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�e “S-box” algorithm is a key component in the Advanced Encryption Standard (AES) due to its nonlinear property. Various
implementation approaches have been researched and discussed meeting stringent application goals (such as low power, high
throughput, low area), but the ultimate goal for many researchers is to �nd a compact and small hardware footprint for the S-
box circuit. In this paper, we present our version of minimized S-box with two separate proposals and improvements in the overall
gate count. �e compact S-box is adopted with a compact and optimum processor architecture speci�cally tailored for the AES,
namely, the compact instruction set architecture (CISA). To further justify and strengthen the purpose of the compact crypto-
processor’s application, we have also presented a selective encryption architecture (SEA) which incorporates the CISA as a part of
the encryption core, accompanied by the set partitioning in hierarchical trees (SPIHT) algorithm as a complete selective encryption
system.

1. Introduction

In the year 1972, the National Institute of Standards and
Technology (NIST) has identi�ed and further concluded the
study of theUS government’s computer security needs its own
standard for encrypting government-class sensitive infor-
mation. A
er various proposal submissions which did not
meet their vigorous design requirements, a cipher candidate
developed in IBM was deemed suitable and the NSA worked
closely with IBM to strengthen that algorithm. Eventually,
the Data Encryption Standard (DES) was approved as a
federal standard in November 1976. From there onwards, the
pillar and model of the encryption for data are formed and
established asDEShaving in�uenced the advancements of the
modern cryptography for many years on.

Since cryptographic solutions are o
en used to o�er
integrity and security over the transmission of sensitive
data in our communication mediums, it is important for
them to have consistent and nondecaying cryptographic
strength over time. However, the strength of the encryption
is weighted on the key itself, resulting in the strength being

exploitable given massive computation strength to search for
the key within a �nite key space. Over time, the advances
of computing technology have dramatically improved the
computer processing power and have rendered the earlier
DES with the small-sized 56-bit key as no longer safe. �is
is because of the far more superior computing power we
have today, compared to those computers in the earlier days
when the DES is proposed. �is was quickly recti�ed later by
replacing DES with the triple-DES, which is eventually being
out-run by the relentless modern computing advancement.
And now, the Advanced Encryption Standard (AES) has
eventually replaced the triple-DES for the same reason.

�e AES was �rst speci�ed in 2001 by the NIST to come
up with a standard encryption algorithm. It has been fully
documented and made available in [1]. Before proceeding
into the details of theAES algorithmic structures and descrip-
tions, we would like to discuss more the progresses made by
other researchers regarding improvements and implementa-
tions of AES.When facing design and development issues for
applications, the design outcome is o
en driven and shaped
by the application environment requirements. �ere are
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three common application requirements when designing a
security system: minimal hardware circuitry, maximum/high
throughput, and minimal power consumption. For example,
thework in [2–5] focuses on improving theAES’s throughput.
High throughput is the most important requirement in a
high-speed communication or optical link environment. On
the other hand, some work in [6–9] presents the least power
consumption. In some resource-constrained environments
such as the wireless sensor network (WSN), the lifetime
of a node is very limited and power is scarce, making
the topic about power consumption vital. �is encourages
researchers to �nd better circuitry and power harvesting
techniques for extending sensor node’s lifespan.Most designs
have setbacks and tradeo�s; as such, high-throughput circuit
sacri�ces design area or low-power techniques result to low-
throughput or even a high-throughput, low-power consump-
tion circuit that costs an extremely large circuit size and area.
All these are highly dependent on the requirements for their
intended applications.

In AES, the most resource consuming and the bottleneck
section is the S-box. �is is because the S-box is essentially a
combination of a�ne, multiplicative inversion and inversion
in the �nite �eld GF (28) which requires complex computa-
tions. �e inversion in the �nite �eld GF (28) is practically
complex, and therefore it is identi�ed as a design bottleneck.
�e paper written by [10] has mentioned that the non-LUT-
based approaches are fairly attractive since they have break-
able delay. �e author has elaborated that there are two types
of S-box designs. Type 1 is a direct circuit generation using
truth table,making use of the sumof products (SOP) or prod-
uct of sums (POS) and usually features higher throughput at
expense of extremely large circuit area. On the other hand,
type 2 designs feature higher design area e�ciency. Type 2
designs are slowly gaining popularity since the design trend
has shi
ed towards searching e�cient logic minimization
techniques and circuit depth reduction techniques.

�e construction of good combinational circuits is
important as it a�ects almost any metric in a digital circuit
design we know. �e gate count, critical-path delay, clocking
and timing, circuitry jitters, and power consumption are
discussed when a circuit is designed. In this work, we
focus on our development in the area of low gate count
and low-resource environment hardware designs, speci�cally
for resource-constrained environments such as the wire-
less sensor network (WSN), radio frequency identi�cation
(RFID) and even the newly developed wireless identi�cation
and sensing platform (WISP). In this paper, we discuss the
development of our proposed solution in three areas: the
review of current S-box design trend towards the low-gate-
count approach, the small and compact footprint for AES
designs, and lastly the development of a complete system
with AES block for a selective encryption architecture (SEA).
�e structure of the paper is as follows. Section 1 is the
introduction of the paper, which introduces some of the
key algorithms adapted in our work and other related work
for benchmark and comparison. Section 2 is the review
of di�erent design approaches for low-gate-count S-boxes.
Section 3 presents our version of a small S-box design with 2
approaches: (1) with an additional instruction set; (2) circuit

minimization. Section 4 introduces our proposed instruction
set computer architecture, namely, the compact instruction
set architecture (CISA) with the adaptation of our proposed
small S-box design. Section 5 discusses a higher-level of
implementation which incorporates the set partitioning in
hierarchical trees (SPIHT) compression algorithm as a source
to the CISA running AES for a complete selective encryption
architecture. Section 6 is the results and discussions section,
and lastly, Section 7 is the conclusion.

1.1. Review of the Advanced Encryption Algorithm (AES).
�e AES, also known as the Rijndael [1, 11], is a block
cipher developed by two Belgian cryptographers, Daemen
and Rijmen [11]. It is a symmetric block cipher that consists
of 128-bit block length and supports 128, 192, and 256 bits of
key length with 10, 12, or 14 iterations of AES transformation,
respectively. �e encryption and decryption operation is a
repetition of the substitute permute network (SPN) operation
on the input data. �e cipher is applied onto a 2-dimensional
4 by 4 state array. It consists of four rows of bytes containing�b bytes, where�b is the block length (128) divided by 32.

�ere are several modes of operations in which the AES
can be con�gured to. Some of these serve di�erent purposes
as their functions vary. One of the most common modes
of operation is the “Electronic Code Book” (ECB) mode
which does not require any feedback loops, and this is
fundamentally a complete round of AES encryption without
additional tweaks or changes. �e other mode is called the
“Cipher Block Chaining” which requires the results of the
previously encrypted block. �e “Output Feedback” mode
is e�ectively a synchronous stream cipher. It generates key
stream blocks using an initialization vector and XORed with
the respective plain texts to get the complete cipher. �e
biggest advantage of this mode is that both encryption and
decryption rounds only require the “forward” encryption
codes.

Fundamentally, the AES has four basic steps in each
round of encryption. �e four steps are called SubBytes (also
known as the byte substitution), Shi
Rows,MixColumns, and
AddRoundKey. �e description of the four basic steps in AES
rounds is as follows.

(i) AddRoundKey: a simple transformation performs
XOR with the subkey to the round state.

(ii) Shi
Row: shi
s the byte location with the o�set from
zero to three depending on the row location.

(iii) MixColumns: column vector is multiplied with a �xed
matrix where bytes are treated as polynomials.

(iv) SubBytes: nonlinear byte substitution which is com-
posed of multiplicative inverse, a�ne transformation,
and inverse a�ne transformation.

In brief, the �rst round is the AddRoundKey, the subse-
quent nine rounds include all the four transformations, and
the tenth round omits the MixColumns. Note that this only
applies to the forward encryption, and as for the decryption
rounds, the AddRoundKey remains unchanged and the rest
of transformation sequences are their mathematical reverses,
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Figure 1: �e encryption and decryption processes in AES.

namely, the InvSubBytes, InvShi
Rows, and InvMixColumns.
Figure 1 shows a block diagram on how the AES works.

