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Abstract. A key step in the Advanced Encryption Standard (AES)
algorithm is the “S-box.” Many implementations of AES have been pro-
posed, for various goals, that effect the S-box in various ways. In partic-
ular, the most compact implementations to date of Satoh et al.[14] and
Mentens et al.[6] perform the 8-bit Galois field inversion of the S-box
using subfields of 4 bits and of 2 bits. Our work refines this approach
to achieve a more compact S-box. We examined many choices of ba-
sis for each subfield, not only polynomial bases as in previous work,
but also normal bases, giving 432 cases. The isomorphism bit matrices
are fully optimized, improving on the “greedy algorithm.” Introducing
some NOR gates gives further savings. The best case improves on [14]
by 20%. This decreased size could help for area-limited hardware imple-
mentations, e.g., smart cards, and to allow more copies of the S-box for
parallelism and/or pipelining of AES.

1 Introduction

The Advanced Encryption Standard (AES) was specified in 2001 by the National
Institute of Standards and Technology [10]. The purpose is to provide a standard
algorithm for encryption, strong enough to keep U.S. government documents
secure for at least the next 20 years. The earlier Data Encryption Standard
(DES) had been rendered insecure by advances in computing power, and was
effectively replaced by triple-DES. Now AES will largely replace triple-DES for
government use, and will likely become widely adopted for a variety of encryption
needs, such as secure transactions via the Internet.

A wide variety of approaches to implementing AES have appeared, to satisfy
the varying criteria of different applications. Some approaches seek to maximize
throughput, e.g., [7], [16] and [3]; others minimize power consumption, e.g., [8];
and yet others minimize circuitry, e.g., [13], [14], [17], and [2]. For the latter goal,
Rijmen[12] suggested using subfield arithmetic in the crucial step of computing
an inverse in the Galois Field of 256 elements—reducing an 8-bit calculation to
several 4-bit ones. Satoh et al.[14] further extended this idea, using the “tower
field” approach of Paar[11], breaking up the 4-bit calculations into 2-bit ones,
which resulted in the smallest AES circuit to date.

Mentens et al.[6] recently examined whether the choice of representation
(basis in each subfield) used by [14] was optimal. They compared 64 different
choices (including that in [14]), based on the number of ‘1’ entries in the two
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transformation matrices used in encryption and on the number of binary XOR
operations used in one of the 4-bit operations in the subfield. Based on these
criteria, they determined that a different choice is better than that in [14], and
estimated the improvement at 5%.

The current work improves on the compact implementation of [14] and ex-
tends the work of [6] in the following ways. Many choices of representation (432
different isomorphisms) were compared, including all those in [6]. The cases in
[6] use a polynomial basis in each subfield (as in [14]), while we also consider a
normal basis for each subfield. It turns out the best case uses all normal bases.
And while [14] used the popular “greedy algorithm” to reduce the number of
gates in the bit matrices required in changing representations, we fully optimized
each matrix by an exhaustive tree-search algorithm, resulting in the minimum
number of gates. (Based on our fully optimized matrices, comparisons of ma-
trices using the simple “number of ‘1’ entries” criterion of [6] gives incorrect
comparisons in 37% of the cases, and even the greedy algorithm gives incorrect
comparisons in 20% of the cases.) We included logic optimizations both at the
hierarchical level of the Galois arithmetic and at the low level of individual logic
gates. We were thus able to replicate the very compact merged S-box reported in
[14], which includes both the S-box function and its inverse, including a Galois
inverter and all four transformation matrices as well as multiplexors for select-
ing which input and output transformations are used[15]. Hence our comparisons
of the different cases are based on complete, optimized implementations of the
merged S-box (rather than the two criteria of [6]), and it turns out the best case
for the merged architecture is also the best for the architecture with a separate
S-box and inverse S-box. Also, although the bit operations of Galois arithmetic
correspond directly to XOR and AND (or NAND) gates, here certain combi-
nations of operations are implemented more compactly using XOR and OR (or
NOR) gates. These refinements combine to give a merged S-box circuit that is
20% smaller than in [14], a significant improvement.

1.1 The Advanced Encryption Standard Algorithm

The AES algorithm, also called the Rijndael algorithm, is a symmetric block
cipher, where the data is encrypted/decrypted in blocks of 128 bits. Each data
block is modified by several rounds of processing, where each round involves four
steps. Three different key sizes are allowed: 128 bits, 192 bits, or 256 bits, and the
corresponding number of rounds for each is 10 rounds, 12 rounds, or 14 rounds,
respectively. From the original key, a different “round key” is computed for each
of these rounds. For simplicity, the discussion below will use a key length of 128
bits and hence 10 rounds.

