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Abstract 

We propose an expression of the hopping rate between localized states in semiconducting 

disordered polymers that contains the most used rates in the literature as special cases. We stress 

that these rates cannot be obtained directly from electron transfer rate theories as it is not possible 

to define diabatic localized states if the localization is caused by disorder, as in most polymers, 

rather than nuclear polarization effects. After defining the separate classes of accepting and 

inducing nuclear modes in the system, we obtain a general expression of the hopping rate. We 

show that, under the appropriate limits, this expression reduces to (i) single-phonon rate expression 

or (ii) the Miller-Abrahams rate or (iii) a multi-phonon expression. The description of these limits 

from a more general expression is useful to interpolate between them, to validate the assumptions 

of each limiting case, and to define the simplest rate expression that still captures the main features 

of the charge transport. When the rate expression is fed with a range of realistic parameters the 

deviation from the Miller-Abrahams rate is large or extremely large, especially for hopping toward 

lower energy states, due to the energy gap law.   

 

 

1. Introduction 

Charge transport in semiconducting polymers is thought to take place by a sequence of charge 

hopping events between localized states.1 Given the great technological importance of these 

materials,2-4 a large number of theoretical works have been devoted to the study of various aspects 

of the charge transport mechanism. A good fraction of these works focuses on the 

phenomenological description of the transport,5,6 i.e. they are based on hypotheses on the nature 

of the states relevant for transport, their energy distribution and the hopping rates between them, 

and attempt to describe the relationship between a limited number of material properties (density 

of states, localization of the charge) and the observable charge mobility. This class of methods is 

rooted in the study of charge transport in disordered inorganic materials and is the topic of several 

reviews and monographs.1,7 More recently, it became possible to build atomistic models of realistic 

polymers and sometimes even to evaluate their electronic structure.8-14 These more detailed models 

aim at elucidating the relationship between the chemical structure and the mobility of the materials. 

There is an increasing number of examples of materials where modest chemical differences cause 

enormous changes in charge mobility15,16 and one of the challenges for theoreticians is to develop 

models that describe correctly the chemical details but also the charge transport at macroscopic 

levels. A multi-scale approach is deemed necessary to tackle this problem and few excellent 

attempts have been proposed recently.17,18  
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Crucial for all types of models (phenomenological, atomistic or multi-scale) is the expression used 

to compute the hopping rate between two different electronic states. In the literature, different rate 

expressions, usually derived from different branches of physics, are adopted, and their validity is 

discussed on the basis of the comparison between computed and experimental results. In this paper, 

we derive a more general expression for the hopping rate that includes the most commonly used 

hopping rates as limiting cases. The first advantage of having such a general expression is that it 

makes it easy to understand the relationships between the different rate expressions and the 

assumptions needed to make each of them valid. Furthermore, such a general expression allows 

one to interpolate between limiting cases, i.e. study how the assumptions of a particular limiting 

expression influence the final results. If one is interested in a more “universal” behaviour of 

semiconducting polymers, it would be desirable to start from a general rate expression that contains 

the minimum number of assumptions. Finally, a more general expression is typically best suited 

to incorporate the details of atomistic calculations and can therefore be used to create the link 

between detailed electronic structure calculations and larger scale models. 

When looked at individually, the hopping rate expressions that have been recently used seem to 

be in contradiction with each other and with other theories. The most used rate expression to study 

charge transport in polymers is the Miller-Abrahams rate 12k  for the hopping between two 

electronic states (say 1 and 2):19 

   
 

0

12

12 0

12 B 12

0

exp 0

k for E
k

k E k T for E

  
 

  
      (1) 

