

Tilburg University

A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems

Ciftci, B.B.; Tijs, S.H.

Publication date:
2007

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Ciftci, B. B., & Tijs, S. H. (2007). A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems.
(CentER Discussion Paper; Vol. 2007-89). Operations research.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. aug.. 2022

https://research.tilburguniversity.edu/en/publications/1b5a01d9-e7e4-43da-acf0-717b714fab05

No. 2007–89

A VERTEX ORIENTED APPROACH TO MINIMUM COST

SPANNING TREE PROBLEMS

By Bariş Çiftçi, Stef Tijs

November 2007

ISSN 0924-7815

A Vertex Oriented Approach to Minimum Cost Spanning Tree

Problems∗

Barış Çiftçi†and Stef Tijs

CentER and Department of Econometrics and Operations Research,

Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, the Netherlands

Abstract

In this paper we consider spanning tree problems, where n players want to be con-

nected to a source as cheap as possible. We introduce and analyze (n!) vertex oriented

construct and charge procedures for such spanning tree situations leading in n steps

to a minimum cost spanning tree and a cost sharing where each player pays the edge

which he chooses in the procedure. The main result of the paper is that the average

of the n! cost sharings provided by our procedure is equal to the P -value for minimum

cost spanning tree situations introduced and characterized by Branzei et al. (2004).

As a side product, we find a new method, the vertex oriented procedure, to construct

minimum cost spanning trees.

Keywords: Minimum cost spanning tree games, algorithm, value, cost sharing.

JEL code: C71, D72

∗We thank Rodica Branzei and Stefano Moretti for helpful and inspiring comments.
†

E-mail addresses: B.B.Ciftci@uvt.nl (B.B. Ciftci), S.H.Tijs@uvt.nl (S. Tijs).

1 Introduction

Consider a group of agents that needs to be connected directly or via other agents to a unique

supplier of a source. Assume that the construction of the links is costly. Then, the first

important question is how to find the cheapest set of links that will connect each agent to

the source. This question constitutes one of the most well-known problems of combinatorial

optimization: the minimum cost spanning tree (mcst) problem. The operations research

literature on mcst problems has provided many algorithmic solutions to the problem and has

discussed the computational properties of these solutions. We can mention, for example, the

two most famous algorithms, the Kruskal algorithm (Kruskal,1956) and the Prim algorithm

(Prim, 1957). An historic overview of the algorithms provided for the mcst problem can be

found in Graham and Hell (1985).

If the cost of the construction is to be covered by the agents, the second important

question that arises in mcst situations is how to allocate the cost of the mcst among the

agents in a fair way. This cost allocation problem is introduced in the economics literature

by Claus and Kleitman (1973). The seminal paper by Bird (1976) provided the first game

theoretical treatment of this problem by associating a coalitional game with transferable

utility to mcst problems. Then, solution concepts of cooperative game theory are imple-

mented in this game and proposed as appropriate cost allocations for mcst problems by

several studies: Granot and Huberman (1981,1984) analyzed the core and the nucleolus;

Kar (2002) studied the Shapley value of this game. Recently, Bergantiños and Vidal-Puga

(2007) associated another coalitional game with mcst problems and studied the Shapley

value.

However, cost allocation rules for mcst problems can also be defined directly without

appealing to the underlying cost game. In particular, one can make use of an algorithm to

construct a mcst and allocate the cost of each edge constructed by the algorithm among

the agents by following an appropriate method. Cost allocation rules which follow such a

procedure are called construct and charge rules in Moretti et al. (2005). Construct and

charge rules proposed in the literature mainly focus on the two well-known algorithms, the

Kruskal algorithm and the Prim algorithm, in order to construct a mcst: In particular, the

Bird rule (Bird, 1976) and the extended Bird rule (Dutta and Kar, 2004) rely on the Prim

algorithm while the P -value (Branzei et al., 2004), the equal remaining obligations rule

(Feltkamp et al., 1994a,b) and the obligation rules (Tijs et al., 2006) rely on the Kruskal

algorithm.

In this paper we consider a new construct and charge procedure, which we call the vertex

oriented construct and charge procedure, for spanning tree situations leading to a mcst and

a cost sharing where each player pays the edge which he chooses in the procedure. Consider

mcst problems, where n players 1, ..., n want to be connected to a source 0 as cheap as

possible. Given an ordering σ = (σ(1), σ(2), ..., σ(n)) of the players the n-step procedure is

as follows. In step 1 player σ(1) connects with one of the vertices 0, σ(2), ..., σ(n) in a way

1

as cheap as possible. Assume that in the steps 1, 2, ..., k already a forest is constructed by

the players σ(1), ..., σ(k) with k edges. Then, player σ(k + 1) belongs to one of the trees

of this forest and has to construct an edge as cheap as possible avoiding a cycle starting

from a point of the tree to which he belongs. It turns out that this procedure indeed leads

to a mcst. Let us clarify the situation with an example where 3 players 1, 2, 3 want to be

connected directly or indirectly with a source 0 and where the cost situation is represented

in Figure 1. Take the ordering σ = (1, 2, 3). In step 1 player 1 constructs and pays the

3

21

0

90 150

100

40

60 70

Figure 1: An mcst situation with three agents

cheapest of the edges (1, 0), (1, 2), (1, 3) which is edge (1, 2) with cost 40. Then player 2

constructs and pays edge (1, 3) with cost 60 and this is the cheapest of his allowed edges

(2, 0), (2, 3), (1, 0), (1, 3). Finally player 3 chooses edge (1,0) which is the cheapest of his

allowed edges (3, 0), (1, 0), (2, 0). Note that (3, 2) is not allowed for player 3 because it

generates a cycle. The result is the mcst with edges (1, 2), (1, 3), (1, 0) and the cost share

vector (40, 60, 90). In the next table we see the construct and charge results for all orderings

of the players.

Constructed edges by Costs for

σ 1 2 3 1 2 3

(1,2,3) (1,2) (1,3) (1,0) 40 60 90

(1,3,2) (1,2) (1,0) (1,3) 40 90 60

(2,1,3) (1,3) (1,2) (1,0) 60 40 90

(2,3,1) (1,0) (1,2) (1,3) 90 40 60

(3,1,2) (1,2) (1,0) (1,3) 40 90 60

(3,2,1) (1,0) (1,2) (1,3) 90 40 60

Table 1: Construct and charge results for the mcst situation in Figure 1

The vertex oriented construct and charge procedure provides a cost allocation for each

ordering of the players. However, the cost allocation provided by our procedure for a

particular ordering of the players can be considered as unfair, since the right to construct an

edge between two players is first given to the one which precedes the other in the ordering.