2. An Introduction to the AES S-Box
(Substitution Box)

�e SubBytes is unique compared to the other three AES
transformations because it is the only nonlinear component
in the AES encryption.�e SubBytes step functions as replac-
ing or substituting an inputwith another byte, through the “S-
box” function. Other than SubBytes, the other three transfor-
mations are considered modulo 2 bitwise calculations, which
can be easily implemented. Conventionally, implementation
approach is preferred to storing the values of the S-Box into
a ROM and uses it as a look-up table (LUT). Early versions
of the S-box circuit are essentially an 8 by 8 look-up table
and can be found in the following proposals: [12, 13]. An
illustration of the LUT is shown in Table 1.

But for hardware implementations of AES, there is one
drawback for the look-up table approach. Each copy of the
table requires 256 bytes of storage, along with the circuitry
for addressing the table and to fetch the results. �e most
straightforward way is to store all these values within a
memory block. �e problem arises when a fully unrolled
AES would require 10 rounds of SubBytes, and in e�ect,
each byte of data would require an independent S-box.
In the end, 160 S-boxes would eventually drain all the
available memory. Note that this is assumed to be the worst
case of implementation approach and did not consider the

pipelining method. Even with the pipelined architecture, the
read and write cycle would slow down the architecture. Even
though the multiplicative inversion and a�ne mathematical
complexity are hidden by prede�ning the LUT value and
the accesses is merely read and write, the LUT approach has
irreducible read-write delays and, therefore, is not suitable for
high-speed applications.

On the other hand, some authors suggest that a com-
binational circuit can be derived using sub�eld arithmetic.
Daemen and Rijmen [11, 15] suggested that using sub�eld
arithmetic in the crucial step of computing an inverse in
the Galois �eld of 256 elements, by reducing an 8-bit input
to subcalculations of 4-bit variables, may yield a very small
S-box circuit. In [16], the S-box used is derived from the
multiplicative inverse over Galois �eld (28). To avoid attacks
based on simple algebraic properties, the S-box is constructed
by combining the inverse function with an invertible a�ne
transformation (a matching inverse a�ne is included in the
decryption). Not only the S-box is used in the main AES
iterations, it is also shared with the key expansion operation
[17].�e key expanding algorithm reuses the forward S-boxes
in encryption and decryption. And note that during the AES
decryption, the same key expander uses the same forward
S-box to generate the round keys. Later on, Satoh et al. [16]
further expanded this idea, using the tower-�eld approach of
Paar [18] by suggesting that breaking up the 4-bit calculations
into 2-bit variable will result in even smaller circuit blocks.

From the hardware implementation point of view, the
search for the multiplicative inversion of GF (28) is too
complex and resource exhaustive. Being derived from the
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Table 1: �e look-up table of the 256 substitution values for S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

multiplicative inverse over Galois �eld (28), it is understood
that it projects good nonlinearity and may have high hard-
ware complexities. Other than this, in a resource-constrained
design environment, this gives a higher impact since imple-
mentation is small enough to allow unrolling or parallel
designs for higher throughput. Recently, the design trend
had shi
ed to further minimizing and optimizing the S-box
circuit [19].

In this section, we will only review the standard hardware
proposal and implementation of AES S-box without taking
account of the various proposals on variants or tweaks on
the AES S-box. We will only focus on the original version
of the S-box and its respective minimization techniques;
implementation methodologies and design approaches are
surveyed and taken into account.

2.1. �e Minimized S-Box by Boyar and Peralta. In practice,
we build circuit designs using numerous heuristics which
potentially led to exponential time complexitywhich can only
be applied onto small-sized circuits. �e heuristic approach
works naturally �ne on circuit function that can be broken
down into subfunctions, that is, matrix multiplication, which
decomposes into smaller submatrix multiplications. �e
initial work from Boyar and Peralta [20] proposes a new
logic minimization technique, which can be applied to any
arbitrary combinational logic problems and even circuits that
have been optimized by standardmethodologies.�e authors
described their techniques as a two-step process: nonlinear
gate reduction and linear gate reduction. It is by far the
smallest S-box combinational circuit that they have come
up with. In this section, we are going to review Boyar’s �rst
approach in logic minimization which can be found in [20]
and his improved work for an even smaller and complete S-
box circuit in [21].

In Boyar’s paper, the author has carefully explained that
the circuit produced for the inverse in GF (2�) suggested in

�e original proposed S-box (forward)

(115 gates)

62 gates23 gates 30 gates

Bottom linear blockMiddle nonlinear blockTop linear block

�−1GF−1�
(matrix B)(matrix U)

Figure 2: �e illustration of Boyar’s minimized S-box.

[22] has a tower �elds architecture. Since there are multiple
representations of Galois �elds, there would be multiple
versions of e�cient circuits. Boyar’s approach is to focus on

the technique for GF (24) inversion computation and then
further perform linear circuit’s reduction with the inversion
circuit placed at a suitable position within the S-box. �e
�rst step consists in identifying the nonlinear components
and reducing the AND gates. �e author chooses to focus

on reducing only the GF (24) circuit since it would be sig-

ni�cantly bene�cial. At the end, an inversion in GF (24) with
only �ve AND gates poses a higher plausible improvement
than Paar’s [18].

�e second part would be focusing on minimizing linear
components with their newly proposed heuristics. Hence,
the author has presented two matrices � and � for linear-
minimization. �e AES’s S-box is �(�) = � ∗ �(� ∗ �) +[11000110]	, where ∗ is matrix multiplication and � is the 8-
bit S-box input. Note that the initial linear expansion and the
linear contraction (matrices� and�) were de�ned to contain
as much of the circuit as possible while still maintaining
linearity. �us, the author explains that the portion of the

circuit, de�ned by�, overlaps with the GF (28) inversion. So,
the true purpose of the second step is tominimize the circuits
for computing � and �. �e matrices � and � are shown in
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(1) and (2). �e illustration matrix � (Figure from [20]) is

� =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 0 0 0 0 0 0 10 1 1 0 0 0 0 11 1 1 0 0 0 0 11 1 1 0 0 1 1 10 1 1 1 0 0 0 10 1 1 0 0 0 1 11 0 0 1 1 0 1 10 1 0 0 1 1 1 11 0 0 0 0 1 0 01 0 0 1 0 0 0 01 1 1 1 1 0 1 00 1 0 0 1 1 1 01 0 0 1 0 1 1 01 0 0 0 0 0 1 00 0 0 1 0 1 0 01 0 0 1 1 0 1 00 0 1 0 1 1 1 01 0 1 1 0 1 0 01 0 1 0 1 1 1 00 1 1 1 1 1 1 01 1 0 1 1 1 1 01 0 1 0 1 1 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (1)

Equation (2) shows the illustration matrix � (Figure from
[20]):

� =
[[[[[[[[[[
[

0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 01 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 01 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 11 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 00 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 01 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 00 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 01 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0

]]]]]]]]]]
]

. (2)

�e Boyar technique has yielded a circuit for the AES S-
box composed of three primary parts: the top-linear transfor-
mation, the middle nonlinear block, and the bottom-linear
transformation [20].�e top-linear transformation is a result
of the minimized matrix �, a total of 23 XOR gates used and
at depth 7, consisting of 8 inputs and 22 outputs. �e middle
nonlinear block is a block with 22 inputs and 18 outputs,
having a total of 30 XOR and 32 AND gates. And lastly the
bottomlinear block converts the 18 inputs from the middle
non-linear block to become 8-bit output, having 26 XOR and
4 XNOR gates. All these 3 blocks together form the �nal
circuit of the S-box. Note from the work in [20], the author
has only presented the forward version of the S-box, with a
total gate count of 115 gates. Figure 2 shows the illustration of
the proposed block diagram explaining the S-box in [20].

To further improve the work, the authors have presented
their improved work in [21]. Boyar’s work has proposed a
more complete S-box example, by incorporating the reversed
version of the S-box. �is time, Boyar attempts to apply a
greedy heuristic approach for linearminimization and several
depth reduction techniques.

�e largest circuit component is the top- and bottom-
linear circuits. As explained previously, the top and linear

components contain more than just the linear operations in
the de�nition of the complete AES S-box. �e reason is that
the matrices include some of the �eld inversion operations.
�is shows that there would be some amount of AND gates
within the � and � matrices, and as mentioned by the
author, circuits with fewer AND gates will have larger linear
components. �is part of the work is optimized on top of the
previously minimized circuit (115 gates).

