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ABSTRACT In general, existing research on single image super-resolution does not consider the practical

application that, when image transmission is over noisy channels, the effect of any possible geometric

transformations could incur significant quality loss and distortions. To address this problem, we present

a new and robust super-resolution method in this paper, where a robust spatially-transformed deep learning

framework is established to simultaneously perform both the geometric transformation and the single

image super-resolution. The proposed seamlessly integrates deep residual learning based spatial transform

module with a very deep super-resolution module to achieve a robust and improved single image super-

resolution. In comparisonwith the existing state of the arts, our proposed robust single image super-resolution

has a number of novel features, including 1) content-characterized deep features are extracted out of the

input LR images to identify the incurred geometric transformations, and hence transformation parameters

can be optimized to influence and control the super-resolution process; 2) the effects of any geometric

transformations can be automatically corrected at the output without compromise on the quality of final

super-resolved images; and 3) compared with the existing research reported in the literature, our proposed

achieves the advantage that HR images can be recovered from those down-sampled LR images corrupted

by a number of different geometric transformations. The extensive experiments, measured by both the peak-

signal-to-noise-ratio and the similar structure index measurement, show that our proposed method achieves

a high level of robustness against a number of geometric transformations, including scaling, translations,

and rotations. Benchmarked by the existing state-of-the-arts SR methods, our proposed delivers superior

performances on a wide range of datasets which are publicly available and widely adopted across relevant

research communities.

INDEX TERMS Single image super-resolution, deep learning, spatial transform, geometric transformations.

I. INTRODUCTION

Over the past decades, the problem of image super-resolution

has been extensively studied and numerous image SR meth-

ods have been reported to deal with this non-trivial prob-

lem [1]–[8]. In general, image SR reconstruction methods

can be divided into two categories: multi-frame image SR

(MISR) methods [9]–[11] and single-image SR methods

(SISR) [12]–[14]. The MISR methods can be further divided

into two categories: frequency domain methods and spatial

domain methods [10]. The target of the frequency domain

methods is to eliminate spectrum aliasing and reconstruct

the high frequency information, including fourier transform-
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based methods [4], discrete cosine transform-based methods

[15] and wavelet transform-based methods [16]. While the

advantage of these methods is the computational efficiency,

these methods have some limitations in incorporate the image

prior knowledge [17]. The spatial domain methods such as

non-uniform interpolation method [18], iterative back pro-

jection (IBP) method [19] and projection onto convex sets

(POCS) [20]. While these methods generally have a good

reconstruction ability, they are computational expensive [9].

Furthermore, it is not easy to obtain an sufficient number of

LR images, in order to estimate a HR image from multiple

blurred and noisy images [21]. Therefore, single-image SR

methods are much more desirable in practical applications.

Technically, all the methods of single-image super-

resolution (SISR) can be divided into: interpolation-based
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methods [22], reconstruction-based methods [23], [24] and

example learning-based methods [13], [25]. The concept

of the interpolation-based method is to use the values

of the neighbouring low-resolution pixels to estimate the

value of the interpolated high-resolution pixel. The main

advantages of the interpolation-based method are simple

and relatively low computational complexity [1]. However,

the interpolation-based methods often generate the recon-

structed HR images with edge halos and artifacts [26].

The reconstruction-based methods recover the HR image

based on the degradation model [24], [25]. As single image

SR is highly ill-posed, image prior knowledge is often pro-

posed to regularize the solution in this family of approaches.

In order to obtain an effective image prior, it is of great impor-

tance to model the appropriate feature of natural images.

Based on the max-posterior (MAP) theory which utilize

some prior constraints into the data fidelity cost function,

the SR problem turns to be well-posed. Therefore, the SR

problem can be transformed into a minimization problem

: X̂HR = argmin [L (XHR,YLR) + λU (XHR)], where X̂HR

is the estimated HR image, L (.) is the data fidelity term

that represents the degree of consistency between the tar-

get HR image XHR and the LR image YLR, U (.) is the

regularization term describing the prior information of the

original image, and λ is the regularization parameter, which

is used to weigh the influence given by the prior L (.) and

U (.) during the estimation. Many types of priors have been

utilized into reconstruction- based methods, such as edge

prior [27], gradient prior [28], and sparsity priors [29]–[33].

The learning-based methods estimate the HR image from

the LR image by learning the relationship between the HR

and LR image patches from the sample database. Inspired

by the great success achieved by deep learning [34], people

begin to use neural networks with deep architecture for image

SR. Multiple layers are stacked together for robust learning

of self-similar patches. Deep convolutional neural networks

(CNN) [35] and deconvolutional networks [36] are designed

to directly learn the non-linear mapping from LR space to

HR space in a way similar to coupled sparse coding [37].

As these deep networks allow end-to-end training of all the

model components between LR input and HR output, signif-

icant improvements have been observed over their shadow

counterparts. Specifically, the feature spatial transform [38]

tries to learn the texture transform from the segmentation

maps that addresses the conventional super-resolution prob-

lem, which is fundamentally different from the proposed

work to tackle geometric transformation and super-resolution

simultaneously.

On the other hand, practical applications of single image

super-resolution indicates that the real LR measurements

usually suffer from various types of corruptions, such as

geometric transformations, noise, and blurring. In this paper,

we focus on dealing with the geometric transformation

effects, for which the existing research has not properly

addressed in the area of image super-resolution. Yet prac-

tical applications reveal that estimating HR images from

transformed or distorted LR versions remains an important

research topic demanded across a number of engineering sec-

tors, such as self-driving vehicles, smart phones, and medical

image analysis etc. One typical example is the classification

of cancer types via LR images, in which various geometric

transformations, such as scaling and rotation etc., could incur

during the process of correlating different patterns across

similar super-resolution images. Without the capability of

dealing with these transformed LR images, the classifica-

tion accuracy could be degraded significantly. Consequently,

there are strong motivations to research on a robust super-

resolution technique that can generate an HR image from the

distorted and transformed LR image.

To alleviate the geometric transformation effects with res-

olution improvements, we propose a spatially transformed

deep learning framework to achieve robust single image

super-resolution in this paper. To our best knowledge, this

is the first attempt on deep learning based super-resolution

that simultaneously tackles the transformation effects and

resolution enhancement, out of which our contributions can

be highlighted as follows:

• Compared with all existing super-resolution deep learn-

ing networks, our proposed is a robust super-resolution

network that can simultaneously handle both geometric

transformations and resolution enhancement.

• In terms of structures, our proposed can seamlessly inte-

grate a deep residual spatial transform network with a

very deep super-resolution network to form a novel deep

learning architecture.

• By replacing the original thick CNN with a new resid-

ual thin CNN, our proposed significantly improves the

existing spatial transform network (STN) [39] in terms

of functionality, performances, and efficiency (with less

number of parameters.)