There are several different modes in which AES can be used [9]. Some of
these, such as Cipher Block Chaining (CBC), use the result of encrypting one
block for encrypting the next. These feedback modes effectively preclude pipelin-
ing (simultaneous processing of several blocks in the “pipeline”). Other modes,
such as the “Electronic Code Book” mode or “Counter” modes, do not require
feedback, and may be pipelined for greater throughput.
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The four steps in each round of encryption, in order, are called SubBytes
(byte substitution), ShiftRows, MixColumns, and AddRoundKey. Before the first
round, the input block is processed by AddRoundKey. Also, the last round skips
the MixColumns step. Otherwise, all rounds are the same, except each uses a
different round key, and the output of one round becomes the input for the next.
For decryption, the mathematical inverse of each step is used, in reverse order;
certain manipulations allow this to appear like the same steps as encryption with
certain constants changed. Each round key calculation also requires the SubBytes
operation. (More complete descriptions of AES are available from several sources,
e.g., [10].)

Of these four steps, three of them (ShiftRows, MixColumns, and AddRound-
Key) are linear, in the sense that the output 128-bit block for such steps is just
the linear combination (bitwise, modulo 2) of the outputs for each separate input
bit. These three steps are all easy to implement by direct calculation in software
or hardware.

The single nonlinear step is the SubBytes step, where each byte of the input
is replaced by the result of applying the “S-box” function to that byte. This
nonlinear function involves finding the inverse of the 8-bit number, considered
as an element of the Galois field GF(28). The Galois inverse is not a simple cal-
culation, and so many current implementations use a table of the S-box function
output. This table look-up method is fast and easy to implement.

But for hardware implementations of AES, there is one drawback of the
table look-up approach to the S-box function: each copy of the table requires
256 bytes of storage, along with the circuitry to address the table and fetch
the results. Each of the 16 bytes in a block can go through the S-box function
independently, and so could be processed in parallel for the byte substitution
step. This effectively requires 16 copies of the S-box table for one round. To
fully pipeline the encryption would entail “unrolling” the loop of 10 rounds into
10 sequential copies of the round calculation. This would require 160 copies of
the S-box table (200 if round keys are computed “on the fly”), a significant
allocation of hardware resources.

In contrast, this work describes a direct calculation of the S-box function
using sub-field arithmetic, similar to [14]. While the calculation is complicated
to describe, the advantage is that the circuitry required to implement this in
hardware is relatively simple, in terms of the number of logic gates required.
This type of S-box implementation is significantly smaller (less area) than the
table it replaces, especially with the optimizations in this work. Furthermore,
when chip area is limited, this compact implementation may allow parallelism
in each round and/or unrolling of the round loop, for a significant gain in speed.

The rest of the paper describes our specific algorithm in detail. (See [1] for a
thorough, detailed presentation of the 432 different versions considered in find-
ing the best one.) Section 2 explains the basic idea of the algorithm and the
resulting structure of the Galois inverter. Section 3 discusses ways to optimize
the calculation, Section 4 describes the changes of representation, and Section 5
describes the results. Finally, Section 6 summarizes the work.
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2 The S-Box Algorithm Using Subfield Arithmetic

The S-box function of an input byte (8-bit vector) a is defined by two substeps:

1. Inverse: Let c = a−1, the multiplicative inverse in GF(28) (except if a = 0
then c = 0).

2. Affine Transformation: Then the output is s = M c ⊕ b, with the constant
bit matrix M and byte b shown below:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s7

s6

s5

s4

s3

s2

s1

s0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
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c4
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c1

c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where bit #7 is the most significant, with all bit operations modulo 2.

The second, affine substep is easy to implement; the algorithm for the first
substep, finding the inverse, is described below. (Some familiarity with Galois
arithmetic is assumed. A succinct introduction to Galois fields is given in [5]; for
more depth and rigor, see [4]. Also, [1] conveys just enough theory to understand
this algorithm.)