�e author’s technique is to modify a greedy heuristic
approach by Paar [18]. Paar’s technique keeps a list of XOR
computed variables. �en the steps are repeated to search
for the XOR pair of the input which results in the most
occurrences in the output. �is result is added as a new set
of variable to the next stage and repeated until all the most
occurred pairs are found. Hence, the “Low Depth Greedy”
algorithm only allows Paar’s greediness as long as the cir-
cuit’s depth is not increased unnecessarily. Basically, the
author has performed the three types of depth-reduction
optimizations: (1) applying a greedy heuristics to resynthesize
linear components into lower-depth construction of circuits,(2) using techniques from automatic theorem provied to
resynthesize nonlinear components, and (3) doing simple
depth-reduction along critical paths.

�e optimization results have yielded a forward S-box
with 128 gates and an inverse S-box with 127 gates. �is is
considered a signi�cant improvement since the total gate
count for a complete bidirectional S-box is amounted to 192
gates, which is less than the total gate count of the two circuits
combined. From our understandings, the only tradeo� is to
combine both circuits; a multiplexer would be required to
switch between encryption and decryption since there is a
middle-shared component. Figure 3 shows the illustration of
the bidirectional S-box in block diagram form [21].

2.2. �e Optimized S-Box by Satoh et al. and the Implemen-
tation Results by Edwin. �e Rijndael architecture presented
by Satoh et al. [16] has been a benchmark for compact AES
design for quite some time.�e author proposes further opti-
mization of the S-box by introducing a new composite �eld.
�e authors adopted the three-stage methodology: extension
�eld, composite �eld, and extension �eld. �e author has
suggested that the composite �eld can be constructedwithout
applying a single degree-of-8 extension to GF (2), but by
applying multiple extensions of smaller degrees. �e author
built the composite �eld by repeating the degree-of-2 exten-
sions under the polynomial basis with the irreducible poly-
nomials shown in (3). Hence, Satoh et al. proposed a compact
architecture with the introduction of a new composite �eld of

GF (((22)2)2) and have shown improvement over proposals

using the GF ((24)2) �eld approach. Equation (3) shows the
irreducible polynomials used in [16]:

GF (22) : �2 + � + 1,
GF ((22)2) : �2 + � + 0,

GF(((22)2)2) : �2 + � + �.
(3)
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Figure 4 shows the overview of the composite �eld S-box.
According to the Satoh et al., the isomorphism functions are
located at both ends of the S-box function (both encryption
anddecryption).�e authors have shown the 8 by 8matrix for
the isomorphic mapping into the composite �eld in Figure 5
and the inverse isomorphic mapping in Figure 6.

For practical implementation, Mui [23] has presented a
breakdown of the S-box and the multiplicative inverse GF
(28) in his paper. �e individual blocks within the composite
�eld S-box are shown in Figure 7. With reference to all
the subcircuits that Edwin had presented, we have mapped
out a circuit excluding isomorphic transformations, showing
speci�cally the circuit layout of the multiplicative inverse in

the GF (28) in Figure 8. In Figures 8 and 9, we can observe

that it utilizes �ve GF (24) multiplier, and each of the blocks
uses three GF (2) multipliers. From the schematics that we
have drawn, the total gate counts amount to 238. Note that
Figure 9 includes only the forward S-box circuit. �e total
gate count for the bidirectional circuit (excluding the MUX
and including the inverse isomorphism circuit) is a total of
261 gates, with inverse isomorphism of 23 gates (referring to
Figure 6)

2.3. �e Very Compact S-Box by Canright. �e work pre-
sented by the author Canright [14] aims to �nd a solution to
compute the S-box function by comparing and investigating

the normal basis and the polynomial basis inverter. In this
section, the authors are not going in depth to explain the
design details of Canright’s proposed S-box. For design
comparison details, please refer to [14]. Table 2 shows the
comparison of implementations.

2.4. Other Small S-Boxes. �e work presented in [2] is using
the same composite �eld arithmetic approach. �e author’s
contribution is clearly on the division and breakdown of
the S-box for subpipelining. �e author has also applied
the subpipelining architecture on the top-level AES design.
�is dramatically improves the throughput with a trade-
o� of larger design size. In Rouvroy et al.’s design [17],
the SubBytes were combined with MixColumns to form a
32-bit “T-box” LUT (18 kbit). �is has produced superior
throughput however still occupying a relatively large area
when the size of the LUT was taken into account. For
many applications, throughputs in hundreds of megabits per
second would be considered excessive and, therefore, not
suitable for resource-constrained environment. And another
S-box worth mentioning is the work proposed by Liu and
Parhi [10]. Liu and Parhi discussed and broke down various
critical path delays within the composite �eld S-box and
attempts to minimize the latency. �e authors had presented
their �ndings with improved critical path at the expense of a
fairly larger design.
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3. The Proposed Methodology for
Optimization and Improvement on
the Current S-Box

From all the proposals and implementations that we have
discussed in the sections above, we have identi�ed a few pat-
terns. �e S-box can be presented in the form of tower-�eld
architecture or the GF (28) representation. In Boyar’s work,
the author has broken down the S-box into two linear blocks
and one nonlinear block. On the other hand, Satoh’s and
Canright’s works suggest that the GF (28) representation can
lead to a smaller combinational circuit with the “extension-
composite-extension”—three stages. Both represent the S-
box but in a di�erent way, but both are logically the same.
By comparing both S-boxes, we can see that the function
of the extended �eld in the composite �eld representation
is similar to the linear block of matrices � and �. Since
this trait is identi�ed, we choose the smallest S-box design
known and apply our method onto the said S-box. To further
reduce the size of the S-box, we have proposed two separate
methodologies: (1) to use an independent inverse a�ne
circuit and attempt to perform optimization of the circuit;(2) to put the inverse a�ne as an independent ALU with
additional instruction set, without making changes to the
current S-box con�gurations. Note that our approach is to
view the S-box as a dedicated component within an ALU of
a processor, treating the S-box as a whole and independent
hardware.

�e Boyar compact S-box o�ers a total gate count of 115
gates and poses as the smallest forward S-box known. �e
only drawback is that for a complete bidirectional S-box, the
author suggested that a set of “inverse” top- and bottom-
linear blocks (Figure 3) has to be added. �is increases
the gate count by 77 gates (192 gates in total), which is a
great amount. And on the other hand, from the composite
�eld point of view, the inverse S-box requires an a�ne and
inverse a�ne at both ends of the S-box to complete the
substitution. �is suggests that a
er a set of bytes underwent
the a�ne transform would only be recovered by applying the
inverse a�ne transform. Both Boyar’s and Satoh’s S-boxes are
completed with the a�ne transform at the very end of the
forward S-box. What we suggest is not to tweak, tamper, or
redesign the S-box, but rather adding a small circuit to reverse
the e�ect of the forward S-box, making it a reversible or a
bidirectional S-box.

�e forward S-box in the composite �eld has the a�ne
transform in the process while the Boyar triple-stage S-box
represents the a�ne transform “embedded” as a part of the
circuit derived from matrix �. From what we see, an inverse
a�ne is the only crucial circuit that determines the inverse
S-box. By adding an inverse a�ne transform at the end
of the composite �eld S-box, we have e�ectively “cancelled
out” the transformation done by the a�ne transform in the
forward S-box. To complete the circuit, another inverse a�ne
transform has to be present at the front to act as the prime
component for the inverse S-box. Since we have mentioned
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that the smallest S-box still have room for additional circuits
(since it is smaller than other S-boxes by a relatively large
margin), we suggest that this “inverse a�ne transform” can
be placed at both ends of the Boyar S-box. �is results in
a complete bidirectional S-box. Figure 11 illustrates the said
con�guration. Note that this proposal would still require the
presence of MUXs to choose the path of the data during
encryption and decryption mode selection. In the next
section, we will provide more details on the improvements
and the proposed optimization techniques.�e complete gate
layout of our proposed S-box con�guration for bidirectional
setting is shown in Figure 10.

3.1. �e Optimized Inverse A�ne Circuit. As we know, in
the composite �eld forward S-box, we have a�ne and

inverse a�ne transformation at both ends of the circuit.
As for the inverse a�ne transform, the matrix is shown in
Figure 12.