• In comparison with the existing state of the art SR

methods reported in the literature, experimental results

support and verify that our proposed ST-DISR achieves

superior performances in terms of both PSNR and SSIM.

The rest of the paper is structured as follows. Section II

describes our proposed framework via surveying the existing

research across relevant areas, including both image super-

resolution and spatial transformations. Section III presents

experimental results and their analyses. Finally, section IV

draws the concluding remarks and future research.

II. SPATIALLY TRANSFORMED DEEP FRAMEWORK FOR

ROBUST IMAGE SUPER-RESOLUTION

A. RELATED WORK AND BACKGROUNDS

In general, the relationship between the original high-

resolution and observed low-resolution images can be

described by the following image observation model.

YLR = DHXHR (1)

where H is a degradation matrix that represents geometric

transformations, and a down-sampling operator,D, is applied
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to the original image XHR (i.e. HR image), to generate the

observed image YLR (i.e. LR image). Due to the ill-condition

of the SR problem, recovering HR image is not unique. The

problem of image SR reconstruction can be generally mod-

eled as: given the LR imageYLR, the objective is to estimate a

HR image that is visually the same as the original HR image

XHR. This problem can be formulated as

x̂HR = argmin
xHR

‖YLR − DHXHR‖2 (2)

To solve this problem, an effective prior is necessary to turn

the problem into a deterministic problem. Many solutions

have been proposed to solve this ill-posed problem in the past

decades [6]– [8]. Recently, there have been a large number of

studies on deep learning for solving the image SR problem.

As a result, we briefly review all the existing deep learning

based SR techniques as follows in order to pave the way for

our proposed framework.

As part of the pioneering exploration, super-resolution

using deep convolutional networks (SRCNN) [8] is one of

the state of the art for deep learning based SR methods,

in which Dong et al. introduced a CNN constructing a map-

ping from the bicubic up-sampled LR space to HR space.

Specifically, SRCNN utilizes the bicubic interpolation as its

pre-processing step and then extracts the features of the over-

lapping patches using deep convolutional layers. At the final

step, the extracted feature vectors are non-linearly mapped to

each other and subsequently aggregated in the form of patches

to form the reconstructed HR image.

In general, the essential advantage of the SRCNN is that

only convolution layers are used. Consequently, the input

image can be of any size and the algorithm can run on the

input image in one pass. Although SRCNN claims efficiency

in view of the its straightforward structure, it still has a

number of limitations, in which the primary limitation is that

the convergence of the network is too slow, and the network

only works on a single scale.

Efforts were made by Dong et al. [40] to improve the

efficiency of SRCNN, for which Dong et al. proposed fast

SRCNN (FSRCNN). The reported FSRCNN [40] replaced

the pre-processing Bicubic interpolation in SRCNN by a

post-processing in the form of deconvolution. In addition,

the FSRCNN has four convolution layers in the form of

feature extraction, shrinking, mapping and expanding. That

is, the mapping is preceded by shrinking feature dimensions

and then expanding back at latter stages.

The success of CNN in SR often raises a question: whether

a deeper network should be adopted in order to maximize

the SR performances? Kim et al. [41] answered this question

by proposing a very deep super-resolution (VDSR) network,

which uses a very deep convolution network inspired by

VGG-net used for ImageNet classification. The structure of

VDSR contains 20 layers in a cascaded deep network. The

filter size used in the network is 3-by-3 [41]. Kim et al. [41]

utilized the residual learning to train the VDSR network, and

Algorithm 1 Pseudocode of the Robust Single Image Super-

Resolution Using Our Proposed Framework

Input: A LR image YLR.

Output: An estimated HR image X̂HR.

Initialization: Preparing the training dataset by distorted the

HR image by bicubic downsampling and one or more of

geometric transformation as in equation (1).

Steps of our proposed network:

• First Module: Deep residual learning based spatial

transform module;

– Deep residual learning localization network:

∗ Extract the features of LR image through

20 stacked convolution layers as described in

equation (6).

∗ LR image version is added to the output of

stacked layers.

∗ The output is passed to the classifier to estimate

the 6 geometric transformation parameters as

given in equation (7).

– Grid Generator: Estimate the sampling grid based

on the estimated geometric transformation parame-

ters.

– Sampler: Interpolate the input LR image accord-

ing to the sampling grid to alleviate the geometric

transformation effects as described in equation (8).

• Second Module: Super-Resolution module: Refine the

LR image to generate a HR image similar to the desired

target.

the VDSR tackled the limitation of SRCNN by extending to

multi-scales SR with a single network model.

Other researchers focus on utilizing different loss func-

tions, instead of the mean square error (MSE), to generate HR

images. Johnson et al. [42] utilized perceptual loss function

to generate visually comforting results. Ledig et al. [43]

employed a deep residual network (ResNet) as the discrim-

inator to form the Super Resolution Generative Adversarial

Network (SRGAN). The major problem of these networks is

the difficult hyper-parameter tuning in the training process,

including the weight initialization, the weight decay rate,

and the learning rate, etc. A desirable property of an image

processing system is to reason about the possible changes

of object poses, and their relevant spatial transformations.

A desirable SR network should be spatially invariant to

the scaling and rotation effects incurred during transmis-

sion or hostile corruption. A spatial transformer network

(STN) [39] is introduced to exploit the power of deep learning

for dealing with spatial transformations, which is a dynamic

mechanism that can spatially transform an image by pro-

ducing an appropriate affine transformation for each input

sample.

Specifically, a STN network takes an image or a feature

map from a convolutional network as the input, and then an
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affine transformation and bilinear interpolation is applied to

produce the output of the STN. The affine transformation

allows zoom, rotation and skew of the input, which enables

the network to not only select regions of an image that are

most relevant (attentive) but also to transform those regions

to a canonical and expected pose, in order to simplify the

recognition process in the following layers. Further, STN can

be utilized with CNN to provide multi-functions, such as

super-resolution as proposed in this paper.

Inspired by the spirit of both STN and residual learning,

we propose a new spatial transformable deep super-resolution

framework, to facilitate a robust super-resolution for LR input

images. Extensive experiments support that our proposed

framework is able to achieve expected robustness in compar-

isons with the existing state of the arts using deep learning for

image super-resolutions.

B. OUR PROPOSED WORK

In this section, we illustrate the details of our proposed

framework, including the deep residual learning based spatial

transformmodule and the super-resolution module integrated

to generate the final HR image and complete the robust

single image super-resolution. The objective of our proposed

framework is to create a robust SR network which is able to

generate HR images from LR transformed images. The key

aspect to achieving this goal is to be able to alleviate the effect

of spatial transforms for corrupted LR images. The procedure

of the proposed framework is summarized in Algorithm 1,

which has the capability to tackle the transformation effects

while refining and generating HR images to achieve robust

super-resolution. Consequently, our proposed framework not

only minimizes the effect of the geometric transformation

effect, but also minimizes the difference between the esti-

mated HR image and the HR image itself. Specific details

are described as follows.