A typical method of achieving fairness for the allocations depending on the ordering of

players is averaging the allocations over the set of all orderings. Hence, we focus on the

2

V -value, the average of the cost allocations provided by the vertex oriented procedure over

the set of all orderings of players. The main result of our study is that the V -value is equal

to the P -value for mcst situations introduced and characterized by Branzei et al. (2004). 1

The vertex oriented construct and charge procedure gives a new method to construct

mcst’s. Hence, we will now try to provide a brief comparison of the vertex oriented construct

and charge procedure with the Prim and the Kruskal algorithms and with construct and

charge rules relying on these algorithms. The Prim algorithm can be described as follows:

In every iteration of the Prim algorithm, a player who is not connected yet with the source

constructs an edge between herself and either the source or another player which is already

connected with the source in the previous iterations of the algorithm. Hence, the Prim

algorithm is also vertex oriented. Moreover, similar to our algorithm, every player has

the right to construct the cheapest allowed edge. But, the main difference is that the set

of edges allowed for construction by the Prim algorithm is restricted to the ones which

provide a connection with the source. The Bird rule assigns the cost of an edge constructed

in some iteration of the Prim algorithm to the player which constructs that edge and gets

a connection with the source in that same iteration. For example, in the mcst problem

represented in Figure 1, player 1 constructs and pays the edge (1, 0) with cost 90 according to

the Bird rule because player 1 has the cheapest direct connection with the source. However,

player 1 is adjacent to all the edges contained in the unique mcst of the problem and the

edge (1, 0) is the most expensive one among these edges. From this aspect, the Bird rule

can be considered as unfair. A similar unfairness argument holds for the generalization of

the Bird rule to mcst problems involving more than one mcst’s provided by Dutta and Kar

(2004).

The Kruskal algorithm selects and adds edges to the spanning tree in increasing order of

their costs such that an edge is added only if it does not create a cycle with the previously

added edges. Hence, the Kruskal algorithm is an edge oriented algorithm. In other words,

the decision on the construction of an edge is taken by the researcher in the Kruskal algo-

rithm. In the vertex oriented construct and charge procedure and in the Prim algorithm,

this decision is left to the players. Construct and charge rules relying on the Kruskal algo-

rithm specify what fraction of the cost an edge constructed by the Kruskal algorithm will

be paid by each player. However, the V -value determines these fractions by averaging the

cost allocations corresponding to the orderings of the players.

The outline of the paper is as follows. Section 2 provides some elementary graph theo-

retical definitions and defines mcst problems and the P -value formally. Section 3 formally

introduces the vertex oriented construct and charge procedure and presents two prelimi-

nary results. In Section 4, we prove the coincidence of the V -value with the P -value. We

conclude in Section 5.

1The P -value coincides with the Equal Remaining Obligations rule which has been introduced in Feltkamp

et al. (1994) for minimum cost spanning extension problems.

3

2 Preliminaries

An (undirected) graph G is an ordered pair 〈V,E〉, where V = V (G) is a nonempty and

finite set of vertices and E = E(G) is a set of edges {i, j} with i, j ∈ V, i 6= j. The complete

graph on a set V of vertices is the graph 〈V,EV 〉, where EV = {{i, j}|i, j ∈ V, i 6= j}. A walk

between vertices i and j in a graph G = 〈V,E〉 is a sequence of vertices i = i0, i1, ..., ik =

j, k ≥ 1, such that {is, is+1} ∈ E for each s ∈ {0, ..., k − 1}. A path between vertices i and

j in a graph G is a walk between vertices i and j in which all edges are distinct. A cycle in

G is a path from i to i for some i ∈ V . Two nodes i, j ∈ V are said to be connected in G if

i = j or if there exists a path between i and j in G. G is called connected if, for all i, j ∈ V ,

G contains a path between i and j. Given a path P = (i0, i1, ..., ik) between vertices i and j

in graph G, we say that an edge {u, v} ∈ E is on path P if there exists m ∈ {0, 1, ..., k − 1}

such that u = im and v = im+1 or v = im and u = im+1. For any graph G = 〈V,E〉 which

does not contain any cycles and for vertices i, j ∈ V which are connected in G, the unique

path between i and j in G is denoted by PG(i, j). With an abuse of notation, we denote

the set of edges on path PG(i, j) by PG(i, j), too.

A subgraph of G = 〈V,E〉 is a graph G′ = 〈V ′, E′〉 with V ′ ⊂ V (V ′ 6= ∅) and E′ ⊂ E.

A restriction of G = 〈V,E〉 to V ′ ⊂ V (V ′ 6= ∅) is a subgraph
〈

V ′, E|V ′

〉

of G where

E|V ′ = {{u, v} ∈ E|u ∈ V ′ and v ∈ V ′}. A component G′ of G is a maximally connected

subgraph of G, i.e., G′ is the only connected subgraph of G containing G′ as a subgraph.

The component of a graph G which contains vertex i is denoted by Ci(G). A connected

graph which does not contain any cycles is called a tree. A subgraph G′ = 〈V ′, E′〉 of G is

called a spanning tree in G if it is a tree with V ′ = V . We denote the set of spanning trees

of 〈V,E〉 by Γ〈V,E〉.

In this paper we consider mcst situations in which a group of agents is willing to be

connected to a supplier of a service (source) as cheap as possible. Every mcst situation can

be represented by a tuple 〈V,EV , w〉, where 〈V,EV 〉 is a complete graph on V = {0, 1, ..., n}

which is the union of the agent set N = {1, ..., n} and the source 0 to be connected. The

function w : EV → R+ is called a weight function and associates with each edge e ∈ EV

the weight w(e) which represents the cost of constructing e. Obviously, the minimum cost

network that would connect all the agents to the source has to form a spanning tree of

〈V,EV 〉. Because, if this is not the case, then the network contains a cycle and removal of

any link from this cycle will result in a cheaper network which still connects every agent

to the source. Therefore, given a mcst problem 〈V,EV , w〉, we are interested in finding a

spanning tree of 〈V,E〉 with minimal cost, i.e., a minimum cost spanning tree of 〈V,E〉.

Formally, the cost of a spanning tree, Γ is given by c(Γ) =
∑

e∈E(Γ) w(e) and Γ is called a

mcst if it satisfies c(Γ) = minΓ′∈Γ〈V,E〉 c(Γ′).

Observe that an mcst situation with agent set N , 〈V,EV , w〉, can be identified with the

weight function, w. Hence, we will denote the set of mcst situations with agent set N as

WV = R
EV
+ .

4

We will use the following well-known results in graph theory about trees.

Theorem 2.1 Let 〈V,EV , w〉 be a mcst situation.

(1) (Gondran and Minoux, 1984, Property 2, p.132) Let Γ be a subgraph of 〈V,EV 〉.

Then, Γ is a spanning tree of 〈V,EV 〉 if and only if Γ has |V |−1 edges and does not contain

any cycle.

(2) (Gondran and Minoux, 1984, Theorem 4, p.137) A spanning tree Γ of 〈V,EV 〉 is

minimal if and only if w(e) ≥ w(f) for every e ∈ EV \E(Γ) and every f ∈ PΓ(e).

2.1 The P-value for Cost Sharing in mcst Situations

Each mcst situation involves the construction of a mcst as well as the allocation of the cost

of the mcst among its users in a fair way. Branzei, Moretti, Norde and Tijs (2004) introduce

and characterize the P -value to solve the cost sharing problem in mcst situations. The P -

value makes use of the Kruskal algorithm in order to construct a mcst. In the following, we

will provide the notation and the definitions required to introduce the P -value.