The AES algorithm uses the particular Galois field of 8-bit bytes where the
bits are coefficients of a polynomial (this representation is called a polynomial
basis) and multiplication is modulo the irreducible polynomial q(x) = x8 + x4 +
x3 + x + 1, with addition of coefficients modulo 2. Let A be one root of q(x);
then the standard polynomial basis is [A7, A6, A5, A4, A3, A2, A, 1]. (Note: we will
usually use uppercase Roman letters for specific elements of GF(28), lowercase
Greek letters for elements of the subfield GF(24), uppercase Greek letters for
the sub-subfield GF(22), and lowercase Roman letters for bits in GF(2).)

Direct calculation of the inverse (modulo an eighth-degree polynomial) of a
seventh-degree polynomial is not easy. But calculation of the inverse (modulo
a second-degree polynomial) of a first-degree polynomial is relatively easy, as
pointed out by Rijmen [12]. This suggests the following changes of representation.

First, we represent a general element G of GF(28) as a linear polynomial
(in y) over GF(24), as G = γ1y + γ0, with multiplication modulo an irreducible
polynomial r(y) = y2 + τy + ν. All the coefficients are in the 4-bit subfield
GF(24). So the pair [γ1, γ0] represents G in terms of a polynomial basis [Y, 1]
where Y is one root of r(y).

Alternatively, we could use the normal basis [Y 16, Y ] using both roots of
r(y). Note that

r(y) = y2 + τy + ν = (y + Y )(y + Y 16) , (1)

so τ = Y + Y 16 is the trace and ν = (Y )(Y 16) is the norm of Y .
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Second, we can similarly represent GF(24) as linear polynomials (in z) over
GF(22), as γ = Γ1z + Γ0, with multiplication modulo an irreducible polynomial
s(z) = z2 + Tz + N , with all the coefficients in GF(22). Again, this uses a
polynomial basis [Z, 1], where Z is one root of s(z); or we could use the normal
basis [Z4, Z]. As above, T is the trace and N is the norm of Z.

Third we represent GF(22) as linear polynomials (in w) over GF(2), as Γ =
g1w + g0, with multiplication modulo t(w) = w2 + w + 1, where g1 and g0 are
single bits. This uses a polynomial basis [W, 1], with W one root of t(w); or a
normal basis would be [W 2, W ]. (Note that the trace and norm of W are 1.)

This allows operations in GF(28) to be expressed in terms of simpler opera-
tions in GF(24), which in turn are expressed in the simple operations of GF(22).
In each of these fields, addition (the same operation as subtraction) is just bitwise
XOR, for any basis.

In GF(28) with a polynomial basis, multiplication mod y2 + τy + ν is given
by

(γ1y + γ0)(δ1y + δ0) = (γ1δ0 + γ0δ1 + γ1δ1τ)y + (γ0δ0 + γ1δ1ν) . (2)

From this it is easy to verify that the inverse is given by

(γ1y + γ0)−1 = [θ−1 γ1] y + [θ−1 (γ0 + γ1τ)] (3)
where θ = γ2

1ν + γ1γ0τ + γ2
0 .

So finding an inverse in GF(28) reduces to an inverse and several multiplications
in GF(24). Analogous formulas for multiplication and inversion apply in GF(24).
Simpler versions apply in GF(22), where the inverse is the same as the square
(for Γ ∈ GF(22), Γ 4 = Γ ); note then that a zero input gives a zero output, so
that special case is handled automatically.

The details of these calculations change if we use a normal basis at each level.
In GF(28), recall that both Y and Y 16 satisfy y2 +τy+ν = 0 where τ = Y 16 +Y
and ν = (Y 16)Y , so 1 = τ−1(Y 16 + Y ). Then multiplication becomes

(γ1Y
16 + γ0Y )(δ1Y

16 + δ0Y ) = [γ1δ1τ + θ] Y 16 + [γ0δ0τ + θ] Y (4)
where θ = (γ1 + γ0)(δ1 + δ0)ντ−1 ,

and the inverse is

(γ1Y
16 + γ0Y )−1 = [θ−1 γ0] Y 16 + [θ−1 γ1] Y (5)

where θ = γ1γ0τ
2 + (γ2

1 + γ2
0)ν .

Again, finding an inverse in GF(28) involves an inverse and several multiplica-
tions in GF(24), and analogous formulas apply in the subfields.

These formulas can be simplified with specific choices for the coefficients in
the minimal polynomials r(y) and s(z). The most efficient choice is to let the
trace be unity, so from here on we let τ = 1 and T = 1. (This is better than
choosing the norm to be unity—we can’t have both, and neither can be zero.)

