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ABSTRACT Convolutional neural network (CNN) has achieved great success in the compressed sensing-

based magnetic resonance imaging (CS-MRI). Latest deep networks for CS-MRI usually consist of a stack

of sub-networks, each of which refines the former image prediction to a more accurate one. However, as the

sub-network number increases, the information in prior sub-networks has a little influence on subsequent

ones, which increases the training difficulties and limits the reconstruction performance of the deep model.

In this paper, we propose a novel network, named very deep densely connected network (VDDCN),

for CS-MRI. Dense connections are introduced to connect any two sub-networks of VDDCN, so each

sub-network can make full use of all former predictions, boosting the reconstruction performance of the

whole network. The sub-network of VDDCN is composed of feature extraction and fusion block (FEFB)

processing data in the image domain and data consistency (DC) layer enforcing the data fidelity in k-space.

Specifically, in FEFB, multi-level features are extracted by the recursive feature extraction and fusion

sub-blocks (RFEFSBs) and fused locally to obtain the compact features. The VDDCN is much deeper

than the prior deep learning models and able to discover more MR image details. The experimental results

demonstrate that our proposed VDDCN outperforms other state-of-the-art CS-MRI methods.

INDEX TERMS Deep learning, compressed sensing, magnetic resonance imaging (MRI), densely connected

network.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive med-

ical image technique which is widely used in the clinical

diagnosis and pathological analysis. However, it takes lots

of time for patients to complete a fully-sampled MRI scan.

Compressed sensing-basedMRI (CS-MRI) is one of the most

effective techniques to accelerate magnetic resonance (MR)

acquisition, which aims to reconstruct high quality MR

images from a small amount of sampling data, instead of

fully-sampled data in k-space (i.e. Fourier space).

A number of CS-MRI methods have been proposed in

recent years since the CS theory was developed [1], [2]. These

methods can be categorized into two groups: model-based

methods [3]–[13] and deep learning methods [14]–[29].

The associate editor coordinating the review of this manuscript and
approving it for publication was Sudipta Roy.

Inmodel-basedmethods, CS-MRI is formulated as a penal-

ized inverse problem with the consideration of k-space data

fidelity and sparsity in a specific transform domain (e.g.

Fourier domain, Discrete cosine transform (DCT) domain

[3], wavelet transform domain [4], [5], contourlet transform

domain [6]) or an image-adaptive transform domain [7], [8]

obtained by dictionary learning methods. In order to improve

the quality of the reconstructed images, more data priors are

considered, such as total variation penalty [9], [10], local or

nonlocal similarity property [11], [12], or low-rank constraint

[13]. CS-MRI methods with specific transformation are easy

and efficient, but introduce blurring and aliasing artifacts

in reconstructed MR image. In contrast, CS-MRI methods

with adaptive transformation generally obtain higher quality

images, but suffer from slow reconstruction speed.

Recently, deep learning models [14]–[29] have also

been adopted to CS-MRI, motivated by the great success
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of deep learning in many computer vision applications,

such as object recognition [30], [31], image super-resolution

[32]–[35], and image segmentation [36]–[38]. Gener-

ally, deep learning CS-MRI methods use deep convolu-

tional neural networks (CNNs) to learn the relationship

between the under-sampled MRI data and the corresponding

fully-sampledMR images in training dataset.With the trained

networks, we can obtain the reconstructed MR images from

outputs of CNNs, when the given under-sampledMR data are

fed to CNNs. Most deep learning CS-MRI methods produce

higher quality MR images than model-based CS-MRI algo-

rithms, and the reconstruction procedure is fast because no

iterative process is needed. Moreover, the prior information

is unnecessary to define explicitly, for it can be learned

automatically by deep CNNs [39].

Latest deep learning studies [25]–[29] for CS-MRI focus

on learning a deep cascade of multiple sub-networks by

introducing data consistency (DC) layer to enforce data

fidelity in k-space and improve reconstruction performance.