In search of an optimization method, we have found out
that the work proposed by Bernstein [24] is a good method
to optimizing linear matrix mapping. �e author has also
provided a .cpp �le (C++ �le) in his website, which is a direct
implementation of his algorithm. For more information
about the linear maps optimizations, please refer to the paper
[24]. We have adopted his algorithm and attempt to feed
the matrix into the optimization algorithm for optimization
results. �e results obtained are shown in a straight-line lay-
out, in other words, the shortest path of calculation. Equation
(4) shows the straight-line XOR calculations obtained from
the optimization algorithm.�e current gate count is 18 XOR
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Table 2: �e comparison of S-boxes (table from [14]).

Basis Type XOR NAND NOT MUX Total gates

Canright

Merged 107 36 2 16 253

S-box 91 36 0 0 195

Inv S-box 91 36 0 0 195

Mentens

Merged 118 36 0 16 271

S-box 96 36 0 0 204

Inv S-box 97 36 0 0 206

Satoh

Merged 119 36 3 16 275

S-box 100 36 0 0 211

Inv S-box 99 36 0 0 209

Worst

Merged 131 36 0 16 293

S-box 107 36 0 0 223

Inv S-box 106 36 0 0 222

gates. Equation (4) shows the straight-line circuits for the
inverse a�ne transform:

�0 = �0 + �1, �6 = �1 + �4, �12 = �6 + �3,
�1 = �0 + �2, �7 = �4 + �6, �13 = �0 + �12,
�2 = �0 + �1, �8 = �0 + �7, �14 = �7 + �13,
�3 = �0 + �3, �9 = �5 + �1, �15 = �7 + �6,
�4 = �0 + �3, �10 = �5 + �9, �16 = �2 + �15,
�5 = �2 + �4, �11 = �8 + �10, �17 = �11 + �16.

(4)

�is initial form of circuit uses a total of 18 XOR gates.
By sorting out the variables, we have realized that they can
be minimized by expanding the equations shown in (4). �e
mapped-out equations show that there are only 8 outputs at
the end, and the equations are shown in (5). �e current gate
count is 16 XOR gates. Note that from this point onwards, the
optimization is done by “hand optimization” since it is a small
circuit. Equation (5) shows the minimized equations for the
inverse a�ne transform:

�0 = �1 + �3 + �6, �4 = �2 + �5 + �7,
�1 = �2 + �4 + �7, �5 = �0 + �3 + �6,
�2 = �0 + �3 + �5, �6 = �1 + �4 + �7,
�3 = �1 + �4 + �6, �7 = �0 + �2 + �5.

(5)

Equation (6) shows the minimized equations for the inverse
a�ne transform:

�0 = �1 + �4, �2 = �0 + �5,
�1 = �3 + �6, �3 = �2 + �7. (6)

From here, we further optimize it via variable grouping.
Under careful observation, we realized that the circuits have
common bases. Meaning, there are XOR operations that
can be omitted without contributing to more XOR gates.
In (6), we have the common bases that are �rst acquired

and expanded into their respective outputs. Hence, the new
circuit is mapped and shown in Figure 13. Note that there is
a constant addition at the end of the inverse a�ne transform,
and this requires 2 extra XOR gates.�e �nal circuit is shown
in Figure 13, andwe have optimized the gate count to a total of
14 gates. �e whole circuit can be understood by referring to
(4), (5), and (6). Substituting the alternate bases would yield
the �nal circuit.

3.2. Methodology 1: Inverse A�ne Transform with Multiplexer.
In this section, we propose a methodology by adapting the
existing S-box model by Boyar and Peralta [20, 21]. If this is
implemented, it will amount to a total of 143 gates (excluding
MUX 16 gates). �e �nal circuit is straight-line circuit (with
one inverse a�ne block at both ends) and it is depicted
in Figures 10 and 11. Another alternative can be realized
considering only one minimized inverse a�ne transform
used. A temporary register can be used to store the results
from the S-box, and the same data is fed back to the inverse
a�ne circuit.�is method is clearly sharing the inverse a�ne
circuit with the help of using registers (e�ective total gate
count = 129), but the tradeo� is that the circuit now is
two times slower. Figure 14 illustrates the alternative method
register bu�ering.

3.3. Methodology 2: S-Box Breakdown (A�ne Transform as
an Independent ALU). In this section, we present a second
approach for improving the gate count of the S-box. In a
processor architecture, the ALU is the block that de�nes the
behavior of the machine. In the section later, we will discuss
more about the ALUs’ role in a computer organization.
�is con�guration yields a �nal gate count of 129. Figure 15
illustrates the ALU proposal for an independent ALU set for
the minimized inverse a�ne transform. �e only tradeo�
is that another instruction set has to be de�ned in the
architecture, and it does not comply with the aim of having
the least and minimal number of instruction sets for a simple
architecture. Note that the methodologies 1 and 2 are aided
by the processor architecture. �is can be understood by
the placement of the minimized inverse a�ne transform,
revolving around the ALU block.

4. The Compact Instruction Set Architecture
(CISA) for AES

�e ideology of a computing machine appears to be the
relationship between the basics of the logical and arithmetic
operations.�us, a computer can be described as the abstrac-
tion of the data processingmechanism. In this section, we are
presenting aminimalist design of the compact instruction set
architecture (CISA) built for AES, explaining details from the
hardware architecture to the instruction set synthesis.

4.1. A Brief Review of the Idea behind the CISA: �e Ultimate
Reduced Instruction Set Computer (URISC). When we use
the term “instruction set,” it describes a set of commands
that elaborates the computer’s functionality, behavior, and
operations.Most instruction sets make references tomemory
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Figure 10: �e complete gate layout of the proposed S-box con�guration for bidirectional setting.
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locations, registers, or pointers to a memory location. �e
referenced memory locations will eventually contain the
processed data, which will be used again to produce new
data if the next instruction set is de�ned to do so. In short,
computer processors can be viewed as a machine, taking
in data and performing transformations and operations
onto existing data to become new data, via executing and
interpreting instruction codes.

To understand computer architecture, one version of
computer organization had caught our attention and it
is named the ultimate reduced instruction set computer
(URISC). �e URISC is known to be an educational model
[25] because it is made to be easily understood by novice
students. Hence, the design and architecture are simple and
yet the idea is grand. �e URISC is neither a RISC (reduced
instruction set computer) nor a CISC (complex instruction
set computer), but it does project similar traits like RISC and
CISC in some areas. �e idea of URISC is the opposite of
a CISC, which incorporates many complex instructions as
microprograms within the processor. But at a higher level,
a URISC with many heavily synthesized low-level instruc-
tions is also a CISC. While for RISCs, the most common
features are the single instruction size, small number of
addressing modes, and without indirect addressing. �ese
changes made it possible to develop successfully a new set
of architectures with simpler instructions. �e RISC-based

machines focused the attention of designers on two critical
performance techniques: the exploitation of instruction-level
parallelism (initially through pipelining and later through
multiple instruction issue) and the use of caches (in simple
forms initially and using more sophisticated organizations
and optimizations later).

�is simpli�ed model of computer architecture being
�exible with only a single instruction incorporated can be
further expanded and implemented on hardware easily. �e
URISC uses only one instruction called the SBN instruction
(Subtract and Branch If Negative). By using only the SBN
instruction, the URISC is able to perform data addition and
subtraction. Logical operations can be performed to execute
data movement from one location to another. �e URISC
consists of an Adder circuit as its sole ALU. Detailed opera-
tion of the URISC SBN can be found in [26]. Figure 16 shows
the schematic illustration of the URISC SBN architecture.

�e “Subtract and Branch if Negative” (SBN) processor
was �rst proposed by Gilreath and Laplante [26]. With this
primitive SBN instruction, the URISC is built around this
fundamental instruction. �e basic operations of URISC are
moving operands to and from the memory, with addresses
corresponding to the registers. �e arithmetic computation
can be performed and the results are stored in the 2nd
operand’s memory location. Similarly, to execute URISC
instructions, the core subtracts the 1st operand from the 2nd
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operand, storing the results in the 2nd operand’s memory
location. If the subtraction results a negative value, it will
“jump” to the target address, else it proceeds to execute the
next instruction in the following sequence. �e advantage of
the SBN architecture is that the SBN instruction itself is capa-
ble of four di�erent logical operations: ADD/SUBTRACT,
MOVE/COPY, JUMP, and CLEAR. In computer program-
ming, such a universal instruction set is deemed powerful as
there is no additional hardware or additional instructions set
required. With the URISC SBN architecture, a fundamental
processing engine is realized. A more detailed description of
the extended SBN instructions can be found in Table 3.