L(θ ) = argmin

∥

∥

∥
X̂HR − XHR

∥

∥

∥

2
(3)

where L (θ) is a loss function ( i.g. objective function), and θ

represents the model parameters of the deep neural network.

The above equation can be established via two operational

steps. Firstly, we need to identify the affine transformation

parameters, in order to capture any possible geometric trans-

formation, through minimizing the errors between the HR

and the distorted image. Secondly, we generate estimated HR

image similar to the desired one through minimizing their

corresponding MSEs. As a result, our loss function can be

further formulated as follows:

L (θ) = argmin
θA

∥

∥

∥
YLR(θA) − X̂T

∥

∥

∥

2

2

+ argmin
θDRLN

∥

∥

∥
N (X̂T , θDRLN ) − XHR

∥

∥

∥

2

2
(4)

where X̂T is the output image after performing the spatial

transformation, and X̂HR = N (X̂T , θDRLN ) is the estimated

FIGURE 1. Spatial transform network [44].

HR image, θDRLN is the model parameters of the super-

resolution neural network. X̂T is the output of a deep residual

learning based spatial transform module, and θA represents

the estimated geometric/affine transformation parameters.

The first part of Eq. (4), is to minimize the errors the

error between the transformed LR image and the desired LR

image for the super-resolution in the second part, in order

to estimate the affine transformation parameters and mitigate

the transformation effects. The second part of the equation is

to minimize the errors between the output of the first module

and HR image to obtain an image similar to the desired HR

image. In practice, our network is trained end-to-end with

one loss function only in Eq. (4), where the two sub-tasks

(i.e. the first and the second part of Eq.(4)) are connected

through the variable X̂T , such that the weights of costs of

two sub-tasks do not have any influences for the final results.

In other words, given sufficient number of iterations during

training, the network converges regardless of the weights

of costs of two sub-tasks. Moreover, the back-propagation

of network passes through the whole network due to the

seamless integration of two sub-tasks in Eq. (4).

Over the recent years, deep neural networks have achieved

huge success in resolving various computer vision problems.

Nevertheless, there has not been an overwhelming solu-

tion for the problem of geometric variations upon the given

datasets during the learning process. The recently introduced

spatial transform network (STN) [39], which is able to per-

form spatial transformations on images with a differentiable

module, has the function of reducing geometric variations of

natural images and has attracted attentions across the deep

learning community.

As shown in Fig.1, the STN warps an image conditioned

on the input during the feed forward process, which can be

formulated as:

X̂T = YLR(θA), where θA = f (YLR) (5)

where X̂T is the output of STN, YLR is the input image to

STN and θA is the estimated geometric parameters.

STN contains three parts. The first part is a localization

network, which takes the input image through convolutional

neural network (CNN) and estimate the warping parameters

from the input image. This part can be represented by a

nonlinear function f , which is parametrized as a learnable

geometric predictor. In the second part, the predicted transfor-

mation or warping parameters are utilized to form a sampling

grid, which is implemented by a grid generator. In the third

part, the input image and the sampling grid are taken as
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FIGURE 2. Deep residual learning network (DRLN) for localization
network.

inputs to the sampler, in order to interpolate the output image.

We note that the grid generator and the sampler from the

original method can be combined to form a single warping

function as shown in Fig.1.

Inspired by the idea of utilizing the residual learning for

feature extraction [45], we propose to introduce a deeper

residual learning localization network (DRLN) into the exist-

ing STN to create additional spaces and capabilities for

exploiting wider contextual information inside the input

images. Compared with the existing STN, our DRLN-based

STN achieves two advantages: (i) increase the learning power

to achieve more accurate estimation of the affine transform

parameters; (ii) enable the STN not only to learn but also

to optimize the capture of any geometric variation of input

images in an adaptive manner against any possible content

corruptions.

In the DRLN, we propose to stack 20 convolutional layers

to extract the features of the input LR image. Compared with

the existing localization using only two convolution layers

with hundreds of feature maps [45]. the proposed DRLN is

a deeper network with only 64 feature maps per layer, which

is more powerful yet requires less parameters. However it will

be more difficult to train such a deep network because of the

vanishing gradients. This explains why we use such a residual

learning framework, in order to overcome such a problem.

The operation of DRLN can be formulated as:

X̂HR = N (X̂T , θDRRL) + X̂T (6)

where X̂T and X̂HR are the input LR image and the output of

the DRLN network respectively, θDRRL is the weights of con-

volutional layers, and the function N (X̂T , θDRRL) represents

the estimated residual using the weights of the convolutional

layers.

For the convenience of implementation, the feature maps

that are extracted from DRLN are converted to one dimen-

sional vectors using a fully connected layer, before being

passed to the classifier that is able to estimate the geometric

transformation parameters. The output of the classifier can be

described as:

θA =

[

θ1 θ2 θ3
θ4 θ5 θ6

]

(7)

FIGURE 3. Illustration of our proposed very deep spatial transformer
(VDST).

In this way, more contextual information inside the LR

input images can be exploited yet the number of learning

parameters can also be reduced. Due to the deep structure

of our proposed DRLN, the level of the feature is enriched

and the accuracy of estimating the affine parameters is signif-

icantly improved in comparison with the existing STN [45].

Fig. 3 illustrates the overall structure of our proposed residual

learning based spatial transform module.

As seen in Fig. 3, while the proposed DRLN is responsible

for estimating the affine transformation parameters, the esti-

mated affine parameters are utilized to form a mesh grid,

which is implemented by grid generator. Both the input LR

image and the grid are taken as inputs to the sampler in order

to warp the input images. The full operation of our proposed

transformer module can be described as follows:

X̂c
Ti

=

H
∑

n

W
∑

m

Yc
LR(n,m)k (xi − m; 8x) k

(

yi − n; 8y

)

,

∀i ∈
[

1....H ′W ′
]

∀c ∈ [1....C] (8)

where HW and H ′W ′ are the height and the width of the

input and output images, respectively, 8x and 8y are the

parameters of generic sampling kernel k() which defines the

image interpolation, YLR(n,m) is the value at location (n,m)

of the input, X̂Ti is the output value for pixel i at location

(xi, yi), and C represents the number of the channel of the

input image.

By integrating the widely known VDSR [41] with the

proposed deep residual learning based spatial transformer,

we can construct a robust spatial-transformed deep image

super-resolution network as shown in Fig. 4. As seen,

the essential mechanism for achieving the robust single image

super-resolution is the accurate estimation of spatial trans-

form parameters, which simultaneously mitigate the geomet-

ric transformation effects and estimate the HR images via the

very deep learning process.