Each sub-network generates a prediction of the recon-

structed MR image by using the predicted result of the

preceding sub-network. Along the data flow through the

network, image predictions are obtained in a ‘coarse-

to-fine’ way. However, these methods could not fully

use all former predicted results to predict a new result

candidate, thus their image reconstruction performances

are limited.

Inspired by densely connected convolutional network

(DenseNet) [30], [32], we propose a very deep densely

connected network (VDDCN) for CS-MRI. VDDCN makes

full use of all former image predictions by combining all

sub-networks with dense connections. Each sub-network

combines image predictions of all preceding sub-networks,

and passes its own prediction to all subsequent sub-networks.

Multiple former predictions enable the sub-network to gener-

ate an accurate prediction which is useful to reconstruct MR

images with high quality. Furthermore, the introduction of

dense connections improves the information flowing through

the network, alleviating the gradient-vanishing problem and

making the network easy to train. The proposed VDDCN

is expected to perform better than previous deep learning

methods.

The main contributions of this work include the

following:

1) We propose a novel deep network VDDCN for

CS-MRI. In VDDCN, dense connections are intro-

duced to enable each sub-network to reconstruct a MR

image using all previous reconstruction predictions,

improving reconstruction performance of the whole

network.

2) The sub-networks of VDDCN are specifically designed

with residual learning and recursive learning strategies

to strengthen their representation power.

3) Extensive experiments show that VDDCN outperforms

other state-of-the-art CS-MRI methods in terms of

visual results and quantitative evaluations.

The rest of the paper is organized as follows. Section II

provides a brief survey of related work. Section III introduces

our proposed deep model VDDCN in details. In Section IV,

the experimental results and comparisons with several state-

of-the-art CS-MRI methods are presented. A summary is

given in Section V.

II. RELATED WORK

Given the vectorized representation x ∈ C
n2 of a

fully-sampled image X ∈ C
n×n with size n × n, and its

under-sampled k-space measurement y ∈ C
m (m ≪ n2),

the data acquisition model in CS-MRI can be formulated as a

discretized linear system as follows:

y = Fux+ ε. (1)

Here Fu = UF ∈ C
m×n2 , in which U ∈ C

m×n2 and

F ∈ C
n2×n2 are the under-sampling and Fourier transform

matrices, and ε denotes noise. CS-MRI, aiming to recover

the underlying x from y, is an ill-posed inverse problem.

Generally, model-based CS-MRI methods solve the prob-

lem by optimizing

min
x

‖y− Fux‖
2
2 + λR(x) (2)

where ‖y− Fux‖
2
2 is the data fidelity term, R(x) denotes

the regularization term and the regularization parameter λ

balances the importance of these two terms.

Different from model-based CS-MRI approaches, deep

learning CS-MRI learns a mapping function X = f (X0)

between zero-filling reconstructed image X0 ∈ C
n×n and

fully-sampled reconstructed image X by training a CNNwith

lots of training data. It should be noted that the data fed to

CNN are images instead of their vectorized representations.

Therefore, X and X0 used in deep learning CS-MRI methods

are 2D matrices with size n× n corresponding to x and FHu y

respectively, where (·)H is the conjugated transpose operator.

As the pioneer deep learning model for CS-MRI, a 3-layer

CNN was proposed by Wang et al. [15] to learn the mapping

function in image space between zero-filling reconstructed

images and fully-sampled reconstructed images. The same

network structure as [15] was employed in [16] to learn the

mapping in k-space. Lee et al. [17] presented a modified

U-net to learn the aliasing artifacts instead of the underlying

original image, and Hyun et al. [18] showed that the quality

of the reconstructed image could be further improved by

an additional k-space correction operation. Recently, several

generative adversarial nets (GANs) [40] have been introduced

to CS-MRI with different generator networks, such as U-net

based generator [19] or residual network based generator

[20]. In the above mentioned CNNs, no intermediate image

prediction is produced, and only a single reconstruction is

obtained as the final result.

