texture. Therefore, each pixel in I corresponds to a
fragment. Each kernel is implemented as a short program in the fragment
processing stage, which has access to I. Each incoming fragment (i.e., a pixel
in I) will therefore be processed to generate the final edge map. Our stereo
implementation utilizes a similar flow of image data in which the majority of
the computation is carried out in the fragment processing stage.

3 Two-frame Stereo

Given a pair of images, the goal of a stereo algorithm is to establish pixel corre-
spondences between the two images. The correspondence can be expressed in
general as a disparity vector, i.e., if PL(x, y) and PR(x′, y′) are corresponding
pixels in the left and right image respectively, then the disparity of PL(x, y) and
PR(x′, y′) is defined as the difference of their image coordinates–[x−x′, y−y′].
Therefore, the output of a stereo algorithm is a disparity map, i.e., a map that
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records the disparity vector for every pixel in one image (the reference image);
the disparity map for the other image is automatically defined because of the
symmetry in disparity vectors.

Rectifi-
cation

Cost
Compu.

Cost
Aggre-
gation

Disparity
Selection

Fig. 3. Block diagram of our stereo algorithm

Illustrated in Figure 3, our algorithm contains four major steps: rectification,
matching cost computation, cost aggregation, and finally disparity selection.
Rectification involves a 2D projective transformation for each image so that
the epipolar lines are aligned with scan lines. In this case, the disparity vector
degrades to a scalar since corresponding pixels must be on the same scan line,
i.e., y ≡ y′. We choose to work with rectified images since it brings a number
of performance advantages (we will discuss more later). In the second step, a
matching cost for every possible disparity value for each pixel is computed. To
reduce the ambiguity in matching, the cost is summed over a small neighboring
window (support region) in the third aggregation step. The implicit assump-
tion made here is that the surface is locally smooth and frontal-parallel (facing
the camera), so neighboring pixels are likely to have the same disparity value.
In the last disparity selection step, we use a “winner-take-all” strategy: simply
assign each pixel to the disparity value with the minimum cost.

While our algorithm resembles a classic stereo vision algorithm, implementing
it efficiently on a GPU is challenging because of GPU’s unique programming
model. In the next few sections we will discuss how to map these steps on
graphics hardware to receive maximum acceleration.

3.1 Rectification

The standard approach to perform image-pair rectification consist of applying
3 × 3 homographies to the stereo images that will align epipolar lines with
corresponding scanlines [10]. This can be efficiently implemented as a pro-
jective texture mapping on a GPU. It is also a common practice to correct
lens distortions at the same time. Unlike rectification, dealing with lens dis-
tortions requires a non-linear transformation. A common optimization is to
create a look-up table that encodes the per-pixel offset resulting from lens
distortion correction and the rectifying homography. The latest generation
of graphics hardware supports dependent-texture look-up that makes precise
per-pixel correction possible. With older graphics hardware, this warping can
be approximated by using a tesselated triangular mesh. This type of approach
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would also allow to use more advanced non-linear rectification transformations
that can be necessary if the epipoles are in (or close to) the images [23].

3.2 Matching cost computation

A widely used matching cost is the the absolute difference between the left
and right pixel intensities:

|IL(x, y) − IR(x + d, y)| , (1)

where d is the hypothesized disparity value. Under the Lambertian surface
assumption, a pair of corresponding pixels in the left and right view should
have identical intensities, leading to a zero(optimal) matching cost.

Since the images are rectified, every disparity value corresponds to a horizontal
shift in one of the images. In our implementation, we store the two input
images as two textures. For each disparity hypothesis d, we draw a screen-
sized rectangle with two input textures, one of them being shifted by d pixels.
We use the fragment program to compute the per-pixel absolute difference,
which is written to the framebuffer. The absolute difference (AD) image is
then transferred to a texture, making the framebuffer ready for the matching
cost from a different disparity value. To search over N disparity hypothesis,
N rendering passes are needed.

In this baseline implementation there are several places that can be improved
using advanced features available in the newer generation of GPUs.

First is the copy from framebuffer to texture. This can be eliminated by using
the P-buffer extension [1]. P-buffer is a user-allocated off-screen buffer for
fragment output. Unlike the framebuffer, it can be used directly as a texture.
From a graphics hardware standpoint, a P-buffer can be simply implemented
by reserving an additional block in the graphics memory and directing all
the fragment output to that memory space. In our implementation, we create
one or more P-buffers depending on the disparity search range. Each P-buffer
should be as large as possible so that multiple AD images can be stored in a
single P-buffer to reduce the switching overhead.

