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Abstract 11 

Molecular QTLs (xQTLs) are widely studied to identify functional variation and possible mechanisms 12 

underlying genetic associations with diseases.  Larger xQTL sample sizes are critical to help identify causal 13 

variants, improve predictive models, and increase power to detect rare associations.  This will require scalable 14 

and accurate methods for analysis of tens of thousands of molecular traits in large cohorts, and/or from 15 

summary statistics in meta-analysis, both of which are currently lacking.  We developed APEX (All-in-one 16 

Package for Efficient Xqtl analysis), an efficient toolkit for xQTL mapping and meta-analysis that provides (a) 17 

highly optimized linear mixed models to account for relatedness and shared variation across molecular traits; 18 

(b) rapid factor analysis to infer latent technical and biological variables from molecular trait data; (c) fast and 19 

accurate trait-level omnibus tests that incorporate prior functional weights to increase statistical power; and (d) 20 

compact summary data files for flexible and accurate joint analysis of multiple variants (e.g., joint/conditional 21 

regression or Bayesian finemapping) without individual-level data in meta-analysis.  We applied the methods to 22 

data from three LCL eQTL studies and the UK Biobank.  APEX is open source: https://corbinq.github.io/apex.  23 

 24 
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Introduction 26 

Human genetics studies have identified tens of thousands of molecular QTLs- genetic loci associated 27 

with differences in molecular quantitative traits- including mRNA (eQTL), microRNA (miQTL), or protein (pQTL) 28 

expression, metabolite (metQTL), methylation (mQTL) levels (1, 2).  By mapping DNA sequence variation to 29 

heritable differences in the transcriptome and epigenome, xQTL studies have provided important insights into 30 

genome function and gene regulation (3-5).  xQTLs are also of interest in genome-wide association studies 31 

(GWAS) as possible biological antecedents of genetic associations with complex traits and diseases (6-10).  32 

Integrative analyses of xQTL and GWAS data have provided insight into the biological mechanisms underlying 33 

GWAS associations, and helped identify causal disease genes and therapeutic targets (11-13). 34 

Larger xQTL studies are crucial to identify causal variants driving xQTL association signals, detect low-35 

frequency and rare xQTL variants, and more accurately predict expression or methylation levels from genotype 36 

data.  The next generation of xQTL studies will require scalable methods for association analysis in large multi-37 

ethnic cohorts, accurate methods for downstream statistical analysis (e.g., Bayesian finemapping and 38 

colocalization analysis) from summary statistics in meta-analysis, and integrative methods to utilize prior 39 

knowledge of genome function.  We developed APEX, a toolkit for scalable xQTL association analysis and 40 

meta-analysis, to address these challenges.   41 

Molecular trait data suffers from a high degree of technical and biological variation, which can both 42 

mask and confound cis and trans genetic associations (14-17).  Latent variable models such as PEER (16) and 43 

dimension reduction techniques such as principal component analysis (PCA) (18, 19) are often used to infer 44 

unobserved common sources of technical and biological variation in xQTL studies.  PEER is particularly 45 

effective in xQTL analysis, but computationally demanding.  In APEX, we implemented simple, efficient 46 

algorithms for high-dimensional factor analysis using early stopping for regularization (20, 21).  We found that 47 

this approach is nearly as fast as PCA and far faster than PEER, while yielding equal or greater numbers of cis 48 

discoveries than either method.  49 

Linear mixed models (LMM) are widely used to account for population structure and cryptic familial 50 

relatedness in genome-wide association studies (GWAS), and can additionally account for shared technical 51 

and biological variation across molecular traits in xQTL studies (18).  However, despite multiple existing LMM 52 

methods for xQTL analysis (18, 22), ordinary least squares (OLS) is often used in practice for its greater 53 
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computational efficiency.  Even family-based eQTL studies often use a two-stage approach in which LMM 54 

residuals are used as response variables in OLS (23, 24), which may reduce statistical power (25).  In APEX, 55 

we developed efficient algorithms for LMM association analysis to account for population structure, 56 

relatedness, and technical variation with tens of thousands of traits, which are accurate for small samples and 57 

scale linearly in sample size.   58 

Permutation tests are the current standard to calculate trait-level xQTL omnibus tests and account for 59 

correlations between tests statistics across variants and traits in xQTL discovery (19, 26, 27).  This approach is 60 

burdensome for large sample sizes, and does not readily capitalize prior knowledge of variant functionality.  61 

The aggregated Cauchy association test (ACAT) is a recently-developed method to combine p-values under 62 

arbitrary dependence structures (28, 29).  We applied ACAT to aggregate xQTL test statistics for each 63 

molecular trait, which scales linearly in the number of variants and independent of sample size.  Unlike 64 

permutation tests, which implicitly assign equal prior weight to all variants, ACAT can incorporate functional 65 

prior weights between variants and molecular traits.  We found that simply weighting by the chromosomal 66 

distance between each variant and transcription start site (TSS) (30) substantially increased xQTL discoveries.  67 

While dozens of xQTL studies have been conducted (2), meta-analysis is hampered by difficulties 68 

sharing human genomic data.  Marginal variant-trait associations can be meta-analyzed using regression 69 

slopes and standard errors or z-scores alone.  However, these statistics are not sufficient for analyses that 70 

involve the joint effects of multiple variants, such as joint and conditional analysis (31, 32), Bayesian 71 

finemapping (33-37), aggregation tests (31, 38, 39), and colocalization analysis (40).  Multiple-variant analysis 72 

further requires variance-covariance or linkage disequilibrium (LD) matrices, which characterize the joint 73 

distribution of single-variant xQTL association statistics.  In GWAS, proxy LD from a genotype reference panel 74 

is often used for multiple-variant analysis from summary statistics, but this is problematic for small or 75 

ancestrally heterogenous samples (32, 35), both of which are common in omics studies (2, 3, 17, 41).  Indeed, 76 

previous xQTL meta-analyses have generally analyzed only marginal variant-trait associations (42-44).  In 77 

APEX, we developed compact xQTL summary association data formats for accurate multiple-variant analysis 78 

in meta-analysis without individual-level data.  79 
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Results 80 

Software development 81 

We developed APEX (All-in-one Package for Efficient Xqtl analysis), a software toolkit for scalable 82 

xQTL mapping and meta-analysis.  Core running modes for molecular trait preprocessing, cis and trans 83 

association analysis, and xQTL meta-analysis are summarized in Figure 1 (see Methods and Supplementary 84 