Let Π(EV) stand for the set of all bijections π : {1, ..., |EV |} → EV . Obviously, for

each mcst situation 〈V,EV , w〉, there exists a bijection π ∈ Π(EV) that orders the edges

in increasing order with respect to their costs, i.e., w(π(1)) ≤ w(π(2)) ≤ ... ≤ w(π(|EV |)).

The column vector (w(π(1)), w(π(2)), ..., w(π(|EV |)))t is denoted by wπ.

For any π ∈ Π(EV), one can define the set Kπ = {w ∈ R
EV
+ |w(π(1)) ≤ w(π(2)) ≤ ... ≤

w(π(|EV |))}, i.e., the set of weight functions which result in the same increasing order on

the set of edges with respect to their costs. It can easily be observed that Kπ is a cone

in R
EV
+ which is called in Branzei et al. (2004) as the Kruskal cone with respect to π.

Obviously,
⋃

π∈Π(EV) Kπ = R
EV
+ = WV .

Branzei et al. (2004) introduce the P -value in two steps. First a value P π is defined

on each cone Kπ (π ∈ Π(EV)) and then it is proved that these P π-values can be patched

together to the whole cone of mcst situations.

Let 〈V,EV , w〉 be an mcst situation and π ∈ Π(EV) be such that w ∈ Kπ. In order to

define the P π-value on Kπ, we will consider the Kruskal algorithm when it selects the edges

with respect to order π. The P π-value distributes the cost of the edges that are constructed

by the Kruskal algorithm among the agents whose connectivity, i.e., the number of nodes

in N that an agent is connected, increases with the construction of the edge. To do so,

we will consider a sequence of |EV |+1 graphs: 〈V, F π,0〉, 〈V, F π,1〉, ..., 〈V, F π,|EV |〉 such that

F π,0 = ∅ and F π,k = F π,k−1 ∪ {π(k)} for every k ∈ {1, ..., |EV |}. The connectivity of an

agent i in 〈V, F π,k〉 is denoted by ni(F
π,k). Note that ni(F

π,k) = 1 when i is not connected

to any other agent in N in 〈V, F π,k〉. The P π-value will distribute the cost of a Kruskal edge

proportionally to the change in the connection vectors resulting from the introduction of the

edge by the algorithm. Connection vectors bπ,k ∈ R
N are defined for each k ∈ {0, 1, ..., |EV |}

5

as follows

b
π,k
i =

{

0 if i is connected to 0 in 〈V, F π,k〉
1

ni(F π,k)
otherwise

(1)

for each i ∈ N .

The contribution matrix with respect to π ∈ Π(EV) is the matrix Mπ ∈ R
N×EV where

the rows correspond to the agents and the colums to the edges. It lists the change in the

connectivity of the agents, i.e., the k-th column of Mπ equals

Mπek = bπ,k−1 − bπ,k (2)

for each k ∈ {1, ..., |EV |}. Here ek stands for the column vector such that ek
i = 1 if i = k

and ek
i = 0 for each i ∈ {1, ..., |EV |}\{k}.

Example 2.1 Consider the mcst situation 〈V,EV , w〉 with V = {0, 1, 2, 3} and w as de-

picted in Figure 1. w ∈ Kπ, with π(1) = {1, 2}, π(2) = {1, 3}, π(3) = {2, 3}, π(4) = {0, 1},

π(5) = {0, 3} and π(6) = {0, 2}.

The sequence of the graphs 〈V, F π,k〉 formed by Kruskal algorithm and the corresponding

connection vectors are given in the table below.

〈V, ∅〉 bπ,0 = (1, 1, 1)t

〈V, {{1, 2}}〉 bπ,1 = (1
2 , 1

2 , 1)t

〈V, {{1, 2}, {1, 3}}〉 bπ,2 = (1
3 , 1

3 , 1
3)t

〈V, {{1, 2}, {1, 3}, {2, 3}}〉 bπ,3 = (1
3 , 1

3 , 1
3)t

〈V, {{1, 2}, {1, 3}, {2, 3}, {0, 1}}〉 bπ,4 = (0, 0, 0)t

〈V, {{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}}〉 bπ,5 = (0, 0, 0)t

〈V, {{1, 2}, {1, 3}, {2, 3}, {0, 1}, {0, 3}, {0, 2}}〉 bπ,6 = (0, 0, 0)t

Then the contribution matrix Mπ is given by

Mπ =

1
2

1
6 0 1

3 0 0
1
2

1
6 0 1

3 0 0

0 2
3 0 1

3 0 0

.

⋄

Observe that the zero columns in Mπ correspond to the edges which are rejected in

the Kruskal algorithm. Moreover, each column Mπek with (Mπek)i 6= 0 for some i ∈ N

corresponds to the edge π(k) constructed at stage k in the Kruskal algorithm. Notice that

the sum of the elements of such a column equals 1. Then, (Mπek)i (i ∈ N), the difference

between i’s connectivity resulting from the construction of π(k), represents the fraction of

the cost of the edge π(k) to be paid by agent i.

We are now ready to define the P π-value on Kπ. For each π ∈ Π(EV), the P π-value is

defined as the map P π : Kπ → R
N , where P π(w) = Mπwπ for each mcst situation w in the

cone Kπ.

6

Branzei et al. (2004) show that it is possible to patch these P π-values by the help of

the following lemma. We include the proof for the sake of completeness.

Lemma 2.1 Let π ∈ Π(EV), w ∈ Kπ. Assume that wπ
t = wπ

t+1 for some t ∈ {1, ..., |EV | −

1}. Then for the ordering π′ ∈ Π(EV) such that π′(t) = π(t + 1), π′(t + 1) = π(t) and

π′(i) = π(i) for every i ∈ {1, ..., |EV |}\{t, t+1}, we have that w ∈ Kπ′
and P π(w) = P π′

(w).

Proof. It is obvious that w ∈ Kπ′
. Put a = wπ

t . Note that bπ,k = bπ′,k for all k ∈

{1, ..., |EV |}\{t}. Hence, wπ
kMπek = wπ′

k Mπ′
ek for all k ∈ {1, ..., |EV |}\{t, t + 1} and

wπ′

t Mπ′
et + wπ′

t+1M
π′

et+1

= a(bπ′,t−1 − bπ′,t) + a(bπ′,t − bπ′,t+1)

= a(bπ′,t−1 − bπ′,t+1) = a(bπ,t−1 − bπ,t+1) (3)

= a(bπ,t−1 − bπ,t) + a(bπ,t − bπ,t+1)

= wπ
t Mπet + wπ

t+1M
πet+1.

So, Mπwπ = Mπ′
wπ′

and hence, P π(w) = P π′
(w). �

Notice that the allocation of the cost of a single edge by the P -value may change with

the order on the set of edges constructed by the Kruskal algorithm. However, Lemma 2.1, as

can easily be seen from equality (3), implies that the P -value allocates the cost of the edges

which have the same cost in the same way independent of the order considered. Hence,

for every order that a weight function is compatible with, the P -value results in the same

allocation. This is stated in the following proposition.