Another optimization is to use the vector processing capability of graphics
hardware. One possibility is to pre-pack the input images into the four channels
of textures. Both images are first converted into gray-scale ones (if they are
color). Then they are replicated into all four channels of the corresponding
texture, but one of them (say the right one) is shifted incrementally in each
channel, i.e., the red channel stores the original right image, the green channel
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stores the original right image horizontally shifted by one pixel, so on and
so forth. With these packed images, we can compute the matching costs for
four consecutive disparity values in a single pass. But this approach discards
the color information. Instead, we implemented a quite complicated fragment
program to compute the matching costs over four disparity values in a single
pass. It essentially retrieves one pixel from the reference image and four pixels
from the other image that correspond to disparity values of d to d+3. Then four
AD values are calculated and packed into one RGBA fragment output. Since
these operations can be pipelined, we noticed little performance degradation
compared to the pre-packing approach.

3.3 Cost Aggregation

While it is possible to assign disparity values directly based on the per-pixel
difference values from multiple images [16,31], it is necessary to use larger
support region in the stereo case with only two input images.

Stereo algorithms typically sum the matching cost over a small window to
increase the robustness to noise and texture variation. However, choosing the
size of the aggregation window is a difficult problem. The probability of a
mismatch goes down as the size of the window increases [19]. However, using
large windows leads to a loss of accuracy and to the possibility of missing
some important image features. This is especially so when large windows are
placed over occluding boundaries. We deal with this problem with two alterna-
tive techniques, one uses a multi-resolution approach while the other uses an
adaptive window. Both lend themselves well to a GPU-based implementation.

3.3.1 Multi-Resolution Approach

By observing correlation curves for a variety of images, one can observe that
for large windows the curves mostly have a single strong minimum located in
the neighborhood of the true depth, while for small windows often multiple
equivalent minima exist. However, for small windows the minima are typically
well localized. Therefore, one would like to combine the global characteristics
of the large windows with the well-localized minima of the small windows.
The simplest way to achieve this in hardware consist of just adding up the
different curves. In Figure 4 some example curves are shown for the Tsukuba
dataset.

Summing two difference images obtained for windows differing by only a factor
of two (one mipmap-level) is very easy and efficient by using the mipmap
functionality available in today’s Graphics Processing Units (GPUs). This
approach is more general and quite efficient for certain types of convolutions.
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Fig. 4. Correlation curves for different points of the Tsukuba stereo pair. Case A
represents a typical, well-textured image point for which using the sum of squared
difference (SSD) would yield correct results for any window size. Case B shows a
point close to a discontinuity where SSD with larger windows would fail. Case C and
D show low-texture areas where small windows do not capture sufficient information
for reliable consistency measures.

Modern GPUs have built-in box-filters to efficiently generate all the mipmap
levels needed for texturing. Starting from a base image J0 the following filter
is recursively applied:

J i+1
u,v =

1

4

2v+1∑

q=2v

2u+1∑

p=2u

J i
p,q,

where (u, v) and (p, q) are pixel coordinates. Therefore, it is very efficient to
sum values over 2n×2n windows. It suffices to enable mipmap texturing and to
set the correct mipmap-level bias (see figure 5). Additional difference images
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Fig. 5. A single AD image at different mipmap levels, from zero to four, correspond-
ing to a support kernel from 1 × 1 to 16 × 16.

can easily be summed using multiple texturing units that refer to the same
texture data, but have different mipmap-level biases.

In fact, this approach corresponds to using a large window but with larger
weights for pixels closer to the center. An example of a kernel is shown in
Figure 6. The peaked region in the middle allows good localization while the
broad support region improve robustness.

Fig. 6. Shape of kernel for summing up six levels.

3.3.2 Adaptive Window

The technique we just discussed reduces the image size by half at each iteration
of the filtering. Therefore, a disadvantage of that approach is that the cost
summation can only be evaluated exactly at every 2n × 2n pixel location. For
other pixels, approximate values can only be obtained by interpolation. Note
that by enabling bilinear texture interpolation and sampling in the middle of
4 pixels, it is possible to average those pixels.

An alternative is to use an adaptive window that can be accurately evaluated
at every pixel location. To sum over a large window, we implement a two-
pass algorithm. In the first pass we draw every AD image with orthographic
projection, and a fragment program is implemented to sample and sum the
AD image at four different locations per pixel (shown in Figure 7(a)); this
is equivalent to sum over a 4 × 4 window. The resulting sum-of-absolute-
difference (SAD) image is stored in another P-buffer and used as a texture
for the second pass in which the four neighbors of each pixel are sampled. As
shown in Figure 7(b), these four neighbors are (u−4, v), (u+4, v), (u, v+4), and
(u, v−4). Their values (SAD scores) are sorted, and the smaller two are added
to P (u, v) as the final matching cost. All these operations are implemented in
a fragment program.