III. EVALUATIONS AND EXPERIMENTAL

RESULTS ANALYSIS

To evaluate our proposed very deep spatial transformer

(VDST), we carry out extensive experiments and report our

experimental results as well as their analyses in this section.
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FIGURE 4. Illustration of the proposed framework for robust image super-resolution, where the input LR image is rotated
by 20 degrees clock wise, and the HR image is generated with the corrected orientation after alleviating the geometric
transformation effects at the output.

To make it convenient for benchmarking and comparative

studies, we follow the experimental procedures as described

in [41]. Firstly, we compare the performance of VDST with

the existing spatial transform network [39]. For this compari-

son, we conduct experiments in order to evaluate the ability of

each network to mitigate the geometric transformation effects

and correct the orientation of the input image. Secondly, for

the analysis purposes, we calculate number of the parameters

needed in our proposed VDST and compare it with that of the

exist spatial transform network.

To validate the effectiveness of our proposed VDST, exten-

sive experiments are conducted on various standard bench-

mark datasets, which contain hundreds of natural images.

To evaluate the performance of our proposed, a wide range

of experiments are carried out under a number of different

geometric transformations, including rotation (R), scaling

(S), and translation (T), and we use these geometric trans-

formations to simulate the possible geometric distortions

likely incurred to the input images. The performance of our

proposed framework is compared with the existing VDSR

network to verify the effectiveness of our proposed. To vali-

date that our proposed VDST outperforms the existing STN

in terms of the robustness for single image super-resolution,

we carry out further experiments against the existing STN

followed by VDSR, for which we call STN-VDSR as an

additional benchmark for assessing our proposed.

A. EXPERIMENT DESIGN AND SETUP

1) DATASET FOR TRAINING AND TESTING

We conduct the training experiments using 91 images from

Yang et al. [29] and 200 images from the training set of

Berkeley Segmentation dataset [46] as our training data.

In each training batch, we randomly sample 25 patches.

We augment the training data in three ways by following

the protocol of the existing methods [41], and we generate

the LR training patches using the bicubic down-sampling.

For the convenience of benchmarking, we carry out exper-

iments using 5 publicly available datasets, including:

BSDS100 [46], SET5 [47], SET14 [48], URBAN100 [49]

and MANGA109 [50].

2) IMPLEMENTATION DETAILS

To simulate the effect of the geometric transformations,

we generate the transformed LR training image by five

different transformations, including: (i) the rotation effect

represented by R, in which the original image is rotated

clockwise by 20 degrees; (ii) the scaling effect represented by

S, in which the original image is scaled with a factor of 0.5;

(iii) the effect of both rotation and scaling represented by RS;

(iv) translation represented by T, in which the LR images are

translated by 5 pixels in both X and Y directions; and finally

(v) combinational effect of rotation, scaling and translation

represented by RTS.

As explained in the spatial transformater [39], the spa-

tial module can be inserted into any place of the exist-

ing network, and then the spatial network is trained

together with the existing network. Hence, our combined

network (VDST-VDSR) is trained end-to-end for a num-

ber of iterations until its convergence is reached. For the

convenience of understanding and verification, we make

our training codes and testing codes available on the

Github: https://github.com/HossamMKasem/A-Very-Deep-

Spatial-Transformer-Towards-Robust-Single-Image-Super-

Resolution.

We train all experiments over 10 epochs with batch size

25, in which the learning rate is set to 0.01 and the learning

rate decay is set to be 0. All the models that are utilized for

comparison purposes are trained in an end-to-endmanner. All

the training is performed on NVIDIA Tesla P100. The eval-

uation results of all experiments are presented in term of two

metrics widely used in the SR research community, which are

Peak-signal-to-noise-ratio (PSNR) and Structural Similarity
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FIGURE 5. Illustration of seven natural images used in our experiments.

TABLE 1. Comparisons of the network structure between the proposed
DRLN and the existing STN.

Index (SSIM). While the former metric is considered to be

an objective measurement of the quality for generated HR

image, the latter metric is considered to measure subjective

quality of the generated HR image.

B. EXPERIMENTS MEASURED BY THE NUMBER OF

PARAMETERS FOR DEEP-LEARNING NETWORKS

By using the number of parameters as the evaluating criteria,

Table 1 summarizes the comparative results between our

proposed VDST and the existing STN. In Table 1, the con-

volution layer is represented by Conv(ki, ni, ci), where the

variables ki, ni, ci represent the filter size, the number of

filters and the number of feature maps, respectively, and

the linear layer is represented by Linear (mi, oi), where the

variables mi, oi represent the size of the input vector and the

size of the output vector, respectively. Note that the classifier

works like a linear regression module to estimate the affine

transformation parameters. It consists of one fully-connected

layer where its network structure is described in Table 1.

As seen, the results given in Table 1 indicate that our

proposed VDST is powerful in structure, cost-effective in

learning, and capturing well the contextual information from

the input images, leading to the improved performances.

Inspired by the existing work [51], which is a typical

application using the STN, we follow their design to pro-

duce 200 feature maps as the first convolutional layer and

300 feature maps as the second layer, as shown in Table 1.

For our proposed VDST, we set the first 19 layers to generate

64 feature maps and the last convolutional layer to generate

3 feature maps. Overall, our VDST is much deeper and

thinner than the existing CNN for STN, paving the way for

extracting deep contextual information.

TABLE 2. Experimental results (PSNR/SSIM) achieved by the existing
various network structures compared with our proposed framework with
the scaling factor ×2.

From Table 1, it can seen that the parameters of our pro-

posed VDST is much less than that of the existing STN due

to the fact that it uses less number of feature maps and much

deeper layers in comparison with the existing STN.

C. EXPERIMENTS ON EFFECTIVENESS AND ROBUSTNESS

OF OUR PROPOSED FRAMEWORK

To validate the effectiveness and the accuracy of the proposed

deep spatial transformer using DRLN, we have carried out

a range of experiments upon natural images to estimate the

affine transformation parameters and mitigate the geometric

transformation effects. Fig.5 illustrates seven samples of such

natural images adopted as the test images in our experiments.

To evaluate the performance of our proposed, we trans-

formed the original images using two different transformation

effects. First, we translate the original images by 5 pixels in

X and Y directions and explore the robustness of our pro-

posed VDST against geometric transformations. For visual

inspections and comparisons between our proposed VDST

and the existing STN [39], Fig.6 shows five samples of the
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FIGURE 6. Visual comparison samples of our proposed VDST and existing STN: (i) the original images are translated in X, and Y direction by
5 Pixels. (ii) The target input patches and the rotated input patches are illustrated at the bottom of each original image. The output patches of our
proposed framework and the existing STN are given on the last row of images underneath each original image, and the bottom row presents the
corresponding outputs measured in PSNR/SSIM values. The lower row on the right is the output of the existing STN, and on the left is the output
of our proposed VDST, respectively.