Proposition 2.1 If w ∈ Kπ ∩ Kπ′
with π, π′ ∈ Π(EV), then P π(w) = P π′

(w).

Finally, the P -value is defined as the map P : WV → R
N , where

P (w) = P π(w) = Mπwπ (4)

for every w ∈ WV and π ∈ Π(EV) such that w ∈ Kπ.

Example 2.2 Consider the mcst situation in Example 2.1. wπ = (40, 60, 70, 90, 100, 150)t .

Hence, P (w) = Mπwπ = (60, 60, 70)t . ⋄

3 The Vertex Oriented Construct and Charge Procedure

In this section, we first provide the formal definition of the vertex oriented procedure which

we call the V -algorithm. Then, we will show that the V -algorithm gives a new method to

construct a mcst for every mcst situation and moreover, every mcst in a mcst situation can

be constructed by the V -algorithm.

Let Π(N) stand for the set of all bijections σ : N → N , where σ(i) = j means that

player j is in the i-th position with respect to σ.

7

Let 〈V,EV , w〉 be a mcst situation. Then the V -algorithm for mcst situations is defined

as follows:

(Step 1) Pick σ ∈ Π(N) .

(Step 2) Set V 0
i = {i} for each i ∈ V and set Γσ,0 = ∅.

(Step 3) For k = 1 to n:

• Choose an edge eσ(k) = {uσ(k), vσ(k)} with uσ(k) ∈ V k−1
σ(k) , vσ(k) ∈ V \ V k−1

σ(k) and

w(eσ(k)) ≤ w({u′, v′}) for all {u′, v′} ∈ EV with u′ ∈ V k−1
σ(k) , v′ ∈ V \ V k−1

σ(k) .

• For all j ∈ V k−1
vσ(k)

and for all i ∈ V k−1
σ(k) : Set V k

i = V k
j = V k−1

σ(k) ∪ V k−1
vσ(k)

.

• For all j ∈ V \
(

V k−1
vσ(k)

∪ V k−1
σ(k)

)

: Set V k
j = V k−1

j .

• Set Γσ,k = Γσ,k−1 ∪ {eσ(k)}.

(Step 4) Set Γσ = 〈V,Γσ,n〉 and vσ = (w(ei))
n
i=1.

Example 3.1 Consider the mcst situation 〈V,EV , w〉 with V = {0, 1, 2, 3} and w as de-

picted in Figure 1.

Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N . The related V -algorithm is de-

scribed as follows:

(Step 1) Let σ ∈ Π(N) be such that σ(i) = i for every i ∈ N .

(Step 2) V 0
i = {i} for every i ∈ V and Γσ,0 = ∅.

(Step 3) Step 3 consists of the following three iterations:

• k = 1: σ(1) = 1 and V 0
1 = {1}. Then, e1 = {1, 2}; V 1

1 = V 1
2 = {1, 2}; Γσ,1 = {{1, 2}}.

V 1
0 = V 0

0 and V 1
3 = V 0

3 .

• k = 2: σ(2) = 2 and V 1
2 = {1, 2}. Then, e2 = {1, 3}; V 2

1 = V 2
2 = V 2

3 = {1, 2, 3};

Γσ,2 = {{1, 2}, {1, 3}}. V 2
0 = V 1

0 .

• k = 3: σ(3) = 3 and V 2
3 = {1, 2, 3}. Then, e3 = {0, 1}; V 3

1 = V 3
2 = V 3

3 = V 3
0 =

{0, 1, 2, 3}; Γσ,3 = {{1, 2}, {1, 3}, {0, 1}}.

(Step 4) Γσ = 〈V,Γσ,3〉 and vσ = (40, 60, 90). ⋄

We start our analysis of the V -algorithm with the following two preliminary results:

(i) The V -algorithm generates an efficient solution for mcst problems, i.e., it provides a

mcst for every mcst situation.

(ii) Every mcst can be constructed by the V -algorithm.

Theorem 3.1 For every mcst situation 〈V,EV , w〉 ∈ WV and permutation on the set of

players, σ ∈ Π(N), the V -algorithm results in a mcst Γσ = 〈V,Γσ,n〉 of 〈V,EV , w〉.

8

Proof. Pick 〈V,EV , w〉 ∈ WV and σ ∈ Π(N). We will prove that Γσ = 〈V,Γσ,n〉 as obtained

in Step 4 of the V -algorithm is a mcst of 〈V,EV 〉. It’s obvious that Γσ has n edges and

does not contain any cycle. Hence, it immediately follows from result (1) of Theorem 2.1

that Γσ is a spanning tree of 〈V,EV 〉. It remains to show that Γσ is of minimal weight.

We will prove this by induction: Assume that there exists a mcst Γk of 〈V,EV 〉 which

contains Γσ,k for every k ∈ {1, 2, ...,m − 1} (m ∈ {2, ..., n}). First, let’s show that the

induction hypothesis is true for k = 1, i.e., there exists a mcst of G which contains Γσ,1 =
{

eσ(1)

}

=
{

{uσ(1), vσ(1)}
}

. Suppose not. Notice first that V 0
σ(1) = {σ(1)}. Pick a mcst Γ

of 〈V,EV 〉. Then Γ contains a path PΓ(eσ(1)) which connects uσ(1) and vσ(1). Then, by

result (2) of Theorem 2.1, w(e) ≤ w(eσ(1)) for every e ∈ PΓ(eσ(1)). However, there exists

an edge {σ(1), ṽ} ∈ PΓ(eσ(1)) for some ṽ ∈ V \ {σ(1)} and w({σ(1), ṽ}) ≥ w(eσ(1)) by the

selection of eσ(1) by the V -algorithm. But then Γ ∪ eσ(1) \ {σ(1), ṽ} is again a mcst of G

which contains eσ(1), a contradiction.

Now, let eσ(m) = {uσ(m), vσ(m)} with uσ(m) ∈ V m−1
σ(m) be the edge that is constructed in the

mth step by the V -algorithm. If eσ(m) is contained in Γm−1, then we are done. Hence, assume

that eσ(m) 6∈ Γm−1. Then, Γm−1 contains the unique path P〈V,Γm−1〉(eσ(m)). Obviously,

P〈V,Γm−1〉(eσ(m)) has to contain another edge ẽ = {ũ, ṽ} with ũ ∈ V m−1
σ(m) and ṽ ∈ V \ V m−1

σ(m) .

Now, on the one hand, result (2) of Theorem 2.1 implies that w(eσ(m)) ≥ w(ẽ) while, on the

other hand, the choice of eσ(m) implies that w(eσ(m)) ≤ w(ẽ). Then, Γm = Γm−1 ∪ em \ ẽ is

a mcst of G which contains eσ(m). Hence, we can conclude that Γσ is a mcst of 〈V,EV 〉. �

Theorem 3.2 Let 〈V,EV , w〉 be a mcst situation and Γ be a mcst of 〈V,EV 〉. Then Γ can

be constructed by the V -algorithm for any permutation σ ∈ Π(N).