Materials for further details).  APEX is a command-line tool implemented in C++, supports multithreading to 85 

expedite linear algebra, and provides flexible sub-setting options to facilitate parallelization across genomic 86 

regions.  It uses the Eigen (45) and Spectra (46) C++ libraries for linear algebra, and HTSlib to process 87 

indexed BED, BCF, and VCF files (47).  Precompiled Linux binaries and source code are available online.  88 

Application to 3 lymphoblastoid cell line (LCL) eQTL data sets 89 

We analyzed LCL eQTLs using genotype, expression, and technical covariate data from the GTEx 90 

project v8 (41), Geuvadis project (5), and HapMap project (3, 48, 49) (Table 1).  GTEx (n = 147) and Geuvadis 91 

(n = 454) have RNA-seq LCL expression measurements and whole genome sequencing (WGS) based 92 

genotype calls.  HapMap (n = 518) has array-based LCL expression measurements and array-based genotype 93 

calls, from which we imputed genotypes using the 1000 Genomes Project reference panel (50).  Data and 94 

processing procedures for each study are further described in Methods.   95 

Rapid factor analysis of molecular traits for xQTL analysis 96 

We inferred hidden covariates from gene expression measurements in each study using PEER (16), 97 

expression principal component (ePC) analysis (19), and expression factor analysis (eFA) (20, 21). For each 98 

method, we varied the number of hidden covariates from 1 to 100.  eFA and PEER explicitly model shared and 99 

unique variances for each trait, whereas ePCs capture maximal variance across all traits (51).  Conceptually, 100 

ePC can be viewed as a special case of eFA in which all traits are assumed to have equal unique variance 101 

(unexplained by common factors).  Further details are given in Methods and Supplementary Materials.  102 

We used APEX to perform cis-eQTL analysis in each study modeling the hidden factor covariates as 103 

either fixed effects using ordinary least squares (OLS) or random effects using restricted maximum likelihood 104 

(REML) (14) (Figure 2).  ePC and eFA covariates were calculated directly in APEX, and PEER factors were 105 

calculated using the PEER R package (16).  For each method and data set, we varied the number of inferred 106 

covariates between 1 and 100.  Across the studies, APEX eFA was 86 to 5033 times faster than PEER for 107 
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models with >50 common factors (and 30 to 779 times faster for 20 to 50 factors), and provided equal or 108 

greater numbers of cis discoveries in each of the 3 data sets (Figure 2, panel A).  Random-effect eFA provided 109 

the greatest number of discoveries in each of the 3 data sets, and fixed-effect or random-effect ePCs generally 110 

yielded the smallest numbers of discoveries.   111 

To assess Type I error rates for fixed-effect and random-effect models with ePC or eFA covariates, we 112 

simulated 100 expression data sets under the null hypothesis in the Geuvadis study. We used the empirical 113 

covariance between expression and observed covariates (not inferred from expression) and empirical variance 114 

matrix of expression residuals (projecting out observed covariates) to simulate expression under the null 115 

hypothesis matching the observed covariance structure (Supplementary Figures 1-2).  With each simulated 116 

expression matrix, we re-calculated the inferred covariates (eFA or ePC) and performed cis-eQTL analysis 117 

modeling the inferred covariates as either fixed or random effects.  Association tests from all configurations 118 

(fixed-effect or random-effect models with between 1 and 100 inferred covariates) showed well-calibrated Type 119 

I error rates (Supplementary Figure 3).  120 

Fast, scalable linear mixed models with tens of thousands of molecular traits 121 

We assessed the computational performance and numerical concordance of APEX and standard tools 122 

for linear mixed model (LMM) association analysis: FastGWA (52), BOLT-LMM (53), GMMAT (54), and 123 

GENESIS (55).  APEX uses a 3-stage approach to efficiently estimate LMM null models and association 124 

statistics with tens of thousands of traits (Supplementary Figure 4), whereas the other tools are intended for 125 

single-trait analysis.  We note that each of these tools supports a variety of features not considered in our 126 

analysis here—for example, GMMAT and GENESIS support flexible generalized LMM (GLMM) for binary and 127 

other non-normal traits, and BOLT-LMM supports flexible variance partitioning. For LMM association analysis, 128 

FastGWA and BOLT-LMM use approximations for efficient analysis in large cohorts, which may be less 129 

accurate with smaller sample sizes (e.g., < 5000  (56)).  GENESIS, GMMAT, and APEX do not use such 130 

approximations, and APEX further uses small-sample LMM association tests (Supplementary Materials).  To 131 

assess computational performance for LMM association analysis in large cohorts, we used genotype data and 132 

a sparse GRM for 10,000 individuals from the UK Biobank study, and simulated expression data for 16,329 133 

traits with heritability drawn from a uniform distribution (Methods).  Variant component estimates and single-134 

variant association test statistics were nearly numerically equivalent between APEX, GMMAT, and GENESIS, 135 
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as expected; FastGWA test statistics showed lower concordance with other methods (Supplementary Figure 136 

5).  LMM association analysis using APEX was >200-fold faster than GENESIS and GMMAT, 51.4-fold faster 137 

than BOLT-LMM, and 2.5-fold faster than FastGWA (Supplementary Table 1).   138 

Powerful and efficient cis-xQTL omnibus tests 139 

We performed single-variant and gene-level cis-eQTL analysis in each study using APEX, FastQTL, 140 

and QTLtools (Figure 3).  APEX and FastQTL use multiple linear regression (MLR) to adjust for covariates by 141 

default, whereas QTLtools uses simple linear regression with expression residuals (SLR-resid).  We note that 142 

QTLtools can also perform MLR by regressing out covariates from genotype files prior to association analysis.  143 

Gene-level p-values from QTLtools and FastQTL use a Beta-approximated permutation test (Beta), whereas 144 

APEX uses either ACAT with constant weights (ACAT) or ACAT with distance-to-TSS weights between each 145 

variant and gene (ACAT-dTSS).  FastQTL was run using adaptive p-values with 100 to 1000 permutations; 146 

QTLtools was run with 1000 permutations.   147 

We compared the numbers of cis-eQTL discoveries at 1% false discover rate (FDR) in each study from 148 

Beta permutation tests using FastQTL (27) or QTLtools (19), and from ACAT (28, 29) using APEX (Figure 3 149 

panel A).  Each method calculates gene-level omnibus cis-eQTL p-values (cis-eGene p-values) based on 150 

single-variant association test statistics within a 1 megabase (Mbp) window of the transcription start site (TSS).  151 