Meanwhile, various deep networks were introduced for

CS-MRI, which generated multiple predicted images with

sub-networks and adjusted the predictions to obtain final

MR reconstruction with high accuracy. Quan et al. [21] pro-

posed RefineGAN in which residual U-net [17] was unfolded

VOLUME 7, 2019 85431



K. Zeng et al.: VDDCN for CS-MRI

twice to enhance the reconstruction quality. Yang et al. [22],

[23] presented ADMM-net derived from the iterative proce-

dure of alternating direction method of multipliers (ADMM)

algorithm to solve CS-MRI problem. In ADMM-net, Each

sub-network corresponds to one iteration of ADMM algo-

rithm. Similar to ADMM-net, variation network proposed

by Hammernik et al. [24] has several stacked sub-networks

related to the steps of Landweber iterative algorithm [41] for

CS-MRI. Schlemper et al. [25] constructed a deep CS-MRI

model by cascading multiple sub-networks and introduced

data consistency (DC) layer to correct sub-networks’ out-

puts by considering data fidelity in k-space. Since then,

DC layer has become an indispensable component in latest

networks [26]–[29] for CS-MRI.

The DC layer updates its input Z̃ to X̃ by enforcing data

fidelity in k-space between K̃ = dft (̃Z) and the original

measurement Ku, where dft denotes 2D discrete Fourier

transformation (DFT) and Ku is a 2D matrix with size n× n

corresponding toUHy. The output function dc of theDC layer

can be defined as:

X̃ = dc(̃Z,Ku) = idft(ψ(K̃,Ku)). (3)

Here idft is 2D inverse discrete Fourier transformation (iDFT)

and ψ is the data fidelity operation:

ψ(K̃,Ku)(i, j) =




K̃(i, j), (i, j) 6∈ �

ρK̃(i, j) + Ku(i, j)

ρ + 1
, (i, j) ∈ �,

(4)

where (i, j) is the matrix index, � is the set of sampling

positions in k-space and ρ is the noise level. The k-space data

in (i, j) that are not sampled in original measurement Ku are

evaluated from network prediction K̃(i, j), while the k-space

data in (i, j) that are sampled in Ku are updated with a linear

combination of network prediction K̃(i, j) and the original

measurement Ku(i, j). In the noiseless case (ρ = 0), the data

of ψ(K̃,Ku) are filled with the original measurement Ku at

sampled positions. The function of DC layer is summarized

in Figure 1.

FIGURE 1. Function of the DC layer.

However, deep networks [21]–[29] constituted of multi-

ple sub-networks have two major limitations. First, the sub-

networks update MR images successively using only the

latest prediction, not all the former predictions which might

be useful to improve the final reconstruction performance.

The second limitation is that most of the networks are too

shallow to achieve promising results. To resolve the prob-

lems, we propose a very deep network, in which dense con-

nections are used to aggregate all the former predictions to

the input of each sub-network.

III. METHOD

A. OVERVIEW OF VDDCN

As shown in Figure 2a, our model first produces the

zero-filling reconstructed MR image X0 = idft(Ku) by

processing under-sampled k-space dataKu by iDFT, and then

generates reconstructed MR image X̂ = f (X0) by a deep

network.

The network contains a set of sub-networks, which are

connected between each other. As discussed previously, these

dense connections enable each sub-network to receive infor-

mation as much as possible and boost the reconstruction

performance of the whole network. Supposing the proposed

VDDCN has K sub-networks, the k-th (1 ≤ k ≤ K )

sub-network takes all former predictions X0,X1, · · · ,Xk−1

as inputs, and outputs a new prediction Xk . So Xk can be

formulated by

Xk = fk (X0,X1, · · · ,Xk−1), (5)

where fk denotes the operation of the k-th sub-network, and

the final reconstruction result is

X̂ = f (X0) = XK = fK (X0,X1, · · · ,XK−1). (6)

Each sub-network consists of one multi-level feature

extraction and fusion block (FEFB) and a DC layer. The

FEFB generates an intermediate reconstructed image which

is updated by the following DC layer. Let us denote the

function of FEFB in k-th sub-network as gk , the operation

fk of the sub-network includes two steps:

Zk = gk (X0,X1, · · · ,Xk−1) (7)

and

Xk = dc(Zk ,Ku), (8)

in which Zk is the output of the FEFB.