The above shows that both polynomial bases and normal bases give compa-
rable amounts of operations, at this level; both types remain roughly comparable
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at lower levels of optimization. (Of course, one could choose other types of basis
at each level, but both polynomial and normal bases have structure that leads
to efficient calculation, which is lacking in other bases.) We considered all of the
subfield polynomial and normal bases that had a trace of unity. There are eight
choices for the norm ν that make r(y) = y2 + y + ν irreducible over GF(24), and
two choices for N that make the polynomial s(z) = z2 + z + N irreducible over
GF(22). Each of these polynomials r(y), s(z), and t(w) has two distinct roots,
and for a polynomial basis we may choose either, or for a normal basis we use
both. So altogether there are (8 × 3) × (2 × 3) × (1 × 3) = 432 possible cases
(including the all-polynomial case used in [14]).

We compared all of these cases, in terms of complete implementations of
the merged S-box architecture of [14], including all low-level optimizations ap-
propriate to each case. The most compact was judged to be the one giving the
least number of gates (using a 0.13-µm CMOS standard cell library[15]) for the
merged S-box, where the encryptor and decryptor share a GF(28) inverter. As it
happens, this is also the best case for an architecture using a separate encryptor
and decryptor (each with an inverter).

The most compact case uses normal bases for all subfields. Here we will give
the relevant Galois elements as hexadecimal numbers, for bit vectors in terms of
the standard polynomial basis for GF(28) (powers of A). For GF(28), the norm
ν = 0xEC, and Y = 0xFF, so the basis is [0xFE,0xFF] (recall that for each
of the normal bases, the sum of the two elements is the trace, which is unity).
For GF(24), N = 0xBC and Z = 0x5C, so the basis is [0x5D,0x5C]. (These two
levels are related by ν = N2Z.) And for GF(22), W = 0xBD, and the basis is
[0xBC,0xBD]. (Those two levels are related by N = W 2 and W = N2.)

2.1 Hierarchical Structure

Here we show the structure of this best-case inverter. To clarify the subfield
operations needed, we will use ⊕ and ⊗ for addition and multiplication in the
subfield. In GF(28) the only operation required is the inverse; the normal basis
inverter is shown in Figure 1 and the polynomial basis inverter in Figure 2, for
comparison. The operations required in the subfield GF(24) include an inverter
(same form as in GF(28)), three multipliers, two adders (bitwise XOR), and the
combined operation of squaring then scaling (multiplying) by the norm ν. Note:
in GF(22) inversion is the same as squaring, which is free with a normal basis:

(g1W
2 + g0W )−1 = (g1W

2 + g0W )2 = g0W
2 + g1W . (6)

The GF(24) multiplier is shown in Figure 3 for a normal basis; the polynomial
basis version has the same operations in a slightly different arrangement. The
operations required in the subfield GF(22) include three multipliers, four adders,
and scaling by the norm N . The GF(22) multiplier has the same structure, except
lacks scaling by the norm (since the norm of W is 1), and in GF(2), ⊗ means
AND.

The other operation needed in GF(24) is the combined operation of squaring
then scaling by ν (the “square-scale operation”). The form of this operation
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ν⊗γ2

γ−1

⊗

⊗

⊗
⊕

⊕
 4

 4

γ0

γ1

δ0

δ1

Fig. 1. Normal GF(28) inverter: (γ1Y
16 + γ0Y )−1 = (δ1Y

16 + δ0Y ). The datapaths
all have the same bit width, shown at the output (4 bits here); addition is bitwise
exclusive-OR; and sub-field multipliers appear below. The GF(24) inverter has the
same structure. In GF(22) inverting is free: a bit swap.

ν⊗γ2

γ−1

⊗

⊗

⊗
⊕⊕  4

 4

γ0

γ1

δ0

δ1

Fig. 2. Polynomial GF(28) inverter: (γ1y+γ0)
−1 = (δ1y+δ0). The GF(24) inverter has

the same structure. In GF(22) inverting (same as squaring) requires only one XOR.

⊕

⊕

⊕

⊕ Ν⊗Γ

⊗

⊗

⊗  2

 2

Γ1

Γ0

∆1

∆0

Φ1

Φ0

Fig. 3. Normal GF(24) multiplier: (Γ1Z
4 + Γ0Z) ⊗ (∆1Z

4 + ∆0Z) = (Φ1Z
4 + Φ0Z).