Proof. Let Γ be a mcst of G and suppose that it can not be constructed by the V -algorithm

for σ ∈ Π(N). Starting with σ construct Γ by using the V -algorithm as far as possible.

Then, there exists k ∈ {1, ..., n − 1} such that eσ(j) ∈ E(Γ) for every j ∈ {1, ..., k} and

eσ(k+1) = {uσ(k+1), vσ(k+1)} 6∈ E(Γ). Then, there exists ẽ = {ũ, ṽ} ∈ PΓ(eσ(k+1)) such

that ũ ∈ V k
σ(k+1) and ṽ 6∈ V k

σ(k+1). Moreover, w(eσ(k+1)) < w(ẽ) by the choice of eσ(k+1).

Then, 〈V,E(Γ) ∪ eσ(k+1)\ẽ〉 is a spanning tree of G with total weight less than that of Γ, a

contradiction. �

4 The V-Value

The V -value, v : WV → R
N , is defined by

v(w) =

∑

σ∈Π(N) vσ

n!
(5)

for each w ∈ WV , where vσ is the allocation vector provided by the V -algorithm with

respect to σ ∈ Π(N). Our main result in this paper is the coincidence of the P -value with

the V -value. In order to present this result, we need the following two lemmas.

9

Lemma 4.1 Let 〈V,EV , w〉 be a mcst situation and σ ∈ Π(N). Let k ∈ {1, 2, ..., n} be such

that both V k−1
σ(k) \{σ(k)} 6= ∅ and V \V k−1

σ(k) 6= ∅. Let {u, v} ∈ EV with u ∈ V k−1
σ(k) \{σ(k)} and

v ∈ V \V k−1
σ(k)

. Then, w({u, v}) ≥ w(e) for every e ∈ P〈V,Γσ,k−1〉 (σ(k), u).

Proof. Pick a mcst situation 〈V,EV , w〉, σ ∈ Π(N) and k ∈ {1, 2, ..., n}. Assume that

both V k−1
σ(k) \{σ(k)} 6= ∅ and V \V k−1

σ(k) 6= ∅. Pick {u, v} ∈ EV with u ∈ V k−1
σ(k) \{σ(k)} and v ∈

V \V k−1
σ(k) . We will show that there exists t ∈ {1, 2, ..., k − 1} such that σ(t) ∈ V k−1

σ(k) \{σ(k)},

u ∈ V t−1
σ(t) , eσ(t) ∈ P〈V,Γσ,k−1〉(σ(k), u) and hence, w(eσ(t)) ≤ w({u, v}).

Obviously, there exists t̄ ∈ {1, 2, ..., k − 1} such that σ(t̄) = u and we know that

u ∈ V t̄−1
σ(t̄)

. Hence, if eσ(t̄) ∈ P〈V,Γσ,k−1〉(σ(k), u), then we are done. Assume that eσ(t̄) 6∈

P〈V,Γσ,k−1〉(σ(k), u).

We will show that there exists t̂ ∈ {t̄ + 1, ..., k − 1} 2 such that u = σ(t̄) ∈ V t̂−1
σ(t̂)

and

eσ(t̂) ∈ P〈V,Γσ,k−1〉({σ(k), u}). Suppose not. Let’s denote the set

{

j ∈ V k−1
σ(k) |eσ(t̄) ∈ P〈V,Γσ,k−1〉(σ(k), j)

}

by C1.

We know that eσ(t̄) = {uσ(t̄), vσ(t̄)} for some uσ(t̄) ∈ V t̄−1
σ(t̄)

, vσ(t̄) ∈ V \V t̄−1
σ(t̄)

and eσ(t̄) 6∈

P〈V,Γσ,k−1〉(σ(k), u). Then obviously vσ(t̄) ∈ C1 and hence, C1 6= ∅. Clearly, there exists t̂1 ∈

{t̄ + 1, ..., k − 1} such that σ(t̂1) ∈ C1 and u ∈ V t̂1−1
σ(t̂1)

. Hence, if eσ(t̂1) ∈ P〈V,Γσ,k−1〉(σ(k), u),

then, we are done.

σ(k)

u

v

e(σ(t̄))

P〈V,Γσ,k−1〉(σ(k), u)
C1

Figure 2: An auxiliary figure for the proof of Lemma 4.1

If eσ(t̂1) 6∈ P〈V,Γσ,k−1〉(σ(k), u), then we can show by using a similar argument as above

that the set C2 =
{

j ∈ V k−1
σ(k) |eσ(t̂1) ∈ P〈V,Γσ,k−1〉(σ(k), j)

}

6= ∅ and there exists t̂2 ∈ {t̂1 +

1, ..., k − 1} such that σ(t̂2) ∈ C2 and u ∈ V t̂2−1
σ(t̂2)

. Hence, if eσ(t̂2) ∈ P〈V,Γσ,k−1〉({σ(k), u}),

then we are done. But, if eσ(t̂2) 6∈ P〈V,Γσ,k−1〉({σ(k), u}), then, since EV is finite, by repeating

the argument above finitely many times, one reaches a t̂ ∈ {t̄+1, ..., k−1} such that eσ(t̂) ∈

P〈V,Γσ,k−1〉(σ(k), u) and u = σ(t̄) ∈ Vσ(t̂). This proves that there exists t ∈ {1, ..., k − 1}

such that σ(t) ∈ V k−1
σ(k) \{σ(k)}, u ∈ V t−1

σ(t) , eσ(t) ∈ P〈V,Γσ,k−1〉(σ(k), u) and hence, w(eσ(t)) ≤

w({u, v}).

We know that eσ(t) = {uσ(t), vσ(t)} with uσ(t) ∈ V t−1
σ(t)

and vσ(t) ∈ V \V t−1
σ(t)

. Now we can

use the whole argument given above to show that there exists s ∈ {1, 2, ..., k − 1} such that

σ(s) ∈ V k−1
σ(k)

\{σ(k)}, vσ(t) ∈ V s−1
σ(s)

and eσ(s) ∈ P〈V,Γσ,k−1〉(σ(k), u)\{σ(t)}. Hence, if uσ(t) 6∈

V s−1
σ(s) , then w(eσ(s)) ≤ w(eσ(t)) ≤ w({u, v}) by the selection of eσ(s) by the V -algorithm. On

2Notice that t̄ ≤ k − 2 when eσ(t̄) 6∈ P〈V,Γσ,k−1〉(σ(k), u).

10

the other hand, if uσ(t) ∈ V s−1
σ(s) , then u ∈ V s−1

σ(s) and v 6∈ V s−1
σ(s) . Hence w(eσ(s)) ≤ w({u, v})

by the selection of eσ(s). But, repeating this argument at most |E(P〈V,Γσ,k−1〉(σ(k), u))|

times, we can conclude that w({u, v}) ≥ w(e) for every e ∈ P〈V,Γσ,k−1〉(σ(k), u). �

In the following, we will denote 〈V, F π,t〉 by its edge set F π,t for every mcst situation

〈V,EV , w〉, π ∈ Π(EV) and t ∈ {1, 2, ..., |EV |}. Moreover, for every σ ∈ Π(N), we say

that i ∈ N is the last agent in Ci(F
π,t) with respect to σ, if σ−1(i) ≥ σ−1(j) for every

j ∈ V (Ci(F
π,t)). Lastly, both the edge set and the vertex set of Ci(F

π,t) are denoted by

Ci(F
π,t) unless there is danger of confusion.