Furthermore, to extract high-level features, complex

sub-block named recursive feature extraction and fusion

sub-block (RFEFSB) is proposed as the sub-block in FEFB.

The structure of FEFB and RFEFSB will be detailed in the

following sub-sections.

Because mean absolute error (MAE) has been demon-

strated to be more powerful for performance and convergence

than mean square error [42], MAE is used in the loss function

formulated as

L =
1

N

N∑

i=1

‖X̂
(i)

− X (i)‖1, (9)

whereX (i) and X̂
(i)
are the i-th fully-sampled reference image

in the training set and the corresponding reconstructed image

by our method, and N is the number of training samples.

B. FEATURE EXTRACTION AND FUSION BLOCK (FEFB)

The structure of FEFB is presented in Figure 2b. Our FEFB

contains a Concat+Conv component for shallow feature

extraction, several sub-blocks named recursive feature extrac-

tion and fusion sub-block (RFEFSB) for multi-level feature
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FIGURE 2. The overview of the proposed VDDCN for CS-MRI.

extraction, and another Concat+Conv component for feature

fusion (FF).

We first concatenate all the inputs and use a convolutional

layer to extract shallow features. The shallow features of the

FEFB in k-th sub-network can be obtained as

Fk,0 = W k ⊗ [X0,X1, · · · ,Xk−1] + bk , (10)

where W k is the weight and bk is the bias of the convolutional

layer, and symbol ‘⊗’ denotes the convolution operation.

After Fk,0 is obtained, multi-level features Fk,d (1 ≤ d ≤ D)

are generated by multiple RFEFSBs, which are sub-blocks of

FEFB:

Fk,d = φk,d (Fk,d−1), (11)

in which φk,d denotes the function of the d-th RFEFSB of

the FEFB within the k-th sub-network. Feature fusion is then

applied to fuse all the features Fk,d (0 ≤ d ≤ D), which is

described as

Rk = W̃ k ⊗ [Fk,0,Fk,1, · · · ,Fk,D] + b̃k , (12)

where W̃ k and b̃k are parameters of the convolutional layer

in FF part. At last, residual learning [31] is adopted to further

improve FEFB’s performance. The final output Zk of the

FEFB in the k-th sub-network can be obtained by

Zk = Rk + Xk−1. (13)

C. RECURSIVE FEATURE EXTRACTION AND FUSION

SUB-BLOCK (RFEFSB)

In RFEFSB, leaky rectified linear unit (LReLU) is used as

the non-linear activation layer and recursive learning strat-

egy [33], [43] is employed to reduce parameter number.

As shown in Figure 2a, a RFEFSB containsH LReLU+Conv

components for learning multi-level features recursively and

a Concat+Conv component for local feature fusion (LFF).

Parameters of LReLU+Conv components are shared within

each RFEFSB.

The function of the h-th (1 ≤ h ≤ H ) LReLU+Conv

component in d-th RFEFSB within k-th sub-network is

Fk,d,h = W k,d ⊗ σ (Fk,d,h−1) + bk,d , (14)

where σ denotes the LReLU activation function, W k,d and

bk,d are parameters of the convolutional layer, and Fk,d,h
is the output of the component. When h = 1, Fk,d,h−1 =

Fk,d−1.

After multi-level features Fk,d,h (0 ≤ h ≤ H ) are learned,

the LFF part, which has a 1×1 convolutional layer, is intro-

duced to generate compact features. The formulation of LFF

is written as

Fk,d = W̃ k,d ⊗ [Fk,d,0,Fk,d,1, · · · ,Fk,d,H ] + b̃k,d , (15)

in which W̃ k,d is the weight and b̃k,d is the bias of the

1×1 convolutional layer.

IV. EXPERIMENTS AND RESULTS

A. IMPLEMENTATION DETAILS

We use TensorFlow1 to implement the proposed method on a

server installed with an Intel Xeon E5-2620 CPU, a NVIDIA

Titan X GPU and 32GB RAM. The network is trained using

Adam [44] optimizer for 100 epochs. The learning rate is

initialized to 1e-4 and decreases half after 50 epochs. The

mini-batch size is set to 1 for all the experiments following

the setting of DCCNN [25].