4.2. �e Compact Instruction Set Architecture for AES (CISA
AES). In our work, we use URISC as a platform and further

expand it into a customized architecture called the CISA
(Von-Neumann due to the single memory con�guration).
�e reason it is called a CISA is due to the minimized
and compact instruction sets that the architecture accom-
modates. �ere is no need for any additional instruction set
in order to complete all the AES transformations, and this
is the reason why the computer architecture is “compact.”
�e latter part of this section further explains and dissects
the CISA AES architecture into the following subsections:
architecture, function codes and instruction sets, mem-
ory, FSM control signals, and cipher algorithm program
code.

4.2.1. Data-Path Architecture and ALU (Arithmetic-Logic
Unit). In the development process, we have extensively



14 Journal of Engineering

Minimized
inverse a�ne

transform

14 gates 23 gates 62 gates 30 gates

� GF−1
�−1

ALU 1 ALU 2

Figure 15: Illustration of the independent ALU set for the minimized inverse a�ne transform.

MDR MAR

MUX
1 0

R�

0

Memory
unit Read

Write

PC IN MDR IN MAR IN

COMP SEL

PC

MUX
0 1

PC OUT
SEL

PC OUT

MEM OUT

MDR OUTINPUT B

INPUT A

CIN

URISC ALU

Adder

R Write

R

Z N

Z IN N IN

Figure 16: �e URISC SBN architecture with Adder block.

studied the AES algorithm together with the basic URISC
architecture. By understanding the AES transformations
and the other three steps (Shi
Rows, MixColumns, and
AddRoundKey), this will give insights into how an
application-speci�c integrated Processor (ASIP) can be
designed.We have identi�ed that in theAES transformations,
there are two speci�c circuits required. As for the Shi
Row
and AddRoundKey, a simple XOR and memory readdressing
would su�ce. As for the SubBytes, a combinational circuit
has to be present. In this work, we are using the S-box that
we have proposed in Section 3. As for MixColumns, we
refer to [15] for the xTime-dedicated 4 XOR hardware. Note
that to standardize the width of the register and data-path
for optimum design, a uni�ed and shared bitwise XOR
block will be used to perform MOVE operations instead
of SBN MOVE due to memory optimization issues (XOR
is more e�cient and 1 instruction less compared to SBN
MOVE). On the other hand, the xTime is known to be using
4 independent XORs. �e xTime would have a discreet ALU
block, and no XORs will be shared with other ALUs due
to register-memory width standardization. Unlike URISC
which uses only one instruction, the CISA AES that we
propose uses four minimized instructions (including SBN)
to perform the complete encryption process. �is extended
version of URISC, together with 4 custom-developed ALU
for the AES encryption and decryption, has the ability to
perform any transformation in the AES algorithm. At the
end, the CISA ALU has the following blocks: Adder, XOR,
xTime, and S-box. With an external 1-bit input switch, the
CISA is able to switch its operational mode between encrypt
mode and decrypt mode.

�e CISA data-path is shown in Figure 17. It has a single
memory unit to store both program and data for the AES
algorithm. With the SBN as the core instruction, the CISA
is able to branch to any PC values within the memory unit
and execute any instructions in any location of the memory
unit. With 7 registers, 5 multiplexers, 1 memory unit, and 4
ALU blocks, the CISA is complete and functional. Similar
to the structure of URISC, the CISA data-path loads in the
�rst memory address and subsequently loads in the �rst data
item. �is operation is repeated for the second data item.
Once both data are loaded into the CISA, they are sent into
the ALU for computation and the outputs will be chosen with
regard to the function code embedded into the �rst address
loaded. �e function code is a 2-bit value, concatenated to
the �rst data address in thememory unit.With the 2-bit MSB
value, the architecture is able to determine which instruction
is used for the current processor cycle and what data are
stored back to the memory.

�e architecture has 2 input parameters into the CISA
AS-ALU: Input A and Input B. Since the architecture is run
by an FSM, the data movement and processing are �xed
within 9 clock cycles. �e Adder and XOR block takes in
two data items and perform bitwise addition and XOR onto
their respective inputs. �e xTime block is a part of the
MixColumns transformation. In [2], by using the substructure
computation of a byte and between the computations of four
bytes in an array of bytes, the derivation of the MixColumns
transformation can be de�ned. In [17], the implementation
of an “xTime” function is used to complete the multiplication
of with “02,” modulo the irreducible polynomial�(�) = �8 +�4+�3+�+1. It is known that theMixColumns transformation
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Table 3: �e SBN instruction sets.

Instruction sets Description 3-Tuple instruction format

SBN ADD/SUBTRACT
2 SBN instructions would result in an addition
operation. Hence, B − (−A) = A + B, and the
value of (A + B) is stored in the B address

(1) SBN $A, $C, 0; (C = −A), where the address C
contains the value of zero and A is the input A
(2) SBN $C, $B, 0; B − (−A) = B + A, where the
address B contains the value of input B

SBNMOVE/COPY
2 SBN instructions would result in a MOVE
operation. Hence, D = A, and the value of A is
stored in the D address

(1) SBN $A, $C, 0; (C = −A), where the address C
contains the value of zero and A is the input A
(2) SBN $C, $D, 0; (D = +A), where the address D
contains the value of zero

SBN JUMP
1 SBN instruction would result in a JUMP
operation. �e condition would be the
resultant output of� − � = � negative value

SBN $�, $�, $J; (J = jump address),
where� − � = −ve (value)

SBN CLEAR
1 SBN instruction would result in a CLR
memory operation

SBN $A, $A, 0; (A − A = 0), where the address A
contains the value of input A

is a process involving several XOR processes and xTime
processes. �e xTime is a bitwise XOR operation that yields
the constant multiplication by (02). By concatenating two
xTime blocks in serial, constant multiplication by (04) can
be achieved. �e MixColumns circuit in [2] can be used
for bothMixColumns and Inverse MixColumns. In Figure 18,
part 1 of the circuit is the MixColumns transformation.
Part 1 together with part 2 of the circuit yields the Inverse
MixColumns Transformation. �e xTime discreet circuit is
shown in Figure 19.

4.2.2. Function Codes and Instruction Sets. In order to per-
form AES computations onto the plain text, byte-oriented
methods are adapted from the AES encryption method. To
perform tasks, such as SubBytes and MixColumns, a new
series of instructions have to be developed. In this work,
the instruction sets are speci�cally tailored for the ALUs
de�ned for the CISA AES. �e CISA instruction sets shown
in Table 4 are di�erentiated using the two MSB of each of
the instructions. Based on the operation required for each
byte-oriented transformation in the AES algorithm, the four
instruction sets used to perform separate operations are
shown in Algorithm 1. From Table 4, each of the instruction
formats uses 3 bytes in the program memory. �e �rst byte
holds the OP Code and the address of Mem A, the second
byte holds the address of Mem B, and the last byte holds the
target address.With four di�erent OP codes embedded in the
�rst byte of the instruction, the CISA selects the appropriate
output from the corresponding processor block.

4.2.3. Memory Mapping and Program Structure. �e CISA
AES von-Neumann architecture includes a 1024 × 10-bit
memory unit. �e total available memory is 1024 × 8-bit
(512 bytes), which accommodates both the data and program
codes. �e data section is located at the address location of
0 to 127, whereas the program section takes the location of
128 to 1024. In the program section, instructions are sorted in
a sequence as the CISA executes in accordance. In the data
section, the breakdown of the memory allocation the plain

text, master key, and other temporary variables is shown in
Figure 20.