Our adaptive scheme has six different support windows, each corresponding
to a different shape configuration–corner, edge, etc(Figure 7(c)). The one with
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(a) (b)

(c)

Fig. 7. Adaptive window for cost aggregation. (a) Sum the cost over a 4×4 windows
with four bilinearly interpolated values (sampled at the circle locations). (b) In the
second pass four more SAD values are sampled, and the smaller two are added to
the SAD score of the current pixel. Therefore, a total of six support windows is
possible, shown in (c).

the minimum score is used as the aggregated matching cost.

3.4 Disparity Selection

Typical in real-time stereo algorithms, we use a “winner-take-all” strategy
that assigns each pixel to the disparity value with the minimum cost. This
step in fact can be combined with the previous aggregation step. Once a
pixel’s matching cost at a certain disparity is computed, it is sent to the
framebuffer as a depth value while the disparity value is encoded as the color.
In our implementation, we draw each SAD image sequentially. By enabling
the depth test, each pixel in the final framebuffer will be assigned the color
value (disparity) with the minimum depth (matching cost). This concludes
the stereo computation.

Note that when dealing with packed SAD images, we have to use a fragment
program that finds out the minimum value among the four channels and com-
pute the corresponding color value.

Cross-Checking So far we have calculated a disparity map using one image
as the reference. We can apply the same algorithm with the other image as
the reference. This will yield another disparity map. These two maps may not
be identical due to issues such as occlusions and sampling. We can therefore
remove the inconsistent disparity values to increase the accuracy. This process
is called cross checking [6]. Working with rectified images, it is quite easy to
efficiently implement cross-checking. As shown in Figure 8, the SAD images
(each corresponding a single disparity hypothesis) are aligned with the ref-
erence image, therefore different matching costs for a pixel in the reference
image are aligned in a column in the disparity direction. In the meantime, dif-
ferent matching costs for a pixel in the other image are aligned in a diagonal
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direction. Thus, we just need to draw the SAD images with an incremental
horizonal shift to calculate the second disparity map. The two disparity maps
are copied to textures and compared through a fragment program. Pixels with
inconsistent disparities are removed.

Fig. 8. Cross-checking with rectified images.

3.5 Summary of Implementation

copyToTexture();

Rectification();

for all AD images

sum_4x4();

for all SAD images 

depth=AdaptiveWindow();

color=disparity

for all AD images 

depth=sumMips(maxMip);

color=disparity;

Use MIPMAP? YesNo

Copy Frame To Texture

Setup AD image offset

Compare two maps

Read back framebuffer

Both maps ready?

Yes
No

Cross-

checking

Cost Aggregation

& Disparity Selection

select P-buffer

for all disparities 

computeAD();

Use P-buffer?

Yes

(packing optional)No
Matching Cost

for all disparities 

computeAD();

copytoTexture();

Use cross-checking?

Read back 

framebuffer

No

Fig. 9. A block diagram of our implementation.

We summarize our implementation in Figure 9. Input images are first sent to
the graphics board as textures. Then in the display routine we usually draw
screen-sized rectangles with orthographic projection. The rasterized rectangles
together with different textures are fed into the fragment processors in which
the majority of the calculations, including rectification, absolute difference,
and cost aggregation, are carried out on a per-pixel basis. Since a modern
GPU typically has multiple fragment processors that work in parallel, the
calculation is greatly accelerated.
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Fig. 10. A configuration where there are five input cameras, the red dot represents
the reference viewpoint. Spaces are discretized into a number of parallel planes.

4 Multi-baseline Stereo

The algorithm introduced in the previous section is optimized to deal with
rectified two-view input. While it can be easily extended to multiple images
that share the same image plane(as in [21]), we here discuss how to extend it
to deal with multiple images in a general configuration.

We adopt a plane-sweep approach first proposed by Collins [7]. We begin
by discretizing the 3D space into parallel planes orthogonal to one reference
direction, say one of the optical axes of input images. We then project the
input images onto each plane Di as shown in Figure 10. This operation can
be efficiently carried out using the projective texture mapping functions in
graphics hardware. If the plane Di is located at the same depth as the recorded
scene, pixels from all images should be consistent, therefore a matching cost
can be computed as the variance of all the pixels 2 .

After the per-pixel cost is calculated, cost can be aggregated over a small
window on each plane in an identical way to the two-view case. With mul-
tiple images, it is usually sufficient to use a smaller support window or even
completely bypass the cost aggregation step.