1http://www.tensorflow.org/
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FIGURE 3. The effects of the sub-network number K in VDDCN on network complexity and performance result.

Two types of commonly used sampling patterns in k-space,

including 1D Cartesian under-sampling and pseudo radial

under-sampling [9], are studied in this work. The perfor-

mances of our proposed network are assessed on both

real-valued and complex-valued MR images.

The reconstruction results are evaluated with two qual-

ity metrics—peak signal-to-noise ratio (PSNR) and struc-

tural similarity index measure (SSIM) [45]. We compare

our proposed algorithm with four model-based methods (e.g.

PANO [11],2 PBDW [4]2, FDLCP [8]2, BM3D-MRI [12]3)

and two deep learning methods (e.g., U-Net [17], DCCNN

[25]).We download source codes for model-based methods

from authors’ websites, and re-implement these two deep

learning methods using TensorFlow.

B. NETWORK PARAMETERS SELECTION

In our proposed VDDCN, most of the convolutional layers

have 64 filters with kernel size of 3×3, except the last con-

volutional layer of each FEFB, which has 2 filters to produce

the real part and the imaginary part of the intermediate recon-

structed image.

Besides, there are 3 network parameters in VDDCN, which

are the number D of RFEFSBs in each FEFB, the number

H of LReLU+Conv components within RFEFSB, and the

numberK of sub-networks in the whole network. For the sake

of simplicity, D and H are set to be 3 empirically and K is

determined experimentally.

To select an appropriate K , we train and test VDDCN with

different sub-network numbers for reconstructing real-valued

brain MR images using 10% pseudo radial under-sampling.

Figure 3 presents how K affects the network complexity

and the reconstruction performance. When K increases from

5 to 17, the PSNR and SSIM increase logarithmically. Mean-

while, the parameter number grows larger and the running

time becomes longer in an approximatively linear manner.

Specifically, VDDCN with 17 sub-networks obtains little

performance improvement (only 0.08dB higher in PSNR and

0.0005 higher in SSIM) compared with VDDCNwith 15 sub-

networks. To balance between reconstructed image quality

and the computational complexity, we select 15 as the default

value of K .

2http://csrc.xmu.edu.cn/
3https://web.itu.edu.tr/eksioglue/pubs/BM3D_MRI.htm

C. REAL-VALUED DATA RECONSTRUCTION

We use brainMR images from the original data acquired from

IXI database4 to assess the performance of our VDDCN to

reconstruct real-valued data. 3200 MR images from 80 sub-

jects are normalized and real-valued from the original data,

of which 3000 images from 75 subjects are chosen for train-

ing, and 200 images from another 5 subjects are for testing.

All images are with resolution of 256×256. In addition,

sampling rates of 10%, 20%, 30%, and 40%, are tested on

both sampling scenarios.

1) IMAGE QUALITY EVALUATION

Figure 4 and 5 show the quantitative results of different

methods under different sampling rates using pseudo radial

sampling pattern and 1D Cartesian under-sampling pattern,

respectively. We can see that, the proposed VDDCN recon-

structs the most accurate results compared with other meth-

ods under both sampling patterns. Specifically, VDDCN

outperforms the second best algorithm DCCNN by at

least 2dB.

The visual comparisons of 10% sampling rate on both sam-

pling patterns are shown in Figure 6 and 7. The zero-filling

reconstruction is so blurry that few structure details can be

observed. The conventional model-based methods, such as

PANO, PBDW, FDLCP and BM3D-MRI, produce images

with artifacts. U-net gives results that are visually better than

model-basedmethods. DCCNN achieves good performances,

but some details are still lost in the reconstructed images.

From all the reconstructed images and their corresponding

error images, we can see that our proposed VDDCN obtains

highest-quality images with finest details and least artifacts.