Lemma 4.2 Let 〈V,EV , w〉 be a mcst situation. Let π ∈ Π(EV) be such that w ∈ Kπ and

t ∈ {1, ..., |EV | − 1} be such that w(π(t)) < w(π(t + 1)). Let σ ∈ Π(N). Then, for every

k ∈ {1, 2, ..., n}

1. eσ(k) ∈ Cσ(k)(F
π,t) and hence, w(eσ(k)) ≤ w(π(t)) if σ(k) is not the last agent in

Cσ(k)(F
π,t) with respect to σ or if 0 ∈ Cσ(k)(F

π,t).

2. V k−1
σ(k) ⊃ Cσ(k)(F

π,t); eσ(k) 6∈ Cσ(k)(F
π,t) and hence, w(eσ(k)) > w(π(t)) if σ(k) is the

last agent in Cσ(k)(F
π,t) with respect to σ and 0 6∈ Cσ(k)(F

π,t).

Proof. Pick a mcst situation 〈V,EV , w〉 and π ∈ Π(EV) such that w ∈ Kπ. Assume that

there exists t ∈ {1, ..., |EV | − 1} such that w(π(t)) < w(π(t + 1)). Pick σ ∈ Π(N). Assume

that the following induction hypothesis holds for all k ∈ {1, 2, ...,m − 1}(m ∈ {2, ..., n}).

• If σ(k) is not the last player of Cσ(k)(F
π,t) with respect to σ, then eσ(k) ∈ Cσ(k)(F

π,t).

• If σ(k) is the last player of Cσ(k)(F
π,t) with respect to σ and 0 ∈ Cσ(k)(F

π,t), then

eσ(k) ∈ Cσ(k)(F
π,t).

• If σ(k) is the last player of Cσ(k)(F
π,t) with respect to σ, and 0 6∈ Cσ(k)(F

π,t), then

eσ(k) 6∈ Cσ(k)(F
π,t).

Let’s prove the basis step (k = 1). We know that V 0
σ(1) = {σ(1)}. Also, w({σ(1), v}) >

w(π(t)) for every {σ(1), v} 6∈ Cσ(1)(F
π,t) and w({σ(1), v}) ≤ w(π(t)) for every {σ(1), v} ∈

Cσ(1)(F
π,t). Assume first that σ(1) is not the last player of Cσ(1)(F

π,t) with respect to

σ. Then, E(Cσ(1)(F
π,t)) 6= ∅ and obviously eσ(1) ∈ Cσ(1)(F

π,t). Assume now that σ(1)

is the last player of Cσ(1)(F
π,t) with respect to σ and 0 ∈ Cσ(1)(F

π,t). Then, obviously,

E(Cσ(1)(F
π,t)) = {{0, σ(1)}} and hence, eσ(1) = {0, σ(1)}. Assume lastly that σ(1) is

the last player of Cσ(1)(F
π,t) with respect to σ and 0 6∈ Cσ(1)(F

π,t). Then, obviously

E(Cσ(1)(F
π,t)) = ∅. Hence eσ(1) 6∈ E(Cσ(1)(F

π,t)) and w(eσ(1)) > w(π(t)).

We will now show that the induction hypothesis is true for k=m. Firstly, observe that:

(i) For every {u, v} ∈ EV such that u ∈ Cσ(m)(F
π,t) and v ∈ V \Cσ(m)(F

π,t), w({u, v}) >

w(π(t)), because {u, v} 6∈ F π,t.

11

(ii) If V m−1
σ(m) \Cσ(m)(F

π,t) 6= ∅, then w({u, v}) > w(π(t)) for every {u, v} ∈ EV with u ∈

V m−1
σ(m) \Cσ(m)(F

π,t) and v ∈ V \V m−1
σ(m) , because there exists {u′, v′} ∈ P〈V,Γσ,m−1〉(σ(m), u)

such that u′ ∈ Cσ(m)(F
π,t) and v′ 6∈ Cσ(m)(F

π,t). And by (i) w({u′, v′}) > w(π(t)). Then,

by Lemma 4.1, w({u, v}) ≥ w({u′, v′}) > w(π(t)).

Now, (i) in conjunction with (ii) implies that for every {u, v} ∈ EV with u ∈ V m−1
σ(m)

and

v ∈ V \V m−1
σ(m) , w({u, v}) > w(π(t)) if either u 6∈ Cσ(m)(F

π,t) or v 6∈ Cσ(m)(F
π,t).

Consider the graph 〈V,Γσ,m−1〉. Since 〈V,Γσ,m−1〉 does not contain any cycles, result (1)

of Theorem 2.1 implies that the restriction of 〈V,Γσ,m−1〉 to V (Cσ(m)(F
π,t)) is connected if

and only if it has |V (Cσ(m)(F
π,t))|−1 edges. Moreover, we know by the induction hypothesis

that eσ(k) ∈ Cσ(k)(F
π,t) for every k ∈ {1, ...,m − 1}. Hence, if σ(m) is not the last player

of Cσ(m)(F
π,t) with respect to σ or 0 ∈ Cσ(m)(F

π,t), then the restriction of 〈V,Γσ,m−1〉 to

V (Cσ(m)(F
π,t)) has less than |V (Cσ(m)(F

π,t))|−1 edges, and hence, it fails to be connected.

Thus, both V m−1
σ(m) ∩ Cσ(m)(F

π,t) 6= ∅ and (V \V m−1
σ(m)) ∩ Cσ(m)(F

π,t)) 6= ∅. Moreover, since

Cσ(m)(F
π,t) is connected in 〈V, F π,t〉, there exists {u, v} ∈ E(Cσ(m)(F

π,t)) such that u ∈

V m−1
σ(m) ∩Cσ(m)(F

π,t) and v ∈ (V \V m−1
σ(m))∩Cσ(m)(F

π,t)). Therefore, eσ(m) ∈ Cσ(m)(F
π,t) and

hence, w(eσ(m)) ≤ w(π(t)) if σ(m) is not the last player of Cσ(m)(F
π,t) with respect to σ or

0 ∈ Cσ(m)(F
π,t). This proves part (1) of Lemma 4.2.

If σ(m) is the last player of Cσ(m)(F
π,t) with respect to σ and 0 6∈ Cσ(m)(F

π,t), then the

restriction of 〈V,Γσ,m−1〉 to V (Cσ(m)(F
π,t)) has |V (Cσ(m)(F

π,t))| − 1 edges, and hence, it

is connected. But, then V m−1
σ(m) ⊃ Cσ(m)(F

π,t). Hence eσ(m) 6∈ Cσ(m)(F
π,t) and w(eσ(m)) >

w(π(t)). This proves part (2) of Lemma 4.2. �

We are now ready to prove the equivalence of the P -value and the V -value.