FIGURE 7. PSNR and SSIM values of our proposed framework and the combination of the existing STN and VDSR: The original
images are translated in X, and Y direction by 5 pixels. The PSNR values are shown in (a), and SSIM values are shown in (b).

test images under the translation effect. It can be seen that

VDST can estimate the affine parameters more accurately,

and hence mitigate the transformation effects better than the

existing STN. Further, the PSNR and SSIM values of our

proposed spatial transformer is also much better than the exist

STN.

Fig.7 shows the objective evaluation results in terms of

PSNR/SSIM when the original images are translated in X

and Y direction by 5 pixels, simulating another type of

possible geometric distortion effect. As seen again, our pro-

posed achieves higher PSNR/SSIM values over the existing

STN. To test the robustness of our proposed against stronger

transformation effects, we apply the combinational effect

of rotation, translation and scaling, and the corresponding

experimental results are illustrated in Fig. 8. As seen, the sim-

ulation results indicate that our proposed spatial transformer

still outperforms the existing STN in estimating the affine

parameters and mitigating the transformation effects.

As our proposed embeds a deeper DRLN and hence capa-

ble of exploiting more contextual information out of the

input images, more levels of features can be provided for

the classifier, and hence estimate the affine transformation

parameters more accurately. Based on the deep estimation

of parameters, our proposed VDST is able to mitigate the

geometric transformation effects and produce an image in

the same orientation as the desired image. Together with the

experimental results summarized in Table 1, we can conclude

that: (i) our proposed spatial transformer requires less num-

ber of network parameters than that of the existing spatial

transformer, providing better cost-effectiveness; (ii) our pro-

posed VDST outperforms the existing spatial transformer in

estimating the affine parameters and hence achieving better

mitigation for the possible geometric transformations.

To test the robustness of our proposed VDST against

all the simulated geometric transformations, including rota-

tion (R), scaling (S), rotation and scaling (RS), transla-

tion (T), and combination of rotation, scaling and translation

(RTS), we carried out five experiments in total to evaluate

the performances of our proposed in comparison with the

existing state of the art VDSR [41], and illustrate how spatial
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FIGURE 8. PSNR and SSIM values of our proposed framework and the combination of the existing STN and VDSR: The original
images are rotated, translated and scaled (RTS). The PSNR values are shown in (a), and SSIM values are shown in (b).

TABLE 3. Experimental results (PSNR/SSIM) achieved by the existing
various network structures compared with our proposed framework with
the scaling factor ×3.

transformation could be alleviated by our proposed frame-

work. As our proposed framework is the first attempt for

robust single image super-resolution and there exist no close

work to compare, we combine the existing spatial transform

network (STN) with the VDSR together to formulate a new

benchmark, referred to as STN-VDSR.

Table 2, Table 3 and Table 4 show the comparative experi-

mental results between the existing VDSR, STN-VDSR and

our proposed VDST-VDSR under a number of the transfor-

mation effects with the scaling factors ×2, ×3, ×4, respec-

tively. By comparing the results given in Table 2, we can

observe that our proposed method significantly outperforms

the VDSR, and STN-VDSR in terms of both PSNR and

SSIM. From the simulation results for the rotation effect,

as an example, it can be further seen that our proposedmethod

has higher PSNR scores by at least 2dB in all test datasets

across all rotation angles. In terms of SSIM, our proposed also

achieves higher values than that of VDSR and STN-VDSR.

TABLE 4. Experimental results (PSNR/SSIM) achieved by the existing
various network structures compared with our proposed framework with
the scaling factor ×4.

By comparing and examining the simulation results across

Table 3 and Table 4 for the effect of RS, T, and RTS, it can

also be seen that our VDST-VDSR outperforms the existing

VDSR and STN-VDSR in both PSNR and SSIM values.

Correspondingly, it can be concluded that our proposed suc-

cessfully provides a well-validated solution for tackling the

effects of geometric transformations, and achieve a robust

single image super-resolution. This achieved improvement is

due to the capability of our proposed method in exploiting

the contextual information spread over the image regions as

well as extraction of deeper features from the input images.

In other words, the experimental results confirm that our

proposed VDST-VDSR improves the accuracy of estimating

the transformation parameters, leading to the superior perfor-

mances for robust single image super-resolution.

To visually compare the experimental results between our

proposed and the existing benchmarks, we illustrate a num-
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FIGURE 9. Visual comparison samples of our proposed VDST-VDSR, VDSR and STN-VDSR. Top left row: original image and
rotated image by 20 degree. Under each row: The desired output, rotated input patch, VDSR output (PSNR/SSIM),STN-VDSR
output (PSNR/SSIM), and our proposed framework (PSNR/SSIM), respectively.

FIGURE 10. Convergence curves of the objective function, and the PSNR/SSIM values under the rotation effect: (a) Loss function values during the
training phase. (b) Loss function values during the validation phase; (c) The PSNR values; and (d) The SSIM values.

ber of samples in Fig.9 for visual inspections and subjec-

tive assessments. In Fig.9, we show visual comparisons on

BSDS 100, MANGA 109, URBAN 100 and SET 5 with a

scaling factor of 2× under the rotation(R) effect. As seen,

our proposed framework accurately mitigates the rotation

effect, and reconstructs the straight lines and the grid patterns

well, such as the stripes on the tiger, the window, and the

lines on the butterfly. The visual inspection supports that

our proposed VDST-VDSR outperforms both VDSR and

STN-VDSR.

D. EXPERIMENT ON CONVERGENCE

We conduct an experiment to test the convergence of the

proposed VDST-VDSR according to the loss function in (4)

compared with STN-VDSR, and VDSR. All the results are

illustrated as convergence curves during the training, and

testing steps. In addition, we test the performance of our

proposed framework by calculating the PSNR/SSIM values

during each epoch, and hence compare these values with the

existing STN.

We test the convergence of our proposed framework under

the rotation(R) effect, the curves of the convergence, and

PSNR/SSIM are presented in Fig. 10. From the results shown

in Fig. 10, we can conclude that our proposed framework

takes less number of epochs to reach the convergence point

than that by STN-VDSR. our proposed framework takes no

more than 5 epochs to reach the convergence point. Fur-

ther, the PSNR/SSIM curves validate the superiority of our

proposed VDST in terms of both PSNR and SSIM values.