2) RUNNING TIME EVALUATION

Table 1 presents the average running times of our proposed

VDDCN and other CS-MRI methods. It should be noted

that all the model-based methods are implemented using

MATLAB without GPU-acceleration. For the model-based

methods, different iterative numerical algorithms are used

and the running times are relatively long. For example,

the average running time of PBDW is 94.65 seconds,

which is about 500 times as long as the running time of

VDDCN. Although PANO is accelerated by adopting parallel

4http://brain-development.org/ixi-dataset/
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FIGURE 4. Evaluations on real-valued brain dataset using pseudo radial under-sampling at different sampling rates.

FIGURE 5. Evaluations on real-valued brain dataset using 1D Cartesian under-sampling at different sampling rates.

TABLE 1. Running time comparison of CS-MRI methods on real-valued brain images using 10% pseudo radial under-sampling.

computing strategy, its running time is still far from

interactive (around 9 seconds).

Deep learning based methods, including U-net, DCCNN,

and VDDCN, run much faster than model-based methods,

because that these deep learning based methods employ

feed-forward CNNs and use GPU to accelerate the image

reconstruction procedure. The running times of U-net and

DCCNN are about 0.02 second, which can meet the require-

ment of real-time implementation. Compared with U-net and

DCCNN, VDDCN takes more time (i.e. 0.18 second) to com-

plete image reconstruction since VDDCN is a much deeper

network with more complex structure. However, the addi-

tional time cost of VDDCN is acceptable considering its

performance improvement.

D. COMPLEX-VALUED DATA RECONSTRUCTION

We further investigate the performance of our proposed

VDDCN for reconstructing complex-valued knee images.5

The dataset contains 200 images with resolution of 256×256.

We choose 150 images for training and the rest for testing.

The experiments are conducted in sampling rate of 10%

under pseudo radial sampling pattern and 1D Cartesian

under-sampling pattern. The quantitative evaluation results

are shown in Figure 8. It can be seen that our VDDCN

outperforms the compared CS-MRI methods. Figure 9

illustrates the reconstructed magnitude and phase images

under 1D Cartesian under-sampling. The four model-based

5http://old.mridata.org/fullysampled/knees
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FIGURE 6. Results on a brain MR image using 10% pseudo radial under-sampling. The colorbar range of error images is [0, 0.60].

FIGURE 7. Results on a brain MR image using 10% 1D Cartesian under-sampling. The colorbar range of error images is [0, 0.45].

methods fail to obtain convincing reconstructions, while deep

learning methods gain better results than model-based meth-

ods. Compared with DCCNN, U-net reconstructs magnitude

image with more artifacts. However, U-net discovers more

fine details in phase image. VDDCN achieves least error

in magnitude image, and preserves sharpest edges in phase

image. Both of themagnitude and phase images reconstructed

by VDDCN are most similar to the ground truths.

85436 VOLUME 7, 2019
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FIGURE 8. Evaluations on complex-valued knee dataset under two sampling patterns at 10% sampling rate. (a) and (b) are tested under
pseudo radial under-sampling pattern, while (c) and (d) are tested under 1D Cartesian under-sampling pattern.

FIGURE 9. Results on a knee MR image using 10% 1D Cartesian under-sampling. The colorbar range of error images is [0, 0.25].

V. CONCLUSION

In this paper, we introduce a novel deep learning model,

named very deep densely connected network (VDDCN), for

CS-MRI. The proposed VDDCN is composed of several

sub-networks, each of which consists of a feature extraction

and fusion block (FEFB) processing data in image domain

and a data consistency layer enforcing the data fidelity in

k-space. Dense connections between the sub-networks are

employed to improve the reconstruction performance for

CS-MRI. The FEFB in each sub-network is constituted of

several sub-blocks named recursive feature extraction and

fusion sub-block (RFEFSB). FEFB and its sub-blocks are

specifically designed with a combination of the effective

structures of residual CNN and recursive CNN. The proposed

VDDCN is tested under pseudo radial sampling pattern and

1D Cartesian under-sampling pattern. Extensive experiments

demonstrate that the proposed VDDCN outperforms other

state-of-the-art methods with visually and quantitatively

superior results. For the future work, we will explore use

of VDDCN for parallel magnetic resonance imaging (pMRI)

and CS-pMRI.
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