The GF(22) multiplier has the same structure except lacks the scaling by N , since the
norm in the subfield is 1.

varies, depending not only on the type of basis in GF(24), but also on the
representation ν in that basis; there are a dozen different versions. Here scaling
the square of γ = Γ1Z

4 + Γ0Z by ν = N2Z gives

ν ⊗ (Γ1Z
4 + Γ0Z)2 = [(Γ1 ⊕ Γ0)2]Z4 + [(N ⊗ Γ0)2]Z . (7)

The only “new” operation required in the subfield GF(22) is squaring, but this
is the same as inversion, and for a normal basis is free.

The remaining operation needed in the subfield GF(22) is scaling by N = W 2

(since squaring is free, this also give the square-scale operation in the GF(24)
inverter):
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N ⊗ (g1W
2 + g0W ) = [g0]W 2 + [g0 ⊕ g1]W , (8)

requiring a single XOR.
Also, combining the multiplication in GF(22) with scaling by N gives a small

improvement; this combination appears in the GF(24) multiplier:

N ⊗ (g1W
2 + g0W ) ⊗ (d1W

2 + d0W )
= [f ⊕ ((g1 ⊕ g0) ⊗ (d1 ⊕ d0))]W 2 + [f ⊕ (g1 ⊗ d1)]W (9)

where f = g0 ⊗ d0 .

3 Inverter Optimizations

Here we will show the optimizations in the GF(28) inverter for this best case.
There are similar optimizations for other cases, described in [1]. All these opti-
mizations were carefully calculated by hand, and so should be at least as good
as versions given by automatic optimization tools.

3.1 Common Subexpressions

Eliminating redundancy where low-level subexpressions appear more than once
in the above hierarchical structure reduces the size of the Galois inverter.

As [14] mentions, one place this occurs is when the same factor is input to
two different multipliers. Each multiplier computes the sum of the high and low
halves of each factor (see Figure 3), so when a factor is shared then this addition
in the subfield can be removed from one of the multipliers. For example, a 2-
bit factor shared by two GF(22) multipliers saves one XOR (addition in the
1-bit subfield). Moreover, since each GF(24) multiplier includes three GF(22)
multipliers, then a shared 4-bit factor implies three corresponding shared 2-bit
factors in these subfield multipliers. So each shared 4-bit factor saves five XORs
(one 2-bit addition and three 1-bit additions).

The normal-basis inverters for GF(28) and GF(24) share all three factors
among the three multipliers; however, the corresponding polynomial-basis in-
verters each have only two shared factors (see Figures 1 and 2). This gives an
advantage of five XORs to using a normal basis in GF(28), from the additional
shared factor.

A more subtle saving occurs in the GF(24) inverter. There the bit sums com-
puted for common factors can be used in the following square-scale operation,
which saves one XOR. A similar optimization occurs in the GF(28) inverter;
combining the bit sums for shared input factors with parts of the square-scale
operation saves three XORs.

3.2 Logic Gate Optimizations

Mathematically, computing the Galois inverse in GF(28) breaks down into oper-
ations in GF(2), i.e., the bitwise operations XOR and AND. However, it can be
advantageous to consider other logical operations that give equivalent results.
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For example, for the 0.13-µm CMOS standard cell library considered[15], a
NAND gate is smaller than an AND gate. Since the AND output bits in the
GF(22) multiplier are always combined by pairs in a following XOR, then the
AND gates can be replaced by NAND gates. That is, [ (a ⊗ b) ⊕ (c ⊗ d) ] is
equivalent to [ (a NAND b) XOR (c NAND d) ]. This gives a slight size saving.

Also, in this library an XNOR gate is the same size as an XOR gate. This
is useful in the affine transformation of the S-box, where the addition of the
constant b = 0x63 means applying a NOT to some output bits. In most cases,
this can be done by replacing an XOR by an XNOR in the bit-matrix multiply,
so is “free.”

While the above logic optimizations are not original, here is one we have
not seen elsewhere. Note that the combination [a ⊕ b ⊕ (a ⊗ b) ] is equivalent
to [ a OR b ]. In the few places in the inverter where this combination occurs,
we can replace 2 XORs and an AND by a single OR, a worthwhile substitution.
(Actually, 2 XORs and a NAND are replaced by a NOR, smaller than an OR.)
In fact, the NOR gate is smaller than an XOR gate, so even when some rear-
rangement is required to get that combination, it is worthwhile even if the NOR
ends up replacing only a single XOR. Our implementation uses 6 NORs in the
GF(28) inverter (including two in the GF(24) inverter).