QTLtools and FastQTL use permutation tests of the minimum p-value across variants, and expedite 152 

computation by modeling the null distribution as a beta density using a fixed number of permutations (27).  In 153 

each of the three studies, ACAT and permutation-based p-values were generally concordant (Supplementary 154 

Figure 6), but ACAT yielded more cis-eGene discoveries overall and was >30x faster (Figure 3, panels A and 155 

D).  We also calculated weighted ACAT test statistics, in which each variant received a weight proportional to 156 

e-|d| where d is the number of base pairs between the variant and TSS and   = 1e-5 (30).  dTSS weighting 157 

further increased the number of cis-eGene discoveries by 14 to 30% across single studies (Figure 3, panel A).  158 

We assessed p-value calibration for ACAT (implemented in APEX) and permutation-based p-values 159 

(implemented in FastQTL and QTLtools) by simulating expression data under the null hypothesis using 160 

genotype and expression data from the Geuvadis study (Figure 3 panel B).  We used the sample covariance 161 

matrices of expression and observed covariates to simulate expression traits under the observed covariance 162 

structure (Methods).  Empirical Type I error rates were well-controlled for both ACAT and Beta p-values, and 163 
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SLR-resid p-values were conservative (shown previously in (57)).  Permutation test p-values from SLR-resid 164 

were also notably conservative, which is expected because while trait residuals and genotype residuals are 165 

orthogonal to covariates, permuted trait residuals and unadjusted genotypes are not.  166 

Accurate multiple-variant xQTL meta-analysis from summary statistics  167 

We assessed CPU time, memory, and storage required to create summary files for xQTL meta-analysis 168 

using APEX.  We generated single-variant association summary statistics (sumstat files) and adjusted LD 169 

matrices (vcov files, which store the variance-covariance of association test statistics) for each of the 3 studies 170 

using APEX (Supplementary Figures 7-8).  Summary statistics files were generated across all autosomes in 171 

0.17 to 0.33 CPU hours and required 0.42 to 0.49 Gb storage per study (Supplementary Table 2).  Adjusted LD 172 

files, which included LD for all pairs of variants within sliding 2 Mbp windows, were generated across all 173 

autosomes in 32.1 to 75.3  CPU hours and required 21.5, 34.3, 119.7 GB storage for GTEx, Geuvadis, and 174 

HapMap respectively (Supplementary Table 2).  HapMap, which used imputed genotype dosages, required 175 

notably more time and storage than the other studies, which used WGS-based hard-call genotypes.  We also 176 

compared adjusted LD storage using RareMetalWorker (RMW) (31), a tool for rare-variant association meta-177 

analysis, across the 3 studies.  APEX was 1.5 to 2.2-fold faster and required 4.5 to 21.5-fold less storage than 178 

RMW (Supplementary Table 3).   179 

Score statistics and adjusted LD (stored in APEX sumstat and vcov files) are sufficient for a wide range 180 

of analyses involving the joint effects of multiple variants, including joint and conditional analysis, Bayesian 181 

finemapping, and penalized linear regression.  We used APEX sumstat and vcov files from each LCL study to 182 

perform stepwise regression analysis using APEX-meta (Figure 4 and Supplementary Figure 9) and Bayesian 183 

finemapping using the susieR R package (33)  (Figure 5) in individual studies and meta-analysis.  To assess 184 

the accuracy of summary-based analyses, we also performed these analyses from individual-level data.  185 

Stepwise regression slopes and p-values and finemapping posterior inclusion probabilities (PIPs) were nearly 186 

numerically equivalent between individual-level vs sumstat data (Pearson Rsq > 0.999; Figure 5 panel C).  187 
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To assess the accuracy of joint analysis from association summary statistics using proxy LD or 188 

unadjusted LD rather than APEX vcov files (which store adjusted LD), we performed finemapping with 189 

association summary statistics from HapMap and either (a) unadjusted LD (the correlation matrix of genotypes 190 

in HapMap, not adjusted for PCs and other covariates), or (b) proxy LD (adjusted LD from Geuvadis as a proxy 191 

for adjusted LD from HapMap).  Unadjusted LD is often used for multiple-variant analysis from GWAS 192 

summary statistics (e.g., (32)), and differs from adjusted LD when genotypes are correlated with covariates 193 

(e.g., genotype PCs in multi-ethnic studies).  PIPs using proxy LD or unadjusted LD yielded substantially lower 194 

concordance with the exact PIPs that adjusted LD (Figure 5 panel C), which is expected due to the relatively 195 

small sample sizes and differences in ancestry composition between HapMap and Geuvadis.  Notably, many 196 

other xQTL studies have relatively small sample size and heterogeneous ancestry composition 197 

(Supplementary Figure 10).  198 

Functional characterization of LCL eQTL variants and genes 199 

We hypothesized that mRNA expression heritability is lower for genes that are more evolutionarily 200 

constrained, and that therefore eGenes detected only in meta-analysis are more constrained on average than 201 

those detected in single studies.  To assess this hypothesis, we compared the loss-of-function 202 

observed/expected upper bound fraction (LOEUF), a recently developed metric of genetic constraint (smaller 203 

LOEUF suggests greater constraint) (58), across genes that were tested in all 3 studies (11,750 genes).  Novel 204 

LCL eGenes (eQTL associations detected by meta-analysis, but not by individual studies) and genes with no 205 

significant signal had significantly lower LOEUF than previously-identified eGenes (Mann–Whitney p = 2.1e-7 206 

and 2.2e-16 respectively), while the difference in LOEUF was less pronounced for novel eGenes vs genes with 207 

no detected eQTLs (p = 0.0096) (Figure 4 panel C).  Moreover, genes with larger numbers of significant cis-208 

eQTL signals (identified in stepwise regression; Methods) tend to have larger LOEUF values (p < 2.2e-16) 209 

(Figure 4 panel D).  While gene length is associated with LOEUF, we observed no significant trends between 210 

gene length and eQTL signals.  These results suggest that larger samples sizes will be required to detect 211 

xQTLs for more biologically important genes, highlighting the utility of meta-analysis.  212 

We assessed functional enrichment of primary and secondary LCL eQTL variants identified in meta-213 

analysis across the 3 studies.   We used binomial logistic regression to identify features associated with LCL 214 

eQTL variants controlling for distance to nearest TSS and minor allele frequency (MAF) (Methods).  First, we 215 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423490doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423490
http://creativecommons.org/licenses/by-nd/4.0/


8 

assessed enrichment of LCL eQTL variants in tissue-specific DNase I hypersensitive sites (DHSs) across 16 216 

tissue groups (59).  LCL eQTLs showed striking enrichment in lymphoid-specific DHS compared to other tissue 217 

groups (Supplementary Figure 11). Next, we assessed overlap enrichment of LCL eQTL variants overlapping 218 