0k  is a function that depends on the distance and localization of the states (not relevant for this 

discussion), 12E  is the energy of the final state minus the energy of the initial state and Bk T  is 

the thermal energy. According to this expression, the downhill rate is independent of 12E . This 

contradicts what is known in photophysics as the energy gap law,20,21 i.e. an exponential decrease 

of the non-radiative transition rate between two states with the increase of the energy gap between 

them. The rate expressions based on Marcus theory22 or alternative formulations with a similar 

dependence on the energy gap23 seem to err in the opposite direction, making 

 2

12 12 Bexp ( ) 4k E k T     , i.e. the rate decreases too rapidly (as a Gaussian) for very 

negative 12E . In a series of recent works, Vukmirovic et al.8,24-26 have used an alternative 

expression where the hopping between states is promoted via electron-phonon coupling by a 

phonon matching the energy difference between them. The results depend strongly on the phonon 

spectrum, unlike the other two models mentioned above. The main objective of this paper is to 

reconcile the various models proposed and describe the relation between them in a simple fashion.  

Aspects that will not be discussed here include the effect of the distance between the states, their 

relative localization, and the possibility that stronger or weaker coupling between them can result 

from the details of the electronic structure. These are also extremely important effects. It was 

shown for example that the distance dependence normally included in the Miller-Abrahams rate is 

too approximate.25 This was later found also in ref. 23 where the importance of variable localization 

of states was highlighted. The rest of this paper, however, will consider only the hopping between 

two states, with arbitrary localization and distance between them.   
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2. Theory 

2.1 Two electronically coupled manifolds of vibronic states 

To define more clearly the notation and compare with well-known results from the literature, we 

start by reconsidering the classical problem of non-adiabatic electron transfer between two 

manifolds of vibronic states. We will explain in the next section why this framework is not 

appropriate for the problem of charge hopping in polymeric systems but, as we will see, there is a 

component of this theory that can be transferred to the case of charge hopping in polymeric systems 

and there are relevant similarities between the results under certain conditions. We indicate with 

{1, }w  and { 2, ' }w  two sets of vibronic states localized on two different sites (see Figure 1). 

The indexes 1 and 2 label the two electronic states and the indexes w  and 'w  are the vibrational 

quantum numbers (we treat them as scalar but, in the presence of many nuclear modes, they can 

represent the vectors of the quantum numbers). We assume that the vibrational degrees of freedom 

are described by quantum harmonic oscillators. The sets of harmonic oscillators in states 1 and 2 

have the same frequencies but they can be displaced with respect to each other, i.e. the equilibrium 

position along certain modes is different in electronic states 1 and 2.  

A very general Hamiltonian can be written as: 

   1, 2, ' 12, '

' , '

1, 1, 2, ' 2, ' 1, 2, ' . .w w ww

w w w w

H w w w w H w w h c                              (2) 

1,w  (or 2, 'w ) is the energy of the unperturbed vibronic state. According to the Condon 

approximation, one can separate the matrix element 12, 'wwH  into an electronic component 12V  and 

the Franck-Condon overlap 'wwS  between the vibrational states w  and 'w  in electronic states 1 and 

2, respectively: 

   
12, ' 12 '

1, 2, ' 1 2 '
el

ww ww
H w H w H w w V S          (3) 

The hopping rate 12k  from any state in the manifold {1, }w  to any state in the manifold { 2, ' }w

can be given by the Fermi Golden Rule, if the coupling is sufficiently weak:  

2

12 12, ' 2, ' 1,

, '

2
( ) ( )T ww w w

w w

k P w H


     

 
2 2

12 ' 2, ' 1,

, '

2
( ) ( )T ww w w

w w

V P w S


     

 
2

12 FCWT 12

2
V E


          (4) 

where ( )TP w  is the probability that vibronic state w on electronic state 1 is occupied at temperature 

T and  is the Dirac delta function. The summation in the second equality is written more 
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compactly as  FCWT 12E  , a density of states weighted by the Franck-Condon factor and 

temperature, where 12 2,0 1,0E      is the energy difference between the lowest vibronic states of 

each manifold.  

 

 

 

Figure 1. Schematics of the interacting manifold of vibronic states. If the two sets are coupled by 

a common electronic coupling term 12V  we obtain the general structure of most non-adiabatic 

electron transfer theories. This work discusses a general rate in the case where the electronic 

coupling between the two manifolds is promoted by nuclear modes { }mq  and would be otherwise 

zero in the absence of this mode. 