For the program design of the CISA AES, functions and
modules of a set of the written instructions can be reused
for code optimization. During the decryption round, the Key
Expansion algorithm has to be executed and the subkeys are
stored inside the memory unit. During encryption mode,
the program sequence has to start on producing all the
subkeys and then proceed to the AddRoundKey function.
Loop1 and Loop2 are used to branch to any designated
memory locations in the memory unit if the resultant value is
less than zero of negative. In loop1 and loop2, the addressed
memory stores a number that enables the SBN instruction
to be executed, and hence, the results will be checked by
the CISA FSM controller in order to decide whether a
branch instruction has to occur depending on the output
of the Adder and the function code of the instruction. �e
function code tells the data-path that the current instruction
performed is an SBN instruction.With the two SBN loops for
branching, the AES encrypt mode can be completed.

For decrypt mode, similar to the AES encrypt mode,
the decrypt process involves an initial prewhitening trans-
formation of AddRoundKey. �e subkeys are stored in the
memory unit a
er encryption being done previously. A one-
time loop is implemented in order for the CISA to execute
the “AddRoundKey” once at the start of the decrypt sequence.
�is is due to the reason that the initial prewhitening step
does not have a �owpattern to the programming sequence. In
decryptmode, the data transformation a
erAddRoundKey is
the Inverse MixColumns. �e initial Add Round Key is a one-
time process, so the one-time loop is applied. With another
SBN loop applied, the decrypt mode is able to execute the 4
basic inverse transformations with 10 iterations. Figure 21 is
the illustration of encryption and decryption program �ow
in the CISA AES.

4.2.4. FSM Controller. �e CISA controller generates a total
of 14 control signals. Within 9 clock cycles, a complete
instruction is being processed and carried out throughout
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Figure 17: �e overview of CISA von-Neumann architecture data-path with a programmable ALU space.

the registers and multiplexers in the architecture. During
each clock cycle, operations from program counter (PC)
increment, loading data item, writing the MDR register, and
storing the results from the ALU, are being carried. Each
register is controlled, and the characteristics of the datamove-
ment within CISA are prede�ned and �xed for all 4 basic

instructions. �e N register is used as an indicator to trigger
the controller’s outputs for branching. If a branch instruction
occurs, the current values in the program counter register will
be overwritten with a new target address. �is target address
was embedded in the last byte of the instructions, and the PC
will start at this target address over the next clock cycle.
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Table 4: �e CISA instruction sets break down.

Operation
Function code
(2-bit MSB)

Instruction format

SBN (Subtract and
Branch if Negative)

00
(0 at address A), address B,

Target

XOR 01
(1 at address A), address B,

Target

�Time 10
10 at 0[� : 0], address B,

Target

SubBytes 11
11 at 0[� : 0], address B,

Target

�e control circuit is driven by a 4-bit counter(C3C2C1C0). At each clock cycle, the control signals

for particular control inputs are di�erent. �ey are
required to control the registers and store memory at
any particular clock cycle. During clock cycle 0, the
value of the program counter is loaded into the MAR,
and at the same clock cycle, the Z register will be set
accordingly by the ALU output to determine whether
the PC has restarted at 0 × 00. In the following clock
cycles, the data is read from the memory location,
addressed by the MAR which stored the value of PC.
Subsequently, the read data is written back to MAR, storing
the address of the data to be used for computation. �ese
processes are repeated for a second data. �e PC value
will be increased by 1 a
er each data loading operation is
done.

At clock cycle 1, the address for Mem A is stored in the
MAR; at the same time, the OP Code for the instruction
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SBN (Subtract and Branch If Negative)
Mem B = Mem B −Mem A
If Mem B < 0 Goto (PC + C)
Else Goto (PC + 1)
XOR
Mem B = Mem B XORMem A
xTime
Mem B = xTime(Mem B)
Sub Bytes
Mem B = Sub Bytes(Mem B)

Algorithm 1: �e CISA instruction sets in pseudocode form.

is written to the OP Register. At clock cycle 2, the value of
Mem A is read and stored into the R register. At clock cycle
3, the incremented value of PC is stored in theMAR. At clock
cycle 4, the address forMem B is stored inMAR. At the clock
cycle 5, the value of Mem B is read and sent to the ALU
for computation. �e Adder and the other hardware blocks
will perform their individual operations from the two given
inputs (Mem A and Mem B). At that particular clock cycle,
depending on the value of the OP Register, the desired output
will be chosen via an ALUMUX. At clock cycle 6, the output
from the ALU is sent to the MDR Register for storage. With
the arithmetic operations performed, clock cycle 7 will load
the jump address from memory. �en the jump address will
be added to the PC value at the same clock cycle. �e jump
address value will only be added to the PC value, provided
that theOP value is corresponding to the SBN instruction and
a negative result is found at the output. At clock cycle 8, the
value of the PC is incremented.

If a branch occurs, the N register would have a value of
0. So, the PC register would just would take in the value
of the jump address and increase by 1. �en, the following
instruction in the written program code will be performed. A
total of 9 clock cycles are required to perform one instruction
written in the program code section. �e control signals
are produced by a combinational logic circuit during each
clock cycle. �e whole 9 clock cycles will repeat themselves
until the end of the program reached. �e 4-bit counter will
restart once it reaches the value C = 8. Algorithm 2 shows the
Boolean expression of the control signals.

Shi� row

Add round key 

Key expansion

Sub bytes 

Loop

End

Plain text

Temporary data locations

Original cipher key

Temporary data locations

Cipher text

Temporary mix column data

Temporary variables

D
at

a 
se

ct
io

n

Inverse shi� row P
ro

gr
am

 s
ec

ti
o

n

Rcon[i]

Sub keys (expanded keys)

(Enc/Dec)

(Enc/Dec)

Mix columns (part 2)

Mix columns (part 1)

Figure 20: �e memory mapping for CISA AES.

5. The Selective Encryption Architecture (SEA)
for Implementation in Radio Frequency
Identification (RFID) Environment

5.1. A Brief Review on Selective Encryption Systems for Image
Processing andMultimedia Applications. �e security ofmul-
timedia data in digital distribution networks is commonly
provided by encryption. Nevertheless, most of the classical
and modern ciphers known were initially developed for
the simplest form of data type—“text” and are not made
for large quantity of data in real-time environment such as
images and video with very large sizes and redundancies.
Selective encryption (some sources refer to it as partial
encryption) is a highly e�ective approach to reduce the
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Figure 21: �e CISA AES encryption and decryption program �owchart and structure.

ALU B0 = C2 C0 + C1C0
ALU B1 = C2C0
ALU A0 = C1C0
ALU A1 = C2 C0 + C1C0
CIN = C1 + C0
PMAR Write = C1C0 + C2 C1
DMAR Write = C1C0 + C2 C1C0
PC Write = C2 C1C0 + C2C1C0 + C2C1 C0�
PMem Read = C2C0 + C1C0 + C2 C1C0
DMem Read = C1
DMem Write = C2C0
R Write = C1C0
Z Write = C2 C1 C0
N Write = C1C0
MDR Write = C1C0
Op Write = C2 C1C0
Op SEL = C1C0

Algorithm 2:�e Boolean expression of the CISA FSM controller.

computational requirements for huge volumes of multime-
dia data in distribution networks. Selective encryption is
an approach to “selectively” encrypt the most important
portion of the data in order to provide an adequate secu-
rity and to reduce computational requirements. Inspired
by the way compression can strengthen encryption, system
designers have found ways to secure compressed data by
enciphering only a portion of the compressed bit-stream.
Selective encryption is a technique to reduce the computa-
tional complexity and enables interesting system functional-
ity by only encrypting a portion of a compressed bit-stream

while still achieving a certain degree of security. Figure 22
shows the pictorial explanation of a selective encryption
system.

For selective encryption to work, we need to rely not only
on the bene�cial e�ects of redundancy reduction described
by Shannon [29], but also on a characteristic of many
compression algorithms to concentrate important data about
reconstruction in a relatively small fraction of the compressed
bit-stream. Shannon �rst pointed out the strong relationship
between data compression and encryption [29]. In particular,
the author showed how the redundancy in a source (such as
the redundancy in the English language associated with the
di�erent relative frequencies of letters and letter groupings)
makes encryption weak. For example, if an attacker can use
the di�erent frequencies in symbols in the source material
to guess the encryption mapping from source material to
encrypted material. Surprisingly, for the English language
and a simple substitution cipher in which each letter is
mapped to some other letter, themapping is close to uniquely
determined and the cipher broken a
er observing about 30
letters of the cipher text. �e author then suggested that
data compression (by means of removing the redundancy in
the source) could improve and strengthen the encryption.
Perfect compression, in fact, would eliminate any statistical
redundancy in the source to the encryption, and an attacker
could do no better than successively guessing the possible
encryption mappings (the mappings being indexed by the
encryption key shared through some other means by the
encryption operations and the decryption operations). �ere
are three requirements to prevent unauthorized access to
multimedia content over the communication channel:

(1) the encryption of the digital content;

(2) protection of cryptographic keys;
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Figure 23: �e illustration of the combined system of a SPIHT coder and an AES-based CISA to achieve the selective encryption.