4 Changes of Representation

This algorithm involves two different representations, or isomorphisms, of the
Galois Field GF(28). The standard AES form uses a vector of 8 bits (in GF(2))
as the coefficients of the 8 powers of A, the root of the defining polynomial
q(x) = x8 + x4 + x3 + x + 1. The subfield form for GF(28) uses a pair of 4-
bit coefficients (in GF(24)) of Y 16 and Y (for a normal basis), the roots of
r(y) = y2 + y + ν. Then each element of GF(24) is a pair of two-bit coefficients
(in GF(22)) of Z4 and Z, the roots of s(z) = z2 + z + N . And in GF(22),
each element pair of one-bit coefficients (in GF(2)) of W 2 and W , the roots of
t(w) = w2 + w + 1. So the subfield representation uses pairs of pairs of pairs of
bits.

One approach to using these two forms, as suggested by [13], is to convert
each byte of the input block once, and do all of the AES algorithm in the new
form, only converting back at the end of all the rounds. Since all the arithmetic
in the AES algorithm is Galois arithmetic, this would work fine, provided the
key was appropriately converted as well. However, the MixColumns step involves
multiplying by constants that are simple in the standard basis (2 and 3, or A
and A + 1), but this simplicity is lost in the subfield basis (in our best basis,
2 and 3 become 0xA9 and 0x56). For example, scaling by 2 in the standard
basis takes only 3 XORs; the most efficient normal-basis version of this scaling
requires 18 XORs. Similar concerns arise in the inverse of MixColumns, used in
decryption. This extra complication more than offsets the savings from delaying
the basis change back to standard. Then, as in [14], the affine transformation
can be combined with the basis change (see below). For these reasons, it is most
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efficient to change into the subfield basis on entering the S-box and to change
back again on leaving it.

Each change of basis means multiplication by an 8× 8 bit matrix. Letting X
refer to the matrix that converts from the subfield basis to the standard basis,
then to compute the S-box function of a given byte, first we do a bit-matrix
multiply by X−1 to change into the subfield basis, then calculate the Galois
inverse by subfield arithmetic, then change basis back again with another bit-
matrix multiply, by X . This is followed directly by the affine transformation
(substep 2), which includes another bit-matrix multiply by the constant matrix
M . (This can be regarded another change of basis, since M is invertible.) So we
can combine the matrices into the product MX to save one bit-matrix multiply,
as pointed out by [14]. Then adding the constant b completes the S-box function.

The inverse S-box function is similar, except the XOR with constant b comes
first, followed by multiplication by the bit matrix (MX)−1. Then after finding
the inverse, we convert back to the standard basis through multiplication by the
matrix X .

For each such constant-matrix multiply, the gate count can be reduced by
“factoring out” combinations of input bits that are shared between different
output bits (rows). One way to do this is known as the “greedy algorithm,”
where at each stage one picks the combination of two input bits that is shared by
the most output bits; that combination is then pre-computed in a single (XOR)
gate, which output effectively becomes a new input to the remaining matrix
multiply. The greedy algorithm is straightforward to implement, and generally
gives good results.

But the greedy algorithm may not find the best result. We used a brute-
force “tree search” approach to finding the optimal factoring. At each stage,
each possible choice for factoring out a bit combination was tried, and the next
stage examined recursively. (Some “pruning” of the tree is possible, when the
bit-pair choice in the current stage is independent of that in the calling stage
and had been checked previously. The C program is given in [1].) This method
is guaranteed to find the minimal number of gates; the big drawback is that one
cannot predict how long it will take, due to the combinatorial complexity of the
algorithm.

The “merged” S-box and inverse S-box of [14] complicates this picture, but
reduces the hardware overall when both encryption and decryption are needed.
There, a block containing a single GF(28) inverter can be used to compute either
the S-box function or its inverse, depending on a selector signal. Given an input
byte a, both X−1 a and (MX)−1 (a+b) are computed, with the first selected for
encryption, the second for decryption. That selection is input into the inverter,
and from the output byte c, both (MX) c + b and X c are computed; again the
first is selected for encryption, the second for decryption.