Theorem 4.1 v(w) = P (w) for every mcst situation w ∈ WV .

Proof. First recall that the allocation of the cost of a single edge by the P -value may

change with respect to the order of the edges under consideration. But, the allocation of

the cost of the edges with same cost is the same regardless of the order considered. Hence,

we will show below that the allocation of the cost of the edges with the same cost by the

P -value and by the V -value are equal to each other.

Pick an mcst situation 〈V,EV , w〉 and a ∈ ∪e∈EV
{w(e)}.

Let Ea = {e ∈ EV |w(e) = a}. Assume that |Ea| = m for some m ∈ {1, 2, ..., |EV |} and

|{w ∈ EV |w(e) < a}| = t for some t ∈ {0, 1, ..., |EV | − m}. In the following we say that

the V -value assigns the cost of
(

k
n!a

)

to agent i for the construction of the edges in Ea, if i

chooses to construct an edge from Ea at k (k ∈ {0, 1, ..., n!}) of the n! orders on the set of

players during the V -algorithm.

Firstly, for all π ∈ Π(EV) such that w ∈ Kπ, the P π-value (and hence the P -value)

allocates the cost of (the edges in) Ea as

m
∑

k=1

wπ
t+kM

πet+k = a(bπ,t − bπ,t+m), (6)

12

where the equality is implied by equation (3) of Lemma 2.1. Notice that bπ,t = bπ′,t (bπ,t+m =

bπ′,t+m), since 〈V, F π,t〉 = 〈V, F π′,t〉 (〈V, F π,t+m〉 = 〈V, F π′,t+m〉) for every π, π′ ∈ Π(EV)

such that w ∈ Kπ and w ∈ Kπ′
. Hence, for every π ∈ Π(EV) with w ∈ Kπ, we will denote

F π,t as F t, F π,t+m as F t+m, bπ,t as bt and bπ,t+m as bt+m. Moreover, 〈V, F t〉 and 〈V, F t+m〉

will simply be denoted with their sets of edges, F t and F t+m, respectively.

Pick an agent i ∈ N . We will show by considering several cases that the allocation of

the cost of the edges in Ea to i is done in the same way by the P -value and by the V -value.

Firstly, if 0 ∈ Ci(F
t), then clearly both bt

i = bt+m
i = 0. Also part (1) of Lemma 4.2

implies that vσ
i < a for every σ ∈ Π(N). Then, both the V -value and the P -value assign 0

to i for the cost of construction of the edges in Ea. Hence, in the following, we will assume

that 0 6∈ Ci(F
t).

Case 1: Ci(F
t+m) = Ci(F

t). Then, clearly, ni(F
t) = ni(F

t+m) and hence, bt
i − bt+m

i =

0. So, by (6) the P -value does not allocate any cost to i for the construction of edges in

Ea. Let’s now consider the V -value.

We know by part (1) of Lemma 4.2 that vσ
i < a for every σ ∈ Π(N) such that i is

not the last player of Ci(F
t) with respect to σ. We will now show that vσ

i 6= a for every

σ ∈ Π(N) such that i is the last player of Ci(F
t) with respect to σ, too. Suppose on the

contrary that there exists σ ∈ Π(N) such that i is the last player of Ci(F
t) with respect to

σ and vσ
i = a, i.e., there exists {u, v} ∈ Ea such that u ∈ V

σ−1(i)−1
i , v ∈ V \V

σ−1(i)−1
i and

w({u, v}) ≤ w({u′, v′}) for every {u′, v′} ∈ EV with u′ ∈ V
σ−1(i)−1
i and v′ ∈ V \V

σ−1(i)−1
i .

Since Ci(F
t+m) = Ci(F

t), there are two possibilities regarding the edge {u, v}. Either

both u, v ∈ Ci(F
t) or both u, v 6∈ Ci(F

t). Assume first that both u, v ∈ Ci(F
t). We

know by part (2) of Lemma 4.2 that V
σ−1(i)−1
i ⊃ Ci(F

t). Hence, both u, v ∈ Ci(F
t) ⊂

V
σ−1(i)−1
i contradicting that v ∈ V \V

σ−1(i)−1
i . Now, assume that both u, v 6∈ Ci(F

t).

Then, Lemma 4.1 implies that w({u, v}) ≥ w(e) for every e ∈ P
〈V,Γσ,σ−1(i)−1〉

(i, u). But

since u 6∈ Ci(F
t) = Ci(F

t+m), there exists e ∈ P
〈V,Γσ,σ−1(i)−1〉

(i, u) such that e 6∈ 〈V, F t+m〉.

Then w(e) > a = w({u, v}), a contradiction. Thus, vσ
i > a for every σ ∈ Π(N) such that

i is the last player of Ci(F
t) with respect to σ. Hence, we can conclude that the V -value

does not allocate any cost to i for the construction of edges in Ea, too.

Case 2: Ci(F
t+m) 6= Ci(F

t). Then, there exists i = i1, i2, ..., ik (2 ≤ k ≤ m + 1) such

that is ∈ N for every s ∈ {1, ..., k}, Cis(F
t) 6= Cir(F

t) for every r, s ∈ {1, ..., k} with r 6= s

and ∪k
s=1Cis(F

t) = Ci(F
t+m).

Case 2.1: 0 ∈ Ci(F
t+m). Then bt

i = 1
|V (Ci(F t))| ; bt+m

i = 0 and hence, bt
i − bt+m

i =
1

|V (Ci(F t))| . Then by (6), i pays a
|V (Ci(F t))| for the construction of the edges in Ea with respect

to the P -value. On the other hand, we know by part (1) of Lemma 4.2 that vσ
i < a for every

σ ∈ Π(N) such that i is not the last player of Ci(F
t) with respect to σ. Moreover, again by

part (1) of Lemma 4.2, we know that vσ
j ≤ a for every j ∈ Ci(F

t+m) and σ ∈ Π(N). Then,

vσ
i = a for every σ ∈ Π(N) such that i is the last player of Ci(F

t) with respect to σ. Since,

i is the last player of Ci(F
t) with respect to σ for 1

|V (Ci(F t))|n! orders on the set of players,

i pays a
|V (Ci(F t))| for the construction of the edges in Ea with respect to the V -value.

13

Case 2.2: 0 6∈ Ci(F
t+m). Then by (6) P -value allocates to i

a(bt
i − bt+m

i) = a

(

1

|V (Ci(F t))|
−

1

|V (Ci(F t+m))|

)

= a

(

|V (Ci(F
t+m))| − |V (Ci(F

t))|

|V (Ci(F t+m))||V (Ci(F t))|

)

. (7)

On the other hand, we know by part (1) of Lemma 4.2 that vσ
i < a for every σ ∈ Π(N)

such that i is not the last player of Ci(F
t) with respect to σ. Moreover, we know by part (2)

of Lemma 4.2 that vσ
i > a when i is the last player of Ci(F

t+m) with respect to σ ∈ Π(N).