(3) integrity of the critical data (copyright or usage rights)
associated with the content.

5.2. A Brief Review of Set Partitioning in Hierarchical Trees
(SPIHT) Algorithm. �e SPIHT encoder [30] is a highly

re�ned version of the EZW algorithm and is a powerful
image compression algorithm that produces an embedded
bit stream from which the best reconstructed images in the
mean square error sense can be extracted at various bit rates.
Some of the best results (highest PSNR values for given
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Table 5: �e comparison of di�erent S-boxes.

Basis Type XOR XNOR NAND/AND NOT MUX Total gates

Our work
(straight-line)

Merged 107 4 32 — 16 159

— — — — — — —

— — — — — — —

Our work
(alternative block sharing)

Merged 93 4 32 — 16 145

— — — — — — —

— — — — — — —

Our work
(independent ALU)

Merged 93 4 32 — — 129

— — — — — — —

— — — — — — —

Boyar (single S-box)

— — — — — — —

S-box 79 4 32 — — 115

— — — — — — —

Boyar (complete) (newer)

Merged 144 14 34 — 16 208

S-box 90 4 34 — — 128

Inv S-box 83 10 34 — — 127

Edwin

— — — — — — —

S-box 193 — 45 — — 238

— — — — — — —

Canright

Merged 107 0 36 2 16 253

S-box 91 0 36 0 0 195

Inv S-box 91 0 36 0 0 195

Mentens

Merged 118 0 36 0 16 271

S-box 96 0 36 0 0 204

Inv S-box 97 0 36 0 0 206

Satoh

Merged 119 0 36 3 16 275

S-box 100 0 36 0 0 211

Inv S-box 99 0 36 0 0 209

Worst

Merged 131 0 36 0 16 293

S-box 107 0 36 0 0 223

Inv S-box 106 0 36 0 0 222

compression ratios) for a wide variety of images have been
obtained with SPIHT. Hence, it has become the benchmark
state of the art algorithm for image compression.

�e SPIHT method represents an important advance in
the �eld. �e method is characterized by the following:

(i) good image quality, high PSNR, especially for color
images;

(ii) being optimized for progressive image transmission;

(iii) produces a fully embedded coded �le;

(iv) simple quantization algorithm;

(v) fast coding/decoding (nearly symmetric);

(vi) has wide applications, completely adaptive;

(vii) can be used for lossless compression;

(viii) can code to exact bit rate or distortion;

5.3. A Brief Review of RFID/WISP Resource-Constrained
Environments. In [31], the authors introduced RFID sensor
networks (RSNs), which consist of small, RFID-based sens-
ing and computing devices—WISPs (wireless identi�cation
sensing platforms), and RFID readers that are part of the
infrastructure and provide operating power. �ey claim that
the RSNs are capable of bringing the advantages of RFID
technology to wireless sensor networks but they do not
expect them to replace WSNs for all applications. As the
WISP became more mature, it is assumed that the WISP is
capable of replacing RFIDs. Note that the sensor nodes and
the WISP both have sensing abilities but the WISP has an
advantage as its energy source comes from energy harvesting.
Many sensor network applications such as home sensing
and factory automation can be solved where the readers can
be installed and carried easily. Like both RFID and WISP
platformwill have aMCU (microcontroller unit). Hence, this
notion suggests that there will be implementation proposal in
the future for such a network as the research advances.
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5.4. Selective Encryption Architecture (SEA) Based on SPIHT
Coder and CISA AES Core. In this section, we are presenting
the combined system of a SPIHT coder with a CISA pro-
cessor. For an image processing system, image compression
module is one of the core functionality blocks. In our design
and implementation process, our focus was to design and
con�gure a CISA to work with the SPIHT core. A camera is
set to capture live images and transfer the coded image into
the SEA. �e SEA SPIHT coder decomposes input images
and creates two separate bit streams: the re�nement bits and
the mapping bits. As explained in Figure 23, mapping bits are
sent to the CISAAES core for encryption, and re�nement bits
are le
 and remain as they are without additional processing.
Note that for illustration purposes, we choose to depict a
system consisting two separate tags which in fact is a setting
and network behavior of a RFID/WISP network (tag-to-
tag communication or tag-to-reader communication). Both
streams are then sent to the receiving party via unsecured
communication medium. Both streams pose no security
threats as the attacker will not bene�t by acquiring the
unencrypted re�nement bits. Having the re�nements bits has
no meaning without the tree structures within the encrypted
mapping bits. �erefore, the SEA with CISA AES and SPIHT
core is deemed a secure system. Note that in this paper, we are
not going to discuss the compression quality of the system.

6. Results and Discussion

6.1. Comparison of Various Compact S-Boxes. We have made
comparisons with di�erent S-boxes, and the comparison of
gate counts is shown in Table 5.

Assuming a multiplexer costs 8 gates (by referring to
[14]), our proposed con�guration uses 2 MUXes, in which
it costs 16 gates in total. Our proposed methodologies had
shown an improvement by o�ering lower gate count of
the bidirectional S-box con�guration. Since our proposal
and methodologies are built on top of Boyar’s S-box, the
results we o�er are only the merged version of the S-box.
Our justi�cation is that the merged S-box is more popular
when designing an independent system that performs both
encryption and decryption on the same platform, without
involving a secondary or a host server for decryption.

6.2. Comparison of Various Small AES Processors. Currently,
the best work that we are able to �nd is for the smallest
architecture from Good and Benaissa [27]. �e authors have
presented superb result of 122 slices on a Spartan-II device.
�e authors’ work is ASIP based (application-speci�c instruc-
tion processor) and they believe that the smallest work has to
be fromRouvroy et al. [17] andGaj [28].�e said works opted
to iteratively use a reduced �xed-width 32-bit data-path,
sacri�cing throughput but yielding a much smaller circuit.

�e CISA AES von-Neumann architecture is �rst
designed and tested using the DK Design Suite so
ware
environment. A Celoxica RC10 board which houses the
Spartan-3 XCS1500L-4 FPGA is used, and on-board
LEDs are used to observe the data memory items. �e
implementation results are shown in Table 6. �e gate count

Table 6: Implementation results.

Components Quantity Total Usage

No. of slice �ip �ops 110 26,624 1%

No. of occupied slices 236 13,312 1%

Total no. of 4-input LUTs 428 26,624 1%

No. of LUTs used as logic 405 428 95%

No. of LUTs used as a route-thru 22 428 5%

No. of LUTs used as shi
 registers 1 428 ∼0%
No. of bonded IOBs 28 221 12%

No. of BRAMs 3 32 9%

No. of GCLKs 4 8 50%

No. of DCMs 1 4 25%

Table 7: Gate counts on ALU components.

ALU Block AND XOR/XNOR OR

Adder (10-bit) 20 20 10

XOR (8-bit) — 8 —

�time — 8 —
∗SubBytes (dual-inverse
a�ne, straight line circuit)

32 111 —

∗∗SubBytes 32 97 —
∗
: �e proposed S-box with dual-inverse a�ne, a straight line circuit (refer

to Figures 10 and 11).
∗∗: �e proposed S-box using methodology 1 and 2 (Sections 3.2 and 3.3).

numbers shown in Table 7 are the schematic gate counts.�e
numbers will vary a
er design synthesis and optimization
done by Xilinx. Table 8 shows the comparison between CISA
and other small FPGA AES implementations.