 

 

The function  FCWT 12E   depends on the Franck-Condon factors, which are in turn determined 

by the relative displacement from the equilibrium position in going from state 1 to state 2. An 

analytical expression for 'wwS  is available if one assumes that the vibrational modes are harmonic. 

Two limiting cases are particularly useful. If one assumes that the all nuclear modes can be treated 

classically, the function FCWT  can be written as27 

    
B B

2( )1
exp

4 4

Marcus c
FCWT

c c

E
E

k T k T




 

  
   

 
      (5) 

     

where the effect of the different equilibrium geometry between states 1 and 2 is parameterized by 

the classical reorganization energy c. The combination of eq. (4) and (5) gives the same charge 

hopping rate derived by Marcus.22    
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If one assumes that a single vibrational mode should be treated quantum mechanically and all the 

others classically, the function FCWT can be written as 

    
2

B B

2

'

'

( ( ' ) )1
( ) exp

4 4

A
MLJ c
FCWT ww

w wc c

E w w
E P w S

k T k T

 


 

    
   

 
   ,                 (6) 

where the Franck-Condon integrals 'wwS  are calculated as:28 

 
   

   

''
'

' , ' '

0 ' 0

1 ! '!
exp

2 ! '! ! ' ' !

u uu
w w

ww w u w u

u u

GG w w
S

u u w u w u




 

 

 
  

  
  .  (7) 

G is the Huang-Rhys factor, which describes the relative displacement along the quantum normal 

mode with energy 
A  and is related to the quantum component of the reorganization energy as

A

q G  . The rate given by the combination of eq. (4) and eq. (6) is very similar to that known 

as Marcus-Levich-Jortner rate,29 which is more commonly evaluated with the further 

simplification ( 0) 1P w    and ( 0) 0P w    valid when B

A k T . We have used above the 

notation more common in chemical physics. However, expressions equivalent to eq. (5) and eq. 

(6) respectively have been derived in the context of small polaron hopping in solid state physics 

by Holstein30 and Emin.31  

 

  

2.2 Hopping promoted by inducing vibrational modes 

The theoretical framework described in the previous section cannot be used to describe hopping 

between states localized by disorder in polymeric semiconductors. States 1 and 2 are obtained by 

diagonalizing the electronic Hamiltonian and, by construction, the matrix element 12V  is null. It is 

not easy to decompose the states of polymeric semiconductors into weakly interacting pairs 

(diabatic states) as many of them overlap considerably in space.11,23 The natural generalization of 

the theory is to consider that the electronic coupling between states is modulated by vibrational 

modes that induce the transition. The electronic coupling between state 1 and 2 is therefore zero 

on average but the displacement of certain nuclear modes may induce a coupling proportional to 

the displacement.32 This linear non-local coupling is known in other areas of chemical physics as 

the Herzberg-Teller coupling (responsible for the intensity of optically forbidden electronic 

transitions),33 non-adiabatic coupling (responsible for (photo)chemical dynamics involving 

multiple potential energy surfaces)34 or non-local electron-phonon coupling (used in the solid state 

physics of molecular crystals).35 In the original paper by Miller and Abrahams,19 it was assumed 

that acoustic modes were responsible for this coupling, while here we have not made any 

assumption on their nature. To describe this situation the Hamiltonian in eq. (2) needs to be 

modified as follows: 

    1, 2, '

'

1, 1, 2, ' 2, 'w w

w w

H w w w w     
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2

2

12, ' 2
. '

1 1
1, 2, ' .