GWAS variants identified using the NHGRI-EBI GWAS Catalog (60).  Among 15 categories of GWAS traits, 219 

LCL eQTL variants showed strongest enrichment with GWAS variants for immune diseases (Supplementary 220 

Figure 12).  These results suggest that LCL eQTL variants capture cell-type specific functionality, and highlight 221 

the utility of xQTL analysis in diverse tissues and cell types.  222 

Discussion  223 

Future xQTL studies will be conducted in increasingly large and diverse cohorts, and are poised to 224 

capitalize on growing knowledge of functional elements in the human genome.  We developed APEX to 225 

empower these studies by providing a flexible, scalable framework for cis and trans xQTL analysis and meta-226 

analysis.  APEX provides rapid high-dimensional factor analysis to infer latent technical and biological factors, 227 

efficient linear mixed model (LMM) association analysis for cis and trans xQTL mapping, procedures to 228 

incorporate prior weights in primary and secondary xQTL signal discovery, and a framework for accurate joint 229 

analysis of multiple variant effects from xQTL summary data.  230 

Our LMM framework for molecular traits extends upon previous work (14, 22) by optimizing association 231 

analysis with high-dimensional traits and structured random-effect covariance matrices.  In particular, we 232 

precompute and recycle computationally expensive terms for each molecular trait and each variant, and exploit 233 

the structure of random-effect covariance matrices (low-rank or block-diagonal) to expedite linear algebra.  234 

With these optimizations, LMM association analysis scales linearly in sample size and the number of traits, 235 

enabling rapid analysis with large xQTL cohorts.  APEX also uses small-sample adjustment and avoids large-236 

sample approximations to provide accurate p-values for smaller cohorts.   237 

In GWAS, random effects are typically used to account for infinitesimal genetic effects or familial 238 

relatedness in LMM association analysis.  In xQTL studies, random effects can also be used to model shared 239 

technical and biological variation across traits (14, 22).  Our results suggest that this strategy outperforms 240 

ordinary least squares (OLS) when using expression factor analysis covariates, but underperforms OLS when 241 

using expression PC covariates.  A variety of other methods can be applied to infer hidden covariates from 242 
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molecular trait data, and various other strategies (e.g., penalized regression) can be used to include these 243 

covariates in xQTL analysis.   We believe this is a worthy area for further research.  Here, our work provides 244 

rapid inference of latent technical and biological covariates from molecular trait data, and a flexible LMM 245 

framework to include these covariates as fixed or random effects in xQTL association analysis.  246 

Our meta-analysis framework extends from previous eQTL meta-analysis tools (61) by enabling 247 

accurate multiple-variant analysis, including joint/conditional analysis (using APEX mode meta), Bayesian 248 

finemapping (using susieR (33) or DAP (34)), and colocalization analysis (using external software), from xQTL 249 

summary statistics.  These methods are fundamental in a variety of applications, including predictive weight 250 

estimation (e.g., for TWAS) and integrative analysis of GWAS loci.  Methods that use LD from a reference 251 

panel as a proxy for meta-analysis LD may be inaccurate when reference or meta-analysis sample size is 252 

limited (e.g., < 5000), ancestry composition differs between reference vs meta-analysis samples, or genotypes 253 

are correlated with covariates in meta-analysis.  In APEX, we provide exact study-specific adjusted LD 254 

matrices (vcov files); similar strategies have been used for rare-variant association meta-analysis (31, 38), but 255 

not to our knowledge for genome-wide xQTL or finemapping meta-analysis.  The proposed xQTL meta-256 

analysis framework enables flexible and highly accurate multiple-variant modeling with arbitrary sample sizes, 257 

ancestry compositions, and sets of covariates.   258 

While our applications focused on eQTL studies, APEX sumstat and vcov formats are also well-suited 259 

for GWAS of quantitative traits, which can be used, for example, in colocalization analysis of GWAS and xQTL 260 

signals.  More broadly, we encourage GWAS and xQTL studies to publicly release adjusted LD data in addition 261 

to single-variant association summary statistics when possible.  With streamlined tools for the analysis of such 262 

data, greater availability of sufficient statistics including LD would increase reproducibility, enhance meta-263 

analysis, and accelerate discovery. 264 

The statistical methods in APEX can be extended in a variety of ways, such as by (a) leveraging 265 

correlations between molecular traits across multiple tissues or cell-types, (b) modeling genetic correlations 266 

between traits of the same tissue or cell-type, or (c) supporting generalized linear models for non-normal traits.  267 

Multivariate LMMs can be used to account for the correlation structure of genetic and environmental 268 

components of molecular traits across and within tissues or cell-types.  Also, zero-inflated Poisson or negative 269 

binomial generalized linear mixed models (GLMMs) may be desirable for some types of molecular trait data.   270 
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Our data applications have several limitations, including (a) analysis of only LCL eQTLs, (b) relatively 271 

small eQTL sample sizes, and (c) limited trans-eQTL analysis.  Our LCL eQTL analysis revealed striking 272 

enrichment with relevant tissue-specific DHS, highlighting the utility of xQTL analysis across diverse tissues 273 

and cell types.  Moreover, APEX is well suited for analysis of mRNA expression and other molecular traits 274 

across broader sets of tissues or cell types due to its computational efficiency.  While the three LCL eQTL had 275 

limited sample sizes, our simulation studies using UK Biobank genotype data demonstrated that APEX is 276 

scalable to larger cohorts, with >100-fold improvement in CPU time relative to standard tools.  Finally, we note 277 

that APEX fully supports trans-eQTL analysis, as illustrated in simulation studies.    278 