Then vσ
i = a when i is the last player of Ci(F

t) but a player from another component is the

last player of Ci(F
t+m). There are

(

|V (Ci(F t+m))|−|V (Ci(F t))|
|V (Ci(F t+m))| n!

)

orders such that a player

from another component is the last player of Ci(F
t+m). In 1

|V (Ci(F t))| of these orders i is

the last player of Ci(F
t). Then, the V -value assigns to i

= a

(

1

|V (Ci(F t))|

) (

|V (Ci(F
t+m))| − |V (Ci(F

t))|

|V (Ci(F t+m))|

)

= a

(

|V (Ci(F
t+m))| − |V (Ci(F

t))|

|V (Ci(F t+m))||V (Ci(F t))|

)

(8)

which is equivalent to (7).

Lastly, observe that both a ∈ ∪e∈EV
{w(e)} and i ∈ N are random, hence, we can

conclude that v(w) = P (w). �

Remark 1: Norde et al. (2004) introduce the P τ -values for mcst situations for every

ordering τ of the players. P τ -values are also construct and charge rules which rely on the

Kruskal algorithm and it is shown in Tijs et al. (2006) that the average of the P τ -values

over the set of all orderings of players is equal to the P -value. Actually, the cost allocation

vσ is equal to P σ̄, where σ̄ stands for the reverse ordering of σ. This can be shown by

constructing a proof which is similar to the proof of Theorem 4.1. Hence, we preferred a

direct proof of the coincidence of the P -value and the V -value.

Remark 2: Bergantiños and Vidal-Puga (2007) associate an optimistic transferable

utility game with mcst problems where the worth of a coalition is defined as the cost of

connection, assuming that the rest of the agents are already connected to the source. They

show that the Shapley value of this game is equal to the P -value. One can show easily

that, for every ordering σ of the players, the vσ value is equal to the marginal of the game

associated by Bergantiños and Vidal-Puga (2007) to mcst problems for the same ordering.

Hence, the coincidence of the V -value and the P -value can be proved by making use of

the result regarding the coincidence of the Shapley value and the P -value in the game

associated by Bergantiños and Vidal-Puga (2007). However, we believe that our effort for

establishing a graph theoretical proof for the coincidence of the P -value and the V -value is

worthwhile, because the V -algorithm can be extended easily to generalizations of the mcst

problems and one can easily extend our graph theoretical proof for such situations. For

example, in a companion study, we consider the extensions of the V -algorithm for mcst

14

problems involving multiple sources and show, by extending the proofs in this paper, that

the V -value coincides with the extended P -value for the mcst situations considered.

5 Conclusions

The literature on mcst problems have provided many construct and charge rules. These rules

rely on the two well-known algorithms: the Kruskal algorithm and the Prim algorithm. The

P -value is one such construct and charge rule which relies on the Kruskal algorithm. It has

been shown that the P -value satisfies many desirable properties including core selectivity,

equal treatment of equals, (strong) cost monotonicity and population monotonicity. For an

overview of the interesting properties of the P -value, we refer to Bergantiños and Vidal-

Puga (2005). In this study, we have shown that this important rule can be achieved by

following a vertex oriented procedure which also determines a mcst in a new way. That is,

we have shown that the P -value can be obtained as an average of the players’ own choices

in the vertex oriented algorithm.

Finally, we want to remark that Bergantiños and Vidal-Puga (2005) define a construct

and charge procedure which is similar to the vertex oriented construct and charge procedure:

The procedure they define is also dependent on the orderings of the players and in the

procedure, each player pays the cost of the edge she preferred to construct. But, contrary

to the vertex oriented construct and charge procedure, it only works on mcst problems

with irreducible cost matrices, i.e., their procedure may not be efficient if the cost matrix

of the mcst situation under investigation is not irreducible. If the procedure is applied

to the associated irreducible cost matrix of a mcst situation, then the average of the cost

allocations obtained over the set of orderings of the players is equal to the P -value.

References

[1] Bergantiños, G., and Vidal-Puga, J., J., (2005). Several approaches to the same rule

in cost spanning tree problems. Mimeo.

[2] Bergantiños, G., and Vidal-Puga, J., J., (2007). The optimistic TU game in minimum

cost spanning tree problems. International Journal of Game Theory, 36: 223-239.

[3] Bird, C., G., (1976). On cost allocation for a spanning tree: a game theoretic ap-

proach. Networks, 6: 335-350.

[4] Branzei, R., Moretti, S., Norde, H., Tijs, S., (2004). The P -value for cost sharing in

minimum cost spanning tree situations. Theory and Decision, 56: 47-61.

[5] Claus, A., and Kleitman, D., J., (1973). Cost allocation for a spanning tree. Networks,

3: 289-304.

[6] Dutta, B., and Kar, A., (2004). Cost monotonicity, consistency and minimum cost

spanning tree games. Games and Economic Behavior, 48: 223-248.

15

[7] Feltkamp, V., Tijs, S., Muto, S., (1994a). Minimum Cost Spanning Extension Prob-

lems : The Proportional Rule and the Decentralized Rule. Discussion Paper 96,

Tilburg University, Center for Economic Research, The Netherlands.

[8] Feltkamp, V., Tijs, S., Muto, S., (1994b). On the Irreducible Core and the Equal

Remaining Obligations Rule of Minimum Cost Spanning Extension Problems. Dis-

cussion Paper 106, Tilburg University, Center for Economic Research, The Nether-

lands.

[9] Gondran, M., and Minoux, M., (1984). Graphs and Algorithms. John Wiley and

Sons, New York.

[10] Graham, R., L., and Hell, P., (1985). On the history of minimum spanning tree

problem. Annals of the History of Computing, 7: 43-57.

[11] Granot, D., and Huberman, G., (1981). Minimum cost spanning tree games. Math-

ematical Programming, 21: 1-18.

[12] Granot, D., and Huberman, G., (1984). On the core and nucleolus of the minimum

cost spanning tree games. Mathematical Programming, 29: 323-347.

[13] Kar, A., (2002). Axiomatization of the Shapley value on minimum cost spanning

tree games. Games and Economic Behavior, 38: 265-277.

[14] Kruskal, J., B., Jr., (1956). On the shortest spanning subtree of a graph and the

Travelling Salesman Problem. Proceedings of the American Mathematical Society, 7:

48-50.

[15] Moretti, S., Branzei, R., Norde, H., Tijs, S., (2005). Cost Monotonic Construct and

Charge Rules for Connection Situations. Discussion Paper 104, Tilburg University,

Center for Economic Research, The Netherlands.

[16] Norde, H., Moretti, S., Tijs, S., (2004). Minimum cost spanning tree games and

population monotonic allocation schemes. European Journal of Operational Research,

154: 84-97.

[17] Prim, R., C., (1957). Shortest connection networks and some generalizations. Bell

Systems Technical Journal, 36: 1389-1401.

[18] Tijs, S., Branzei, R., Moretti, S., Norde, H., (2006). Obligation Rules for minimum

cost spanning tree situations and their monotonicity properties. European Journal

of Operational Research, 175: 121-134.

16