To provide a comprehensive assessment, we test the conver-

gence of our proposed framework under a stronger transfor-

mation effect which is a combination of rotation, translation

and scaling (RTS), and hence compare the proposed frame

work convergence curves with STN-VDSR curves as shown

in Fig. 11. The results in Fig. 11 confirm that our proposed

VDST is able to reach the convergence point faster that than
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FIGURE 11. Convergence curves of the objective function, and the PSNR/SSIM values under RTS effect: (a) Loss function values during the training
phase.(b) Loss function values during the validation phase; (c) PSNR values; and (d) SSIM values.

TABLE 5. Experimental results (PSNR/SSIM) achieved by the existing
various network structures compared with our proposed framework with
the scaling factor ×2.

of STN-VDSR, andmeanwhile, our proposed framework still

have higher PSNR and SSIM values than that of STN-VDSR.

E. EXPERIMENT ON CHANGING THE ORDER OF

GEOMETRIC TRANSFORMATION AND SUPER-RESOLUTION

To further evaluate our proposed, we conduct another experi-

ment to test the performance of the proposed VDST-VDSR

in case it is required that the position of the spatial trans-

form module and the VDSR module need to be changed.

In other words, we connect the VDSR model to the input

image to generate the HR image, followed by our VDST

to mitigate the transformation effects. For fair comparison,

we change the order of the existing STN and VDSR module

as the comparing benchmark. Correspondingly, we refer our

new method as VDSR-VDST and the existing method as

VDSR-STN.

All the results are illustrated in Table 5. From the results

shown in Table 5, we can see that our proposed VDSR-VDST

outperforms the existing VDSR and VDSR-STN. We note

that the two versions of proposed method (VDST-VDSR and

VDSR-VDST) in Table 2 and Table 5 produce similar results

in terms of PSNR and SSIM values (with 0.32dB change in

PSNR on average). Our analysis shows that this phenomenon

TABLE 6. Experimental results (PSNR/SSIM) achieved by the existing
various network structures compared with our proposed framework with
the scaling factor ×2.

is due to the fact that the spatial transformer is a linear module

for affine transformation, yet the super resolution module is a

nonlinear module (because of the ReLU nonlinear activation

in the neural network). When both modules are interchanged,

as a result, the nonlinearity of the super-resolution module

inevitably causes the small changes in PSNR and SSIM

values.

F. EXPERIMENTS ON REAL WORLD IMAGES

In real scenarios, the users can define the desired geomet-

ric transformations manually to achieve the simultaneous

geometric transformation and super-resolution. To validate

the effectiveness and the accuracy of our proposed method,
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FIGURE 12. Illustration of nine real world images used in our experiments.

FIGURE 13. Illustration of real world images for geometric transformation and super-resolution.

we have conducted extensive experiments on real world

images to estimate the affine transformation parameters and

mitigate the geometric transformation effects. Fig.12 illus-

trates nine samples of real world images adopted as test

images in our experiments. We have labelled the images

used in the test by numbers from the top left to bottom

right in Fig.12 (i.e. we give number 1 to the image in the

left of the top row, number 2 to the next image in the top

row, and number 6 to the left image in the bottom row and

so on.). These images were captured using Nikon coolpix

P500 camera. We carried out five experiments to evaluate the

performances of our proposedmethod in comparison with the

existing state of the art VDSR [41] and the combination of

STN and VDSR. We tested the methods under five different

transformation effects, including rotation (R), scaling (S),

rotation and scaling (RS), translation (T), and combination

of rotation, scaling and translation (RTS).

Table 6 shows the experimental results of the existing

VDSR, STN-VDSR and our proposed VDST-VDSR under

a number of various transformation effects with scale ×2.

By comparing the results shown in Table 6, we can conclude

that our proposed method shows superior performances com-

pared with the existing VDSR and STN-VDSR in terms of

PSNR and SSIM across all the testing images. The results

in Table 6 show that our proposed method produces higher

PSNR and SSIM values for the images that contain more
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foreground shapes. Compared with the benchmarks, our pro-

posed achieves at least 1dB higher PSNR scores across all the

tested images.

Fig.13 illustrates the results of our further experiments

upon real-world images, where three input samples are

shown, containing rich details such as face, fence, and shapes

for detailed comparative analysis. As seen, the proposed

VDST-VDSR can preserve the image details while suc-

cessfully performing geometric transformation and super-

resolutions. In contrast, the combination of STN and VDSR,

i.e., STN-VDSR, fails to achieve the desired translation and

RTS effects, where more blurry results are produced and

noticeable. Therefore, such experimental results further vali-

date the improved performances and advantages achieved by

our proposed.

IV. CONCLUSION

In this paper, we proposed a novel spatially transformed

deep framework to achieve robust single image super-

resolution. Our proposed framework can simultaneously per-

form geometric corrections and super-resolution reconstruc-

tion, which, to the best of our knowledge, is the first deep

learning-based method to tackle such problems. Our pro-

posed framework is based on improving the existing STN

with a deep residual learning network (DRLN) to extract

deeper features and exploit contextual information against

the process of possible geometric transformations. Extensive

evaluations on widely used datasets with different transfor-

mation effects demonstrate that the proposed deep framework

successfully mitigates the effect of the geometric transforma-

tions and achieves superior performances in comparison with

the existing state of arts, including VDSR and STN-VDSR,

the combination of the existing state of the arts for both spatial

transformation and image super-resolution. Future research

can be identified to consider multiple networks for handling

wider range of transformations, leading to a further opti-

mization of the SR performances and improvement upon its

robustness against not only the geometric transformations but

also distortions.

ACKNOWLEDGMENT

(Jianmin Jiang and Hossam M. Kasem are co-first authors.)

REFERENCES

[1] H. Wang, X. Gao, K. Zhang, and J. Li, ‘‘Single-image super-resolution

using active-sampling Gaussian process regression,’’ IEEE Trans. Image

Process., vol. 25, no. 2, pp. 935–948, Feb. 2016.

[2] Y. Zhang, J. Liu, W. Yang, and Z. Guo, ‘‘Image super-resolution based

on structure-modulated sparse representation,’’ IEEE Trans. Hum.-Mach.

Syst., vol. 24, no. 9, pp. 2797–2810, Sep. 2015.

[3] Y. Li, Y. Wang, Y. Li, L. Jiao, X. Zhang, and R. Stolkin, ‘‘Single image

super-resolution reconstruction based on genetic algorithm and regulariza-

tion prior model,’’ Inf. Sci., vol. 372, pp. 196–207, Dec. 2016.

[4] T. Huang and R. Tsai, ‘‘Multi-frame image restoration and registration,’’

in Advances in Computer Vision and Image Processing. Greenwich, CT,

USA: JAI Press, 1984, pp. 317–339.