In summary, APEX provides an efficient and comprehensive framework for cis and trans xQTL mapping 279 

and meta-analysis.  For xQTL studies of a single cohort, APEX provides efficient inference of latent technical 280 

and biological factors from molecular trait data (20), which performs competitively with state-of-the-art methods 281 

in cis-eQTL analysis and orders of magnitude faster; rapid LMM association analysis with tens of thousands of 282 

molecular traits; powerful, efficient trait-level xQTL omnibus tests; and accurate multiple-variant analysis.  For 283 

xQTL meta-analysis, APEX provides accurate single-variant and joint multiple-variant regression analysis, and 284 

compact summary data formats for flexible and accurate multiple-variant modeling (e.g., Bayesian 285 

finemapping) without individual-level data across multiple studies.   286 

Online Methods 287 

Statistical methods implemented in APEX 288 

Principal components and factor analysis of molecular traits 289 

 APEX provides efficient algorithms to calculate principal components (PCA) and factor analysis (FA) of 290 

molecular traits.  For PCA, we calculate 𝑘 PC covariates as the first 𝑘 left singular vectors of the truncated 291 

singular value decomposition (SVD) of the 𝑛 × 𝑝 normalized expression matrix 𝐘, which is scaled and centered 292 

so that each column (trait) has mean 0 and variance 1.  The SVD is 𝐘 = 𝐔𝐃𝐕⊤, and  𝐔(𝑘) = (𝑼1, 𝑼2, … , 𝑼𝑘) are 293 

the PC covariates.  When the number of traits is larger than the number of samples, we calculate 𝐔(𝑘) from the 294 

truncated SVD (or eigendecomposition) of 𝐘𝐘⊤, as 𝐘𝐘⊤ = 𝐔𝐃2𝐔⊤.  Otherwise, we calculate 𝐔(𝑘) = 𝐘𝐕(𝑘)𝐃(𝑘)−1 , 295 

where the right singular vectors 𝐕(𝑘) are calculated from 𝐘⊤𝐘 = 𝐕𝐃2𝐕⊤.   296 
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The FA model is 𝐘 = 𝐙𝐁 + 𝐄 where 𝐙 is the 𝑛 × 𝑘 matrix of common factors, 𝐁 is the 𝑘 × 𝑝 matrix of 297 

factor loadings, and 𝐄 is the 𝑛 × 𝑝 matrix of unique factors.  The rows of 𝐄 are independent, and each row 298 

vector is multivariate normal with covariance matrix 𝚺 = diag(𝜎12, … , 𝜎𝑝2).  In APEX, we estimate the common 299 

factors 𝐙 using an SVD of 𝐘�̂�−1/2, which we initialize with constant variances �̂�𝑗2 = 1 for all 𝑗 = 1, 2, … , 𝑝.  Given 300 

the first 𝑘 left singular vectors �̃�(𝑘) of 𝐘�̂�−1/2, we update the estimates as �̂�𝑗2 = 1𝑛−1 ‖(I − �̃�(𝑘)�̃�(𝑘)⊤ )𝒀𝑗‖22 for each 301 

trait 𝑗 = 1, 2, … , 𝑝, and repeat.  A similar algorithm was suggested by (62), but the underlying likelihood is 302 

unbounded if  �̂�𝑗−1 → 0, and convergence generally fails in practice.  As proposed by (20, 21), we perform 303 

regularization by halting after a fixed number of iterations.  If the number of samples is greater than the number 304 

of traits (𝑛 > 𝑝), we modify this approach using the 𝑝 × 𝑘 right singular vectors rather than the 𝑛 × 𝑘 left 305 

singular vectors of 𝐘�̂�−1/2.  The time complexity of this procedure is 𝑂(min(𝑛, 𝑝)2 𝑘 + 𝑝𝑛𝑘), where 𝑛 is the 306 

sample size, 𝑝 is the number of traits, and 𝑘 is the number of factors.  Further details are given in 307 

Supplementary Materials.  308 

Statistical methods for cis and trans LMM association analysis 309 

APEX provides a scalable linear mixed model (LMM) framework to account for familial relatedness (14, 310 

63) or technical variation (18, 22) (Supplementary Figure 4). For traits 𝑡 = 1, 2, …, 𝑝, we assume the model  311 𝒀𝑡 = 𝐂𝜶𝑡 + 𝐆𝜷𝑡 + 𝐙𝒃𝑡 + 𝜺𝑡 312 

where 𝒀𝑡 is the observed trait, 𝐂 is the matrix of fixed-effect covariates, 𝐆 is the matrix of genotypes, and 𝐙 is 313 

the matrix of random-effect covariates.  To account for relatedness, 𝐙𝐙⊤ = 𝐊 where 𝐊 is a genetic relatedness 314 

matrix (GRM); and to account for technical and biological variation, 𝐙 is comprised of inferred factor covariates. 315 

We assume the residual 𝜺𝑡 is multivariate normal distributed with mean 𝟎 and variance 𝐈𝜎𝑡2, and the random 316 

effects are multivariate normally distributed with mean 𝟎 and variance 𝐈𝜏𝑡2.  317 

By default, variance components are estimated by restricted maximum likelihood (REML) under the null 318 

hypothesis of no single-variant associations. APEX supports sparse (64, 65) and low-rank (66) covariance 319 

matrices for random effects, and uses specialized optimizations for each structure.  We expedite computation 320 

by precomputing and saving variance component estimates and LMM residuals for each trait, and residual 321 

genotypic variance terms for each variant.  While APEX precomputes LMM residuals, we note that it does not 322 

use the GRAMMAR-gamma (67) or related approximations.  For trans-xQTL analysis (considering all variant-323 
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trait pairs), the time complexity of LMM estimation and association testing in APEX is 𝑂(𝑝𝑚2𝑛 + 𝑛𝑝𝑞 + 𝑛𝑚𝑞) 324 

where 𝑛 is the sample size, 𝑝 the number of traits, 𝑚 the number of covariates, and 𝑞 the number of variants.  325 

Further details are provided in Supplementary Materials.  326 

Omnibus p-values for cis-xQTL signals 327 

We used the aggregated Cauchy association test (ACAT) (28, 29) to calculate omnibus cis region p-328 

values for primary and secondary signals.  ACAT omnibus p-values are calculated as 𝑝𝑂 = 𝐹{∑ 𝑤𝑖𝐹−1(𝑝𝑖)𝑖 } 329 

where 𝐹 is the cumulative density function (CDF) of the standard Cauchy distribution, 𝑤𝑖 are non-negative 330 

weights with ∑ 𝑤𝑖𝑖 = 1, and 𝑝𝑖 are p-values.  ACAT provides valid p-values under arbitrary dependence 331 

structures, provided that 𝑝𝑖 are valid p-values (calibrated under the null hypothesis).  When 𝑝𝑖 are single-332 

variant p-values in the cis region, we find that ACAT p-values with constant weights are highly concordant with 333 

permutation-based p-values (Supplementary Figure 6), but much faster (Figure 3, Panel B).   334 