With this merged approach, these basis-change matrix pairs can be optimized
together, considering X−1 and (MX)−1 together as a 16 × 8 matrix, and simi-
larly (MX) and X , each pair taking one byte as input and giving two bytes as
output. (Then (MX)−1 (a+b) must be computed as (MX)−1 a+[(MX)−1 b].)
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Combining in this way allows more commonality among rows (16 instead of 8)
and so yields a more compact “factored” form. Of course, this also means the
“tree search” optimizer has a much bigger task and longer run time. (Using an
Intel Xeon processor under Linux, optimization times for a 16× 8 matrix varied
from a few minutes to many weeks.)

The additive constant b of the affine transformation requires negating specific
bits of the output of the basis change. (Actually, for the merged S-box, the
multiplexors we use are themselves negating, so it is the bits other than those
in b that need negating first.) As mentioned in Section 3.2, this usually involves
replacing an XOR by an XNOR in the basis change (both are the same size in
the CMOS library we consider), but sometimes this is not possible and a NOT
gate is required.

The change of basis matrix X for our best case is given below :

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

The other three matrices are easily computed from X . The combined 16 × 8
bit matrices for the merged architecture, fully optimized by our tree search
algorithm, are given in [1]

At this time, not all of the matrices for all of the cases considered below
have been fully optimized, but the data so far indicate how full optimization can
improve on the greedy algorithm. For the architecture with separate encryptor
and decryptor, all cases have been fully optimized: of 1728 matrices (8 × 8)
optimized, 762 (44%) were improved by at least one XOR, and of those, 138
(18% of improved ones) were improved by two XORs, and 11 (1.4% of improved
ones) were improved by three XORs. For the merged architecture, the top 27
cases have been optimized (we gave up on one matrix in case 28 after estimating
optimization would take 5 years). Of 55 matrices (16 × 8) optimized, 24 (44%)
were improved by one XOR, 10 (18%) were improved by two XORs, and 6 (11%)
were improved by three XORs, so altogether 73% were improved.

With so many optimized matrices, we could evaluate how well matrix com-
parisons based on the greedy algorithm or on the number of ‘1’ entries correctly
predicted the comparisons between the corresponding fully optimized matrices.
We called a prediction incorrect when it predicted that one matrix was better
than another, but the fully optimized version turned out worse or the same (or
predicted same when one was better). For the 1492128 comparisons among the
1728 optimized 8 × 8 matrices, the greedy algorithm gave incorrect predictions
for 19.9% of comparisons while the number of ‘1’s incorrectly predicted 37.5%.
The results for the 1485 comparisons among the 55 optimized 16 × 8 matrices
were more dramatic: the greedy prediction was incorrect for 30.7% and the ‘1’s
prediction incorrect for 43.7%.
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Since we have not yet fully optimized the (16× 8) matrices for all of the 432
possible cases, it is remotely possible that some other case could turn out to be
better than the case we call “best.” We have optimized all cases whose estimated
size, based on the greedy algorithm, was within 9 XORs of the actual size of our
best case (except in one case, where only 1 of the 2 matrices was optimized; it
improved by 2 XORs). So far, the best improvement in a single 16 × 8 matrix
is 3 XORs, and the best improvement in the pair of matrices for a single case
is 5 XORs. For some other case to be best, full optimization must improve a
matrix pair, beyond what the greedy algorithm found, by at least 10 XORs. We
consider this highly unlikely, and so are confident that we have indeed found the
best of all 432 cases.

5 Implementation Results

The size of our best S-box is shown in Table 1, for three architectures: merged
S-box and inverse S-box (one inverter, all four tranformation matrices, and two
8-bit selectors), only S-box (for just encrypting), and only inverse S-box (for
just decrypting). Results are shown by number and type of logic operations,
and also by total “gates,” where the number refers to the equivalent number
of NAND gates, using our standard cell library. We use the equivalencies 1
XOR/XNOR = 7

4 NAND gates, 1 NOR = 1 NAND gate, 1 NOT = 3
4 NAND

gate, and 1 MUX21I = 7
4 NAND gates [15]. Our merged S-Box, equivalent in

size to 234 NANDs, is an improvement of 20% over that of Satoh et al. at
294 NANDs[14]. While Mentens et al.[6] use a different cell library, if we just
compare equivalent NANDs our merged S-box is 14% smaller than their S-box
at 272 NANDs.

Table 2 shows the effects of different levels of optimization of the inverter.
Note in particular that the NOR substitution discussed in 3.2 further reduces the
inverter by 9%. Table 3 show how different choices of basis affect the results. For
fair comparisons, since we have not calculated fully optimized matrices and the
NOR substitution improvements for all four bases shown, we show our imple-
mentations using greedy-algorithm matrices and exclude the NOR substitution.
Our best basis is the only one of the four that uses normal bases.