[5] R. Chao, X. He, and T. Q. Nguyen, ‘‘Single image super-resolution via

adaptive high-dimensional non-local total variation and adaptive geomet-

ric feature,’’ IEEE Trans. Image Process., vol. 26, no. 1, pp. 90–106,

Jan. 2017.

[6] J. Jiang, X. Ma, C. Chen, T. Lu, Z. Wang, and J. Ma, ‘‘Single image

super-resolution via locally regularized anchored neighborhood regression

and nonlocal means,’’ IEEE Trans. Multimedia, vol. 19, no. 1, pp. 15–26,

Jan. 2017.

[7] L. J. Deng, W. Guo, and T.-Z. Huang, ‘‘Single image super-resolution

by approximated Heaviside functions,’’ Inf. Sci., vol. 348, pp. 107–123,

Jun. 2016.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Image super-resolution using

deep convolutional networks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 38, no. 2, pp. 295–307, Feb. 2015.

[9] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, ‘‘Fast and robust

multiframe super resolution,’’ IEEE Trans. Image Process., vol. 13, no. 10,

pp. 1327–1344, Oct. 2004.

[10] Q. Yuan, L. Zhang, and H. Shen, ‘‘Multiframe super-resolution employing

a spatially weighted total variation model,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 3, pp. 379–392, Mar. 2012.

[11] A. W. M. van Eekeren, K. Schutte, and L. J. van Vliet, ‘‘Multiframe super-

resolution reconstruction of small moving objects,’’ IEEE Trans. Image

Process., vol. 19, no. 11, pp. 2901–2912, Nov. 2010.

[12] K. I. Kim and Y. Kwon, ‘‘Single-image super-resolution using sparse

regression and natural image prior,’’ IEEE Trans. Pattern Anal. Mach.

Intell., vol. 32, no. 6, pp. 1127–1133, Jun. 2010.

[13] Z. Zhu, F. Guo, H. Yu, and C. Chen, ‘‘Fast single image super-resolution

via self-example learning and sparse representation,’’ IEEE Trans. Multi-

media, vol. 16, no. 8, pp. 2178–2190, Dec. 2014.

[14] N. Qi, Y. Shi, X. Sun, W. Ding, and B. Yin, ‘‘Single image super-resolution

via 2D sparse representation,’’ in Proc. IEEE Int. Conf. Multimedia Expo

(ICME), Jun./Jul. 2015, pp. 1–6.

[15] S. Rhee and M. G. Kang, ‘‘Discrete cosine transform based regularized

high-resolution image reconstruction algorithm,’’Opt. Eng., vol. 38, no. 8,

pp. 1348–1356, 1999.

[16] H. Demirel, S. Izadpanahi, and G. Anbarjafari, ‘‘Improved motion-based

localized super resolution technique using discrete wavelet transform for

low resolution video enhancement,’’ in Proc. 17th Eur. Signal Process.

Conf., Aug. 2009, pp. 1097–1101.

[17] L. Yue, H. Shen, J. Li, Q. Yuanc, H. Zhang, and L. Zhang, ‘‘Image super-

resolution: The techniques, applications, and future,’’ Signal Process.,

vol. 128, pp. 389–408, Nov. 2016.

[18] M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, ‘‘Infrared image

registration and high-resolution reconstruction using multiple translation-

ally shifted aliased video frames,’’ IEEE Trans. Instrum. Meas., vol. 49,

no. 5, pp. 915–923, Oct. 2002.

[19] B. Wan, L. Meng, D. Ming, H. Qi, Y. Hu, and K. D. K. Luk, ‘‘Video image

super-resolution restoration based on iterative back-projection algorithm,’’

in Proc. IEEE Int. Conf. Comput. Intell. Meas. Syst. Appl., May 2009,

pp. 46–49.

[20] H. Stark and P. Oskoui, ‘‘High-resolution image recovery from image-

plane arrays, using convex projections,’’ J. Opt. Soc. Amer. A, Opt. Image

Sci., vol. 6, no. 11, pp. 1715–1726, 1989.

[21] K. Zhang, X. Gao, D. Tao, and X. Li, ‘‘Single image super-resolution

with non-local means and steering kernel regression,’’ IEEE Trans. Image

Process., vol. 21, no. 11, pp. 4544–4556, Nov. 2012.

[22] T. Sigitani, Y. Iiguni, and H. Maeda, ‘‘Image interpolation for progressive

transmission by using radial basis function networks,’’ IEEE Trans. Neural

Netw., vol. 10, no. 2, pp. 381–390, Mar. 1999.

[23] M. Protter, M. Elad, H. Takeda, and P. Milanfar, ‘‘Generalizing the

nonlocal-means to super-resolution reconstruction,’’ IEEE Trans. Image

Process., vol. 18, no. 1, pp. 36–51, Jan. 2009.

[24] J. Sun, Z. Xu, and H.-Y. Shum, ‘‘Image super-resolution using gradient

profile prior,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2008, pp. 1–8.

[25] X. Li, H. He, R. Wang, and D. Tao, ‘‘Single image superresolution via

directional group sparsity and directional features,’’ IEEE Trans. Image

Process., vol. 24, no. 9, pp. 2874–2888, Sep. 2015.

[26] S. C. Park, M. K. Park, and M. G. Kang, ‘‘Super-resolution image recon-

struction: A technical overview,’’ IEEE Signal Process.Mag., vol. 20, no. 3,

pp. 21–36, May 2003.

[27] Y.-W. Tai, S. Liu, M. S. Brown, and S. Lin, ‘‘Super resolution using edge

prior and single image detail synthesis,’’ in Proc. Comput. Vis. Pattern

Recognit., Jun. 2010, pp. 2400–2407.

[28] J. Sun, J. Sun, Z. Xu, and H.-Y. Shum, ‘‘Gradient profile prior and its

applications in image super-resolution and enhancement,’’ IEEE Trans.

Image Process., vol. 20, no. 6, pp. 1529–1542, Jun. 2011.

45630 VOLUME 7, 2019



J. Jiang et al.: Very Deep Spatial Transformer Towards Robust Single Image Super-Resolution

[29] J. Yang, J. Wright, T. S. Huang, and Y. Ma, ‘‘Image super-resolution

via sparse representation,’’ IEEE Trans. Image Process., vol. 19, no. 11,

pp. 2861–2873, Nov. 2010.

[30] W. Dong, L. Zhang, G. Shi, and X. Wu, ‘‘Image deblurring and

super-resolution by adaptive sparse domain selection and adaptive regu-

larization,’’ IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,

Jul. 2011.

[31] T. Peleg and M. Elad, ‘‘A statistical prediction model based on sparse

representations for single image super-resolution,’’ IEEE Trans. Image

Process., vol. 23, no. 6, pp. 2569–2582, Jun. 2014.