Data formats for flexible and accurate xQTL meta-analysis 335 

APEX provides genetic association summary statistics (sumstat) and variance-covariance (vcov) data 336 

in an indexed, compressed binary format (Supplementary Figures 7-8).  For fixed effects models, APEX 337 

sumstat files store the vector of score statistics 𝑼𝑡 = 𝐆⊤𝐏𝒀𝒕 and residual sum of squares 𝒀𝑡⊤𝐏𝒀𝑡 for each trait 338 𝑡, where 𝐆 is the genotype matrix, 𝐏 is a projection matrix, and 𝐘 is the matrix of molecular traits; APEX vcov 339 

files store the variance-covariance matrix of score statistics 𝐕 = 𝐆⊤𝐏𝐆 (also called adjusted LD matrix).  For cis 340 

analysis, we store only score statistics for variants within a window of each molecular trait (1 Mbp by default), 341 

and adjusted LD for variants within twice the specified window size.  These statistics are sufficient for a wide 342 

variety of downstream statistical analyses (for example, multiple-variant joint and conditional regression 343 

modeling, aggregation tests, Bayesian finemapping, and colocalization analysis), and preserve the genetic 344 

privacy of xQTL study participants.  Similar strategies have been used to aggregate variants for gene-based 345 

tests in rare-variant (RV) GWAS meta-analysis (31, 38), but to our knowledge no existing methods exist for 346 

efficiently sharing and combining adjusted LD for genome-wide meta-analysis of common variants in GWAS or 347 

xQTL studies.  APEX summary data can be combined across multiple studies for meta-analysis in APEX mode 348 

meta for joint and conditional regression analysis, or accessed and combined through an R interface for use 349 

with other packages.  Further details are given in Supplementary Materials.  350 
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Secondary xQTL signal discovery  351 

We implemented stepwise regression algorithms to detect multiple conditionally independent genetic 352 

association signals (Supplementary Figure 9) using either individual-level data or sumstat and vcov files.  At 353 

each iteration, we evaluate signal-level significance using an omnibus p-value to test the null hypothesis that 354 

no remaining variants are associated with the trait, calculated as 𝑝 𝑂 = 𝐹{∑ 𝑤𝑗𝐹−1(𝑝𝑗|𝑆)𝑗∈𝑈 }, where 𝑆  and 𝑈  are 355 

the current sets of selected and unselected variants, 𝑝𝑗|𝑆  is the conditional p-value for variant 𝑗 given selected 356 

variants 𝑆 , 𝑤𝑗 is the weight for variant 𝑗 (normalized so that ∑ 𝑤𝑗𝑗∈𝑈 = 1 at iteration), and 𝐹 is the CDF of the 357 

standard Cauchy distribution.  If 𝑝 𝑂 < 𝛼, where 𝛼 is a specified threshold, we select the most significant variant 358 

in 𝑈 (adding it to 𝑆 and removing it from 𝑈) and continue; otherwise, we retain the current set 𝑆 and exit.  359 

Further details and extensions are given in Supplementary Materials.   360 

Data sources 361 

LCL eQTL genotype data 362 

Genotype data from the 1000 Genomes Project Phase 3 in NCBI build 38 were obtained from the 363 

International Genome Sample Resource (IGSR) webpage (68).  WGS-based genotype data for the GTEx 364 

project v8 were obtained from dbGaP under accession number (phg 001219.v1); variants and samples with 365 

>15% missingness were excluded. Remaining missing genotype calls were imputed as best-guess hard call 366 

genotypes using the phasing software Eagle (69).  Genotype data from the HapMap project in NCBI build 36 367 

from the Broad Institute webpage.  This data set included 1,379,607 autosomal variants; to increase the 368 

number of variants overlapping the other studies, HapMap genotypes were imputed with the 1000 Genomes 369 

Project Phase 3 reference panel using Minimac3 (70); imputed variants were filtered with Mach-Rsq > 0.3.  A 370 

final list of 10,930,386 variants, the intersection of variants across the three studies, was used for meta-371 

analysis.  Kinship matrices and genetic principal component covariates were calculated using PLINK 2 (64). 372 

LCL gene expression data 373 

RNA-seq expression data from the Geuvadis consortium, which performed RNA-seq on LCLs for a 374 

subset of samples in the 1000 Genomes Project, were obtained from the IGSR webpage (5).  RNA-seq 375 

expression data from LCLs for GTEx v8 participants were obtained from dbGaP under accession number 376 

(phe000037.v1).  LCL expression microarray data for 618 individuals in the HapMap 3 study (17) were 377 
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obtained from ArrayExpress (71); Illumina probe identifiers were mapped to Ensembl gene identifiers using the 378 

illuminaHumanv2 Bioconductor R package.  Genes that were lowly expressed (count  5) in   25% of 379 

individuals were excluded.  Expression microarray measurements and RNA-seq TPMs were rank-normal 380 

transformed within each study (5).   381 

UK Biobank genotype data 382 

 Genotype data from the UK Biobank study were obtained under Application Number 52008. UK 383 

Biobank protocols were approved by the National Research Ethics Service Committee and written informed 384 

consent were signed by the participants.  Marker variants were filtered by including only autosomal SNPs with 385 

genotype missingness < 1% that passed all batch-wise genotype quality control steps (72) (590,606 variants 386 

after filtering).  We randomly selected a multi-ethnic subset of 10,000 UK Biobank participants for analysis, 387 

among which 4,000 were Irish, 3,000 were South Asian (Indian, Pakistani, and Bangladeshi), and 3,000 were 388 

African and Caribbean (all self-reported). We generated an ancestry-adjusted sparse genetic relatedness 389 

matrix (GRM) using LD-pruned MAF > 0.01 variants in R (73) by projecting out genotype PCs from genotypes 390 

and setting GRM elements to 0 for >4th degree estimated relatives (genetic correlation < 0.044).  LD pruning 391 

used pairwise r2 < 0.1 in sliding windows of 50 SNPs moving 5 SNPs at a time.   392 

Data analysis and simulation procedures 393 

Molecular trait simulation procedures 394 

To evaluate Type I error rates of association test statistics, we simulated expression data under the null 395 

hypothesis of no single-variant genetic associations in the Geuvadis study.  We used the empirical covariance 396 

between expression and technical covariates and simulate covariance of expression residuals to simulate 397 

expression with a realistic correlation structure (Supplementary Figures 1-2).  Specifically, in each replicate, we 398 

simulated the row vector of expression across genes for participant 𝑖 as a multivariate normal distribution with 399 

mean (�̂�𝟏, … , �̂�𝒑)⊤𝑪𝑖⊤ and variance  �̃�, where 𝑪𝑖 is the 𝑖𝑡ℎ row vector of from technical covariates 𝐂 (genotype 400 