Finally, we need to select the “best” depth values. We use a Winner-Takes-All
strategy to select the best match along a ray in space. This ray can correspond
to the line of sight of a pixel in the selected reference image or be orthogonal to
the family of planes. In this paper we will compute correspondences for pixels
of the reference image so the result is compatible with the two-view case. To

2 Our current implementation approximates the variance with sum of absolute dif-
ferences using one input image as the reference.
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implement this, the family of planes are projected onto the reference image so
the best depth value for each pixel can be selected. To perform cross-checking,
we simply need to project the planes to a different image.

In summary, to deal with multiple images in a general configuration involves
the following major changes: (a) in matching cost computation, input images
are projected on a family of planes instead of simply shifting; and (b) in
disparity (depth) selection, the planes with aggregated matching costs are
projected onto one or more reference views. Because graphics hardware is
highly optimized for 3D transformation and texturing (e.g.,the cost to shift an
image is almost the same as to draw a texture 3D rectangle), the performance
penalty for using multiple images is not significant. By contrast, a multi-view
software implementation is likely to be substantially slower than its two-view
counterpart, because it costs significantly more in a CPU to sample an image
in a non-integer location than to retrieve the next value in a linear array (as
in the rectified case).

Another important advantage of this extension is that rectification is not nec-
essary so that correspondences can also be obtained for images that contain
the epipoles, such as images taken by a translating camera along the optical
axis.

5 Results

We have implemented our proposed method in OpenGL (the sample code for
the two-view rectified case is available in [28]). In this section, we will present
some quantitative results both in accuracy and speed.

For accuracy evaluation we use the data set from the Middlebury stereo evalu-
ation page [24]. There are four stereo pairs, each with a ground truth disparity
map. We calculate disparity maps using our two-frame method and compare
them with the ground truth. The result is summarized in Table 1, and some
disparity maps are shown in Figure 11 and 12. The “All” columns show the
overall error rates, which is calculated as follows: If a pixel’s disparity differs
more than one from the ground truth, it is considered as a bad match. The
error rate is the ratio between the total number of bad matches and total
number of pixels, excluding the boundary pixels (which are also marked in
the ground truth data). The Middlebury page uses the same accuracy mea-
sure [24]. For results after cross-checking, we compute the error rate as the
ratio of incorrectly matched pixels and pixels with disparity values, excluding
the boundary and occluded pixels as usual. In these cases, we also calculate
the percentage of “missing” pixels. These numbers are displayed in the “Miss”
columns.
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Alg Tsukuba Sawtooth Venus Map

All Miss All Miss All Miss All Miss

MIP 7.07 0 10.4 0 13.3 0 2.33 0

AW4 9.68 0 5.79 0 15.7 0 0.91 0

MPX 2.96 22.5 6.76 13.1 4.96 16.9 0.69 12.7

AWX 3.33 28.5 4.02 19.1 2.46 35.6 0.80 22.2

Table 1
Reconstruction Accuracy. All numbers are in percentage. “All” is the overall error
rate. “Miss” is the percentage of pixels with undefined disparity values due to the
inconsistency from cross-checking. Four different algorithms are tested; they are the
mipmap method (MIP), the adaptive window method (AW4), and their derivations
with cross-checking (MPX and AWX).

Fig. 11. Estimated disparity maps from the Tsukuba set. Methods used are MIP,
AW4, MPX, AWX (from left to right, top to down). Pure white in maps resulting
from cross-checking indicates missing pixels.

Several methods are tested. They are the mipmap method (MIP), the adaptive
window method (AW4), and their derivations with cross-checking (MPX and
AWX). The number of mipmap level used in the MIP method is set to six
cross all tests, and the AW4 method has no parameter. Looking into the
results, we can find several interesting observations. First, the AW4 method
does preserve depth continuity much better than the mipmap method (see
Figure 12), but the overall error rates are similar. Secondly, cross-checking
substantially reduces the error rate by half or more, but in the meantime causes
many pixels with no disparity value. Thirdly, while the results from real images
(Tsukuba and Map) are within the expectation of a local correlation-based
algorithm and better than several non-realtime methods (see [24]), the results
from the remaining synthetics images are substantially worse than those listed
on the Middlebury page. We were initially puzzled by this outcome, but we
now believe it is due to the lack of precision in the AD image since the matching
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Fig. 12. Estimated disparity maps from other data sets. Images in the first row
are computed with the MIP method, while these on the second are from the AW4
method.

cost is stored as a unsigned character. This can be improved by using floating
point textures, but this requires substantially more bandwidth and is thus
slower. In addition, in real applications, the image noise probably outweighs
the inaccuracy caused by storing the matching cost as an unsigned character.