[32] V. Papyan and M. Elad, ‘‘Multi-scale patch-based image restoration,’’

IEEE Trans. Image Process., vol. 25, no. 1, pp. 249–261, Jan. 2016.

[33] W. Dong, L. Zhang, R. Lukac, and G. Shi, ‘‘Sparse representation based

image interpolation with nonlocal autoregressive modeling,’’ IEEE Trans.

Image Process., vol. 22, no. 4, pp. 1382–1394, Apr. 2013.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Int. Conf. Neural Inf.

Process. Syst., 2012, pp. 1097–1105.

[35] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional

network for image super-resolution,’’ in Computer Vision—ECCV (Lec-

ture Notes in Computer Science), vol. 8692, 2014, pp. 184–199.

[36] C. Osendorfer, H. Soyer, and P. van der Smagt, ‘‘Image super-resolution

with fast approximate convolutional sparse coding,’’ in Proc. Int. Conf.

Neural Inf. Process., 2014, pp. 250–257.

[37] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, ‘‘Coupled dictionary

training for image super-resolution,’’ IEEE Trans. Image Process., vol. 21,

no. 8, pp. 3467–3478, Aug. 2012.

[38] X. Wang, K. Yu, C. Dong, and C. C. Loy, ‘‘Recovering realistic texture in

image super-resolution by deep spatial feature transform,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 606–615.

[39] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, ‘‘Spatial

transformer networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015,

pp. 2017–2025.

[40] C. Dong, C. C. Loy, and X. Tang, ‘‘Accelerating the super-resolution

convolutional neural network,’’ in Proc. Eur. Conf. Comput. Vis., 2016,

pp. 391–407.

[41] J. Kim, J. K. Lee, and K. M. Lee, ‘‘Accurate image super-resolution using

very deep convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2016, pp. 1646–1654.

[42] J. Johnson, A. Alahi, and F. F. Li, ‘‘Perceptual losses for real-time style

transfer and super-resolution,’’ in Proc. Eur. Conf. Comput. Vis., 2016,

pp. 694–711.

[43] C. Ledig et al., ‘‘Photo-realistic single image super-resolution using a

generative adversarial network,’’ in Proc. Comput. Vis. Pattern Recognit.,

Jul. 2017, pp. 105–114.

[44] C.-H. Lin and S. Lucey, ‘‘Inverse compositional spatial transformer net-

works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jul. 2017, pp. 2252–2260.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 770–778.

[46] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, ‘‘Contour detection and

hierarchical image segmentation,’’ IEEE Trans. Pattern Anal.Mach. Intell.,

vol. 33, no. 5, pp. 898–916, May 2011.

[47] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, ‘‘Low-

complexity single-image super-resolution based on nonnegative neighbor

embedding,’’ in Proc. BMVC, 2012.

[48] R. Zeyde,M. Elad, andM. Protter, ‘‘On single image scale-up using sparse-

representations,’’ in Proc. Int. Conf. Curves Surfaces. Berlin, Germany:

Springer, 2010, pp. 711–730.

[49] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from

transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 5197–5206.

[50] Y. Matsui et al., ‘‘Sketch-based manga retrieval using manga109 dataset,’’

Multimedia Tools Appl., vol. 76, no. 20, pp. 21811–21838, 2017.

[51] D. CireçAn, U. Meier, J. Masci, and J. Schmidhuber, ‘‘2012 special issue:

Multi-column deep neural network for traffic sign classification,’’ Neural

Netw., vol. 32, no. 1, pp. 333–338, 2012.

JIANMIN JIANG received the Ph.D. degree from

the University of Nottingham, Nottingham, U.K.,

in 1994. From 1997 to 2001, he was a Full Pro-

fessor of computing with the University of Glam-

organ, Pontypridd, U.K. In 2002, he joined the

University of Bradford, Bradford, U.K., as a Chair

Professor of digital media and the Director of the

Digital Media and Systems Research Institute. He

was a Full Professor with the University of Sur-

rey, Guildford, U.K., from 2010 to 2014, and a

Distinguished Chair Professor (1000-Plan) with Tianjin University, Tianjin,

China, from 2010 to 2013. He is currently a Distinguished Chair Professor

and the Director of the Research Institute for Future Media Computing, Col-

lege of Computer Science and Software Engineering, Shenzhen University,

Shenzhen, China. He has published around 400 refereed research papers.

His current research interests include, image/video processing in compressed

domain, digital video coding, medical imaging, computer graphics, machine

learning and AI applications in digital media processing, and retrieval and

analysis. He was a Chartered Engineer, a Fellow of IEE and RSA, a member

of EPSRC College in the U.K., and an EU FP-6/7 Evaluator.

HOSSAM M. KASEM received the Ph.D. degree

from the Egypt-Japan University of Science and

Technology, Egypt, in 2015. From 2015 to 2017,

he was an Assistant Professor with Faculty of

Engineering, Tanta University, Egypt. Since 2017,

he has been a Postdoctoral Fellow with the Digital

Media and Systems Research Institute, Shenzhen

University, China. His research interests include

deep learning applications in digital multime-

dia analysis, wireless communication, and signal

processing application in multimedia.

KWOK-WAI HUNG received the B.Eng. and

Ph.D. degrees from The Hong Kong Polytechnic

University, in 2009 and 2014, respectively. From

2014 to 2016, he was a Research Engineer with

Huawei and ASTRI. Since 2016, he has been an

Assistant Professor with the Research Institute for

Future Media Computing, Shenzhen University,

China. His research interests include deep learning

applications in digital multimedia processing and

signal processing applications in multimedia.

VOLUME 7, 2019 45631


	INTRODUCTION
	SPATIALLY TRANSFORMED DEEP FRAMEWORK FOR ROBUST IMAGE SUPER-RESOLUTION
	RELATED WORK AND BACKGROUNDS
	OUR PROPOSED WORK

	EVALUATIONS AND EXPERIMENTAL RESULTS ANALYSIS
	EXPERIMENT DESIGN AND SETUP
	DATASET FOR TRAINING AND TESTING
	IMPLEMENTATION DETAILS

	EXPERIMENTS MEASURED BY THE NUMBER OF PARAMETERS FOR DEEP-LEARNING NETWORKS
	EXPERIMENTS ON EFFECTIVENESS AND ROBUSTNESS OF OUR PROPOSED FRAMEWORK
	EXPERIMENT ON CONVERGENCE
	EXPERIMENT ON CHANGING THE ORDER OF GEOMETRIC TRANSFORMATION AND SUPER-RESOLUTION
	EXPERIMENTS ON REAL WORLD IMAGES

	CONCLUSION
	REFERENCES
	Biographies
	JIANMIN JIANG
	HOSSAM M. KASEM
	KWOK-WAI HUNG