Table 1. Best Case Results. Here are our best results for a complete implementation
of a merged S-box & inverse, S-box alone, and inverse S-box alone. All use our best
case basis with all optimizations.

best XOR NAND NOR NOT MUX total gates

merged 94 34 6 2 16 234
S-box 80 34 6 0 0 180

(S-box)−1 81 34 6 0 0 182
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Table 2. Levels of Optimization. Here the first line shows the inverter based on the
hierarchical structure (of 2.1); the next shows the improvement due to the removal of
common subexpressions (of 3.1); the last shows the additional improvement from the
NOR substitution (of 3.2). All use our best basis.

inverter XOR NAND NOR total gates

hierarchical 88 36 0 190
w/ low-level opt. 66 36 0 152
w/ NOR subst. 56 34 6 138

Table 3. Choice of Basis. Here we compare four different choices of basis: our best
case, the best case of Mentens[6], the basis used by Satoh et al.[14], and our worst case.
Each shows our complete implementation of a merged S-box & inverse, S-box alone,
and inverse S-box alone. For comparison, all use the same level of optimization (using
greedy-algorithm matrices and excluding the NOR substitution).

basis type XOR NAND NOT MUX total gates

merged 107 36 2 16 253
ours S-box 91 36 0 0 195

(S-box)−1 91 36 0 0 195

merged 118 36 0 16 271
Mentens S-box 96 36 0 0 204

(S-box)−1 97 36 0 0 206

merged 119 36 3 16 275
Satoh S-box 100 36 0 0 211

(S-box)−1 99 36 0 0 209

merged 131 36 0 16 293
worst S-box 107 36 0 0 223

(S-box)−1 106 36 0 0 222

The merged S-box and inverse was implemented as a Verilog module, shown
in [1], including all our optimizations. While this compact implementation is
intended for ASICs, we tested this implementation using an FPGA. Specifically,
we used an SRC-6E Reconfigurable Computer, which includes two Intel proces-
sors and two Virtex II FPGAs. As implemented on one FPGA, the function
evaluation takes just one tick of the 100 MHz clock, the same amount of time
needed for the table look-up approach.

We also implemented a complete AES encryptor/decryptor on this same sys-
tem, using our S-box. Certain constraints (block RAM access) of this particular
system prevent using table lookup for a fully unrolled pipelined version; 160
copies of the table (16 bytes/round × 10 rounds) would not fit (we precompute
the round keys). So for this system, our compact S-box allowed us to implement
a fully pipelined encryptor/decryptor, where in the FPGA, effectively one block
is processed for each clock tick. (In fact, we could even fit all 14 rounds needed
for 256-bit keys.)
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6 Conclusion

The goal of this work is an algorithm to compute the S-box function of AES,
that can be implemented in hardware with a minimal amount of circuitry. This
should save a significant amount of chip area in ASIC hardware versions of AES.
Moreover, this area savings could allow many copies of the S-box circuit to fit
on a chip for parallelism within each round, and perhaps enough to “unroll” the
loop of 10 rounds for full pipelining (for non-feedback modes of encryption), on
smaller chips.

This algorithm employs the multi-level representation of arithmetic in GF(28),
similar to the previous compact implementation of Satoh et al[14]. Our work
shows how this approach leads to a whole family of 432 implementations, de-
pending on the particular isomorphism (basis) chosen, from which we found the
best one. (A detailed exposition of this nested-subfield approach, including speci-
fication of all constants for each choice of representation, is given in [1].) Another
improvement involves replacing some XORs and NANDs with NORs. And in fac-
toring the transformation (basis change) matrices for compactness, rather than
rely on the greedy algorithm as in prior work, we fully optimized the matrices,
using our tree search algorithm with pruning of redundant cases. This gave an
improvement over the greedy algorithm in 73% of the 16 × 8 matrices and 44%
of the 8 × 8 matrices that we optimized.

Our best compact implementation gives a merged S-box that is 20% smaller
than the previously most compact version of [14]. We have shown that none of
the other 431 versions possible with this subfield approach is as small. (We did
not examine issues of timing, latency and delay, but these should be compara-
ble with [14].) This compact S-box could be useful for many future hardware
implementations of AES, for a variety of security applications.
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