In term of speed, we tested our implementation on an ATI Radeon 9800
XT card with 256 MB of graphics memory. The card is housed in a 2.8
Ghz PC with 512 MB of main memory. We experimented with five meth-
ods, MIPMAP (MIP), adaptive window (AW4), MIPMAP stored in P-buffer
(MPB), MIPMAP with packed AD images in P-buffer (MPP), and MIPMAP
stored in P-buffer with cross-checking (MPB X). The MIPMAP summation
level is set to six. The performance data with two images is summarized in
Table 2 with the first two rows showing various overheads. For each method,
the time to calculate a disparity map for different size input and disparity
range is displayed. These numbers do not include the overhead, but we do
include the overhead to calculate the throughput: million disparity evaluation
per second (Mde/s). Performance data using multiple images are shown in
Figure 13. The ATI card we use supports up to 32 texture samples, which
means we can compute the AD score for one depth hypothesis from 32 images
in a single pass.

As we can see in Table 2, our implementation can reach up to 289 Mde/s,
which is achieved by using P-Buffer and packed AD images. This performance
compares favorably with software stereo implementations, such as the package
from Point Grey Research [22] with an estimated 80 Mde/s on a 2.8GHz PC.
In addition, we still have the majority of the CPU cycles available for other
tasks since our approach runs on the GPU. There are also a few numbers
listed as “not available” because of the memory limitation in the graphics
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size Download (ms) Read-back (ms) Rectification (ms)

Overhead 512 1.12 × 2 6.25 3.2 × 2

256 0.29 × 2 1.62 0.6 × 2

Size Disp. MIP AW4 MPB MPP MPB X

Range (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s)

16 24 108 33.8 86 19.5 122 15.6 138 31.3 182

5122 32 47.7 134 67.1 102 37.7 159 28.9 192 59.8 225

64 94.9 153 133.6 113 n/a n/a 55.2 239 n/a n/a

94 141.9 161 199.7 117.3 n/a n/a 72.1 289 n/a n/a

16 8.5 88 9 84 7 101 5.7 115 9.8 158

2562 32 16.8 104 17.7 99 10.8 148 9 169 16.4 212

64 33.5 114 35.2 109 18.6 191 15.8 218 29.6 254

96 50.1 118 52.5 113 28.3 198 22.4 243 44.2 264

Table 2
Stereo Performance on an ATI Radeon 9800 card. The maximum mipmap level is set
to six in all MIPMAP-based tests. The time per reconstruction does not include the
overhead, while the calculation for the million disparity evaluations/second (Mde/s)
does.
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Fig. 13. Performance with multi-image input. The MIPMAP with P-buffer (MPB)
is used with the maximum mipmap level set to six. All the images are 512 × 512
and the number of depth planes is set to 32 in all tests. The bar graph includes all
the overheads.

hardware–it cannot allocate enough P-buffers to store all the AD images.

We further built a five-camera system to test the performance of our algorithm
with live data. Figure 14 shows the disparity maps using two cameras in which
the background is segmented. Figure 15 shows the disparity maps using all
five cameras without segmentation. It demonstrates effect of cost aggregation.
With multiple images, a much smaller kernel can be used to achieve a smooth
depth map.
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Fig. 14. Stereo (two-camera) results from the live system. The first column shows
the input images; the second column shows the disparity map.

Fig. 15. Multi-baseline stereo results using five cameras. From left to right, the
maximum mipmap level is set from zero to four, corresponding to a support size of
1 × 1, 2 × 2, 4 × 4, and 8 × 8, respectively.

6 Conclusion

We have introduced techniques to implement a complete stereo algorithm on
commodity graphics hardware. Our approach includes several advanced fea-
tures such as multi-resolution matching cost aggregation, adaptive window,
and cross-checking. We also show how to extend it to deal with multiple im-
ages in a general configuration using a plane-sweep approach.

Our approaches are relatively simple to implement (we make our code avail-
able at [28]) and flexible in term of the number and placement of cameras.
Thanks to rapid advancement in graphics hardware and careful algorithm de-
sign, all the calculations are performed by the GPU, avoiding the GPU-CPU
communication bottleneck as in other GPU-accelerated stereo techniques [5].
Performance tests have shown that our implementation running on an ATI
Radeon 9800 graphics card can calculate up to 289 million disparity evalua-
tions per second.

Looking into the future, we are looking at ways to efficiently implement more
advanced reconstruction algorithms on graphics hardware. This work will be
eased with newer generations of graphics hardware providing more and more
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programmability. We also hope that our method inspires further thinking and
new methods to explore the full potentials of GPUs for real-time vision.
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