PCs, gender, batch, ethnicity indicator), �̂�𝒋 = (𝐂⊤𝐂)−1𝐂⊤𝒀𝑗 is the estimated effects of technical covariates on 401 

gene 𝑗 expression 𝒀𝑗 (column vector), and  �̃� = 1𝑛−1 𝐘[𝐈 − 𝐂(𝐂⊤𝐂)−1𝐂⊤]𝐘⊤ is the sample covariance matrix of 402 

expression residuals across genes. In each simulation replicate, we re-calculated the inferred covariates (ePC, 403 

eFA, or PEER) from the simulated expression matrix.   404 
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We simulated expression data in the UK Biobank study to assess the computational performance of 405 

linear mixed models (LMMs) for xQTL analysis in large cohorts, which will be critical to identify rare and small-406 

effect xQTL variants and molecular traits that contribute to heritable diseases.   In these experiments, we 407 

simulated each trait independently from a multivariate normal distribution with mean 𝐂𝜶, where 𝐂 is the matrix 408 

of genotype PCs, and variance ℎ2𝐊 + (1 − ℎ2)𝐈 where 𝐊 is the sparse genetic relatedness matrix. We 409 

simulated the covariate effects 𝜶 from an independent normal distribution, and pseudo-heritability parameter 410 ℎ2 from a uniform distribution.   411 

LCL eQTL enrichment analysis 412 

We used binomial logistic regression models to assess functional enrichment of LCL eQTLs.  The 413 

mean model was specified logit[𝑃(𝑡𝑗 = 1)] = 𝒄𝑗⊤𝜶 + 𝑥𝑗𝛾, where the outcome was defined as 𝑡𝑗 = 1 if variant 𝑗 is 414 

in high LD (𝑟2 > 0.8) with a lead LCL eQTL variant for any gene and 𝑡𝑗 = 0 otherwise, where lead eQTL 415 

variants were identified using stepwise regression (described above).  The scalar 𝑥𝑗 denotes the feature of 416 

interest (e.g., 𝑥𝑗 = 1 if variant 𝑗 overlaps a lymphoid-specific DHS and 𝑥𝑗 = 0 otherwise), and the covariate 417 

vector 𝒄𝑗 included an intercept and cubic b-spline terms for log-transformed minor allele frequency (MAF) and 418 

distance to nearest transcription start site (TSS).  We included all variants that were tested for cis association 419 

(within 1 Mbp of TSS for any tested gene).  420 

  421 
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Figures 598 

 599 

 Figure 1. APEX toolkit for molecular QTL mapping and meta-analysis  600 

 601 

 602 

A: Mode factor provides factor analysis to infer shared technical and biological factors across traits.  In QTL mapping 603 

(modes cis and trans), inferred factor covariates can be modeled as fixed effects (by appending matrix 𝐅 to covariate 604 

matrix 𝐂) or random effects (using mode lmm).  Mode lmm enables rapid linear mixed model (LMM) association analysis 605 

(in modes cis and trans) by precomputing and storing variance component estimates, LMM trait residuals, and 606 

approximate LMM genotypic variances.  Mode store generates compact adjusted LD files for accurate multiple-variant 607 

analysis from summary statistics (using mode meta for meta-analysis). 608 

B: Individual-level molecular trait, genotype, and covariate data (and optional genetic relatedness matrix) are used as 609 

input for single-variant and joint/conditional association analysis across traits (APEX modes cis and trans).  These data 610 

can also be used for Bayesian finemapping and colocalization analysis using external software packages.   611 

C: Each study generates summary data files (single-variant score statistics using mode cis and adjusted LD matrices 612 

using mode store) from individual-level data.  These summary files can be used for single-variant and joint/conditional 613 

association meta-analysis in mode meta, or combined using the Apex2R interface to create input data for Bayesian 614 

finemapping and colocalization analysis using external packages.   615 

C) Meta-analysis workflow

B) Single-cohort analysis workflow
• Estimate null models

• Store LMM variance 
component estimates 
and residuals

• Store approximate LMM
genotype variances

A) APEX core running modes

xQTL and downstream analysis

• Single-variant analysis

• Joint/conditional analysis

• Bayesian finemapping
External packages

• Colocalization analysis
External packages

./yax cis ./yax trans

./yax cis

Individual-level xQTL data

./yax trans

n
sa

m
pl

es

m covariates

Covariates

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

q variants

Genotypes

n
sa

m
pl

es

n samples

Relatedness

Y K

G C

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

k factors

Common factors

Y F

q
va

ria
nt

s

q variants

Adjusted LD

V
C

G

Genotypes

Covariates

xQTL and downstream analysis

• Single-variant analysis

• Joint/conditional analysis

• Bayesian finemapping
External packages

• Colocalization analysis
External packages

Multi-study xQTL summary data

./yax meta

./yax meta

Individual-level xQTL data
n

sa
m

pl
es

m covariates

Covariates

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

q variants

Genotypes

n
sa

m
pl

es

n samples

Relatedness

YN KN

GN CN

n
sa

m
pl

es

m covariates

Covariates

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

q variants

Genotypes

n
sa

m
pl

es

n samples

Relatedness

YN KN

GN CN

n
sa

m
pl

es

m covariates

Covariates

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

q variants

Genotypes

n
sa

m
pl

es

n samples

Relatedness

YN KN

GN CN

n
sa

m
pl

es

m covariates

Covariates

n
sa

m
pl

es

p traits

Molecular traits

n
sa

m
pl

es

q variants

Genotypes

n
sa

m
pl

es

n samples

Relatedness

YN KN

GN CN

./yax cis ./yax store

p traits
q

va
ria

nt
s

q
va

ria
nt

s

q variants

Adjusted LD (“vcov”)Cis score stats

UN

VN

UNUNUN

./apex factor

./apex trans ./apex cis

./apex meta

Meta-analysis

QTL mapping

Preprocessing

./apex lmm

./apex store

./apex cis ./apex trans

./apex cis ./apex trans

./apex store./apex cis

./apex meta

./apex meta

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423490doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423490
http://creativecommons.org/licenses/by-nd/4.0/


21 

Figure 2. Rapid factor analysis and linear mixed models for cis-eQTL analysis 616 

 617 

 618 

A: Number of LCL cis-eQTL discoveries at 1% FDR as a function of the number of hidden factors (x axis) inferred using 619 

PEER, factor analysis (eFA), or principal components analysis (ePC) across 3 studies.  ePC and eFA covariate effects 620 

were estimated either as fixed effects (using OLS) or random effects (using REML) in association analysis using APEX.  621 