For comparisons, we would like to compare with the
work by Good and Benaissa [27]. �e authors’ work has an
astounding result of 122 slices for the ASIP design. Our goal
is to minimize the overall slices’ occupancy.�e initial step is
to focus on reducing the S-box’s size. Our aim is to design a
much simpler design that uses less complicated instruction
sets for the ease of programming. On this platform, we
are at advantage since the total numbers of instructions
programmed are just 4 while Tim et al.’s design (excluding
2 unused instructions) has 14 instruction sets. Hence, CISA
AES is the least complex in terms of programming. Table 9
shows the comparison between our work and Tim’s work on
instruction count.

6.3. Code Execution and Timing. Our approach of micropro-
gramming is based on the AES ECB mode. In [32, 33], the
author has described the method to calculate the throughput
for FPGA AES design, where

�roughput = [(bits per block)(clock cycle) ] ∗ frequency. (7)

�e total clock cycles for the CISA AES have to be
calculated according to the number of instructions executed
for the complete AES operation. EachMISC instruction takes
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Table 8: Comparisons with other small AES processors.

Design and FPGA (device)

CISA AES
ENC/DEC

(von-Neumann)
Spartan-III
(XC3S50-4)

Good and
Benaissa [27]
AES ASIP
Spartan-II
(XC2S15-6)

Good and
Benaissa [27]
PicoBlaze
Spartan-II
(XC2S15-6)

Gaj [28]
Spartan-II
(XC2S30-6)

Rouvroy et al.
[17]

Spartan-III
(XC3S50-4)

Zhang and
Parhi [2]
Virtex-E

(XCV1000$−8)
Encryption algorithm AES AES AES AES AES AES

Max. clock freq. (MHz) 20 72.3 90 60 71 168.4

Data-path bits 12 8 8 32 32 128

No. of slices of �ip-�op utilized 110 122 119 222 163 11022

No. of block RAMs used 4 2 2 3 3 0

Block RAM size (kbits) 4 4 4 4 18 —

Bits of block RAM used 49152 4480 10666 9600 34176 0

Equiv. slices for memory 126 140 333 300 1068 0

Total equiv. slices (Est.) 236 262 452 522 1231 11022

Max throughput (Mbps) — — — 166 208 21556

Avg. throughput (Mbps)
Average encryption-decryption
including key expansion

17.78 2.18 0.71 69 87 21556

Performance, typical throughput
per slice (kbps/slice)

75.33 8.3 1.6 132 70 1956

Summary Smallest Very small
So
ware
based

Best performance
(throughput/slice)

Fastest Loop unrolled

Table 9: Comparisons with other small AES processors.

Designs Ours Good and Benaissa [27]

Instruction set count 4 14

9 cycles to be completed, and the total instructions executed
(including the key expansion for AES) are

Key expansion: (189 bytes/3) ∗ 10 = 630,

Shi
 Rows: (48 bytes/3) ∗ 10 = 160,

Sub Bytes: (96 bytes/3) ∗ 10 = 320,

Add Key: (99 bytes/3) ∗ 10 = 330,

Mix Column: (600 bytes/3) ∗ 10 = 2110.

�is is amounted to the total of: 630 + 160 + 320 + 330 + 2110 =
3550 instructions. �e total period for an AES encryption
usingMISC is 3550 × 9 cycles = 31950 cycles.�e throughput
for [27] is 2.18Mbps while our MISC AES has an average
throughput of 80 kbps [(128-bit/31950 clocks) × 20MHz],
where 20MHz is the maximum clock frequency and 9 clocks
per instruction and giving a 0.738 kbps per slice.

In [17], the author has presented a set of comparisons to
related works. By referring to Rouvroy et al., the comparison
to our work is shown in Table 10. Our version of CISA
AES has shown improvement as compared to the author’s
work. �e rational for comparison to this paper is due to
the Rouvroy’s aim to propose compact solutions for small
embedded applications and the work covers AES and the
weaker cipher, DES and 3DES. From the comparison made
in Table 10, the proposed CISA AES has an advantage of
having signi�cantly reduced area occupancy with a tradeo�

of lower throughput. Another comparison can be made to
[34] as it has the lowest clock cycles execution for a 128-
bit AES encryption. �e comparison platform is not very
similar but the author has presented a very lightweight design
for RFID systems. Our comparison point is to their S-box
execution. Technically, our S-box instructions are only 16 sets.
16 instructions with 9 cycles each are equivalent to 144 cycles.
Our S-box execution cycle is half of the clock cycles in [34].

6.4. Selective Encryption Architecture (SEA). In our experi-
ment, we have implemented a complete system of selective
encryption by coupling the CISAAES processor and a SPIHT
coder, which is based on aMIPS processor.�e experimental
setup and coding are tested using the Agility Design Suite 5.0
so
ware environment, and a Celoxica RC203 board which
houses the Vertex XC2V3000 FPGA is used. A still-portrait
image is used and displayed on a HP 17-inch LCD as an input
source to the camera. �e camera that we have used in this
experiment is a 330 Line CCD camera. Figure 24 shows our
experimental setup.

We have set our program to capture four images simul-
taneously, and it can be considered a low-frame-rate video.
All four images are encrypted onboard and sent to another
computer for decryption. Note that due to limited resources,
we possess only a single unit of RC203 and are unable to
program another RC203 for on-board decryption purpose.
�e CISA AES is programmed to encrypt only the mapping
bits, and both mapping and re�nement bits are sent out to
the host computer once the encryption has completed. �e
received bits are then processed in MATLAB environment,
and we have chosen the last 2 frames for decryption, solely



24 Journal of Engineering

Table 10: Comparison with other Rouvroy et al.’s designs in terms of code execution and speed.

Rouvroy’s AES Rouvroy’s AES Rouvroy’s DES Rouvroy’s 3DES CISA AES

Device XC3S50-4 XC2S40-6 XC2S40-6 XC2S40-6 XCS1500L-4

Slices 163 146 189 227 110

�roughput (Mbps) 208 358 974 326 0.08

Block RAMs 3 3 0 0 3

�roughput/area (Mbps/slices) 1.26 2.45 5.15 1.44 0.728 kbps

Figure 24: �e experimental setup for the development of selective encryption architecture.
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Figure 25: �e four selectively encrypted frames with the last two frames decrypted.

Table 11: Logic Utilization of SEA.

Logic utilization Quantity Total Usage

No. of slice �ip �ops 3692 28672 12%

No. of 4-input LUTs 8793 28672 30%

for comparing and verifying the correct encryption and
decryption having occurred. Figure 25 shows our results on
the SEA system. Note that the cipher mode that we used is
ECB mode, and both encryption and decryption parties only
target the mapping bits. Figure 26 shows an example of the
selective encryption on the Lena image, captured via camera.
Tables 11, 12, 13, and 14 show our implementation results.

7. Conclusion

In this paper, we have presented 3methodologies of complete
bidirectional S-box con�gurations for lower gate count. To
incorporate the S-box design into a practical example, we

Table 12: Logic distribution of SEA.

Logic distribution Quantity Total Usage

No. of occupied slices 6251 14336 43%

No. of slices containing only related logic 6251 6251 100%

No. of slices containing unrelated logic 0 6251 0%

Table 13: LUT utilization of SEA.

Components Quantity Total Usage

Total no. of 4-input LUTs 10176 28672 35%

No. of LUTs used as logic 8793 8793 86%

No. of LUTs used as a route-thru 1257 1257 12%

No. of LUTs used for dual-port RAMs 64 64 ∼1%
No. of LUTs used as 16 × 1 ROMs 30 30 ∼0.5%
No. of LUTs used as shi
 registers 32 32 ∼0.5%

have designed an FPGA implementation of the AES using the
CISA architecture. �e justi�cation of the CISA’s practicality
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Figure 26: Selective encryption on Lena image.

Table 14: Other components utilized by SEA.

Components Quantity Total Usage

No. of BUFGMUXs 4 16 25%

No. of DCMs 1 12 8%

No. of external IOBs 199 484 41%

No. of LOCed IOBs 199 199 100%

No. of RAMB16s 66 96 68%

No. of slices 6251 14336 1%

is backed by the implementation of a real-time system of
selective encryption.�edemonstration of a complete system
of selective encryption by coupling the CISA AES and the
SPIHT coder has further enhanced the con�dence of the
realization of a real-time image processing and encryption
system. We have proposed the smallest S-box con�gurations
with the least gate counts, and we have also presented our
smallest version of AES based processor architecture. �is
work serves as an example for real-time embeddeddesign and
also a practical implementation example of image processing
systems.
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