PEER covariates effects were estimated as fixed effects.  622 

B: Total running time (CPU hours) and maximum memory usage to generate ePC, eFA, and PEER covariates across 623 

models with 5, 10, 20, 40, 60, 80, and 100 latent factors.  All jobs used a single CPU core.  ePC and eFA covariates were 624 

calculated using APEX; PEER covariates were calculated using the PEER R package version 1.3 with a maximum of 625 

1000 iterations.  626 
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Figure 3. Fast and powerful cis-eQTL omnibus tests 628 

 629 

 630 

A: ACAT and dTSS weights increase eGene discoveries. Gene-level cis-eQTL discoveries for each LCL data set at 631 

1% FDR.  Because all methods maintain calibrated Type I error rates in simulations (panel B), a larger number of 632 

discoveries suggests greater statistical power.  Note that the number of tested genes varies across the three studies 633 

(Figure 4).  634 

B: Calibration of permutation-based and ACAT p-values. Q-Q plots for each method in simulations under the null 635 

hypothesis using genotype and expression data from Geuvadis. Traits were simulated using the observed correlation 636 

structure of gene expression, and expression PC covariates were re-calculated from simulated expression values in each 637 

replicate (Methods). P-values for all methods maintain calibrated or conservative Type I error rates, and SLR-resid 638 

permutation-based p-values are notably conservative.   639 

C: eQTL enrichment by dTSS. Density of chromosomal distance between top cis-eVariant and TSS across genes for 640 

each study. Cis-eVariants are strongly enriched nearer the TSS.  641 

D: CPU time and memory for eGene discovery. Analyses were run sequentially across chromosomes with 1 CPU; we 642 

report maximum memory usage and total elapsed running time.  643 
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Figure 4. Meta-analysis identifies novel primary and secondary cis-eQTLs 645 

 646 

A: Meta-analysis and dTSS weights increase eGene discoveries. eGenes detected in LCL cis-eQTL analysis across 647 

studies and meta-analysis. Colored bars show total numbers of tested genes, and outlined bars show numbers of eGenes 648 

(cis-eQTL genes) detected at 1% FDR using unweighted ACAT (solid line) and or distance to transcription start site 649 

(dTSS) weighted ACAT (dashed line). dTSS weights increased eGene discoveries by 30.6% for GTEx, 14.4% for 650 

Geuvadis, 14.1% for HapMap, and 10.0% for meta-analysis.  651 

B: Meta-analysis and dTSS weights increase secondary eQTL discoveries. Secondary cis-eQTL variant discoveries 652 

across studies and meta-analysis.  Shown are numbers of genes with 2, 3, 4, or ≥5 LCL eQTL eVariant signals detected 653 

at 1% FDR using unweighted (solid line) and dTSS-weighted ACAT.  dTSS weights increased secondary signal 654 

discoveries by 43.6% for GTEx, 23.3% for Geuvadis, 20.4% for HapMap, and 19.3% for meta-analysis. 655 

C: Meta-analysis detects cis-eQTLs for constrained genes. Loss of function (LoF) observed/expected upper bound 656 

fraction (LOEUF) is a metric of genetic constraint; constrained genes have smaller LOEUF.  LOEUF densities are shown 657 

for the 11,750 genes present in all (3 out of 3) studies, divided into 3 categories: (a) no cis-eQTLs detected at 1% FDR 658 

(2,659 “non-signif” genes), (b) ≥1 eQTL detected in meta-analysis but not individual studies (693 “novel eGenes”), and (c) 659 

≥1 eQTL detected by ≥1 individual study (8,398 “known eGenes”).  Both novel and non-significant genes have 660 

significantly lower LOEUF than known eGenes, suggesting greater constraint.  661 

D: Fewer secondary cis-eQTLs are detected for constrained genes. LOEUF densities for genes with 0, 1, … ≥5 662 

significant eVariants detected by stepwise regression in meta-analysis (1% FDR), shown for genes present in 3 out of 3 663 

studies.  Genes with more eVariants tend to have higher LOEUF (less constraint), as expected.  664 
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Figure 5. Accurate QTL finemapping from summary statistics 666 

 667 

 668 

APEX xQTL sumstat and vcov files enable accurate multiple-variant analyses without individual-level data.  Here, we 669 

illustrate Bayesian finemapping from APEX summary statistics data using the susieR package and Apex2R interface to 670 

access sumstat and vcov files.   671 

A: Finemapping cis-eQTLs from summary statistics. cis-eQTL p-values (upper panel) and posterior inclusion 672 

probabilities (PIPs) for cis variants at the FYN locus (6.p22) are shown across the three studies and meta-analysis.   673 

Meta-analysis increases signal strength (upper panels) and precision identifying putative causal variants (lower panels).  674 

B: Meta-analysis increases finemapping precision.  We finemapped 9,787 genes present each of the 3 studies from 675 

APEX sumstat and vcov summary data files using the susieR package.  For each gene, we assigned each variant to its 676 

most likely signal cluster (highest posterior probability), and calculated the maximum PIP across variants within each 677 

signal cluster.  Boxplots show the distribution of the maximum PIP within the 1st, 2nd, 3rd and 4th signal cluster across 678 

genes for each study.  Maximum PIPs tend to increase with sample size, as expected.  679 

C: APEX sumstat and vcov files enable accurate finemapping from summary statistics. Concordance of PIPs 680 

across 71 genes using individual-level data (x axis) vs summary statistics (y axis) from HapMap with covariate-adjusted 681 

HapMap LD (left), HapMap LD not adjusted for covariates (middle), or proxy LD from Geuvadis (right) adjusted for similar 682 

covariates.  PIPs from summary statistics using APEX vcov files (adjusted LD) are nearly numerically equivalent with 683 

individual-level analysis.  PIPs using unadjusted or proxy LD are less concordant with individual-level analysis (Spearman 684 

r2 0.81 or 0.29 respectively).  685 
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Tables 689 

Table 1. Descriptive statistics for LCL eQTL data sets 690 

 Sample 
size Genotype data Total no. 

variants Expression data Total no. 
transcripts 

GTEx v8 147 WGS 12,232,655 RNA-seq 22,759 

Geuvadis 454 WGS 31,331,216 RNA-seq 17,815 

HapMap 518 Genotyped and 
imputed 29,539,804 Expression 

microarray 16,329 

 691 

Summary of LCL data sets analyzed.  For HapMap, we report the number of imputed variants.  For all studies, 692 

we report the number of variants before filtering.  Processing and filtering procedures for each study are 693 

described in Methods.  694 
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