2 2

I

m m ww m m

m w w m m

M q S w w q h c
q


 

     
 

      (8) 

With respect to the Hamiltonian in eq. (2) we have substituted the matrix element 12V  with the 

electron-phonon coupling term 12,m mM q . mq  is the (adimensional) displacement along mode m 

that modulates the coupling between states 1 and 2. As these modes induce the transition we denote 

them as inducing modes, each with energy 
I

m . An approximation implicit in the Hamiltonian 

above is that the accepting modes (those associated with the quantum numbers w  or 'w ) and the 

inducing modes are separate. The accepting modes have different equilibrium geometries in states 

1 and 2 but do not affect the coupling between 1 and 2, whereas the inducing modes influence the 

coupling between states 1 and 2 but their equilibrium position is not affected by the electronic 

states of the system. This separation is rigorous in systems with symmetry elements where the 

accepting modes are always totally symmetric and the inducing modes are non-totally symmetric.36 

In general, it is a (very reasonable) approximation as only a small fraction of all modes are 

important accepting or inducing modes and it is unlikely that they coincide. Understanding the 

different role played by the two classes of nuclear modes is essential to compare and discuss the 

different rate expressions given in the literature. Many authors discuss the role of the electron-

phonon coupling but refer to just one of the classes of electron-phonon couplings, which can be 

confusing when we wish to compare different results, as in this case. Accepting modes are often 

discussed in the context of small polaron theories and are determined by local electron-phonon 

coupling, i.e. stabilization of the on-site energy along a nuclear mode. Inducing modes are those 

responsible for the breakdown of the Born-Oppenheimer approximation (non-adiabatic effects) 

and are associated with the non-local electron-phonon coupling. 

If we indicate with mv  the eigenstates of 
2

2

2

1 1

2 2

I

m m

m

q
q


 
  

 
, where mv  is the quantum 

number of the oscillator m, we have ,m mm m v vv v  
  , and we can write the unperturbed 

wavefunction of the Hamiltonian in eq. (8) as 11, ... ...mw v v and 12, ' ... ...mw v v  .  

The matrix element 12,m mM q  promotes the transition between the manifold 1, w  and the manifold 

2, 'w  where all the vibrational quantum numbers of the inducing modes except mv  remain 

unchanged. To simplify the notation for a few steps we can evaluate the transition between 

electronic states 1 and 2 as    

    12 12

m

m

k k  ,          (9) 

where 12

mk  is the rate resulting only from the coupling 
12, '

. '

1, 2, 'm m ww

w w

M q S w w , i.e. considering 

only one inducing mode m. The rate can be expressed as a sum over all the initial and final vibronic 

states with thermal averaging of the population of the initial states: 
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12 12,

, ,

( ) ( )
m m

m m

m m

T m T wv w v

v v w w

k P v P w k  
 

   ,       (10) 

where ( )T mP v  is the probability that the state with quantum number mv  is occupied at a given 

temperature, and 12, m m

m

wv w vk    is the rate for the transition between state 1, mw v  and state 

2, mw v  . The latter can be expressed by a Golden Rule expression (note the energy conservation 

relation in the delta function): 

    12, m m

m

wv w vk   =  
2

2, ' 1,

2
1, 2, ( )I

m m w w m m mv w H w v v v


        .   (11) 

From our Hamiltonian (eq. (8)), we have 
22 2 2

12, '1, 2,m m m m m m wwv w H w v M v q v S    

and we can use the harmonic oscillator relation 

     
2

1
, 1 , 12

( 1)
m m m mm m m m v v m v vv q v v v   

          (12) 

to express  

     
2 2

12 12, ' 2, ' 1,

, '

( ) ( )
m

m I

m T m m T ww w w m

v w w

k M P v v P w S


        

              
2

' 2, ' 1,

, '

( )( 1) ( )
m

I

T m m T ww w w m

v w w

P v v P w S         .    (13) 

The terms in the last summation are identical to those defining the function FCWT  (eq. (4))    

   
2

12 12, FCWT 12 FCWT 12( ) ( )( 1)
m m

m I I

m T m m m T m m m

v v

k M P v v E P v v E


             (14) 

Moreover, ( )
m

T m m

v

P v v  is just the phonon occupation number  
1

( ) exp( / ) 1I

m m BN k T 


  . 

The resulting rate for a single inducing mode m is therefore:  

        
2

12 12, FCWT 12 FCWT 12( ) ( ) 1m I I I I

m m m m mk M N E N E


            
 

     (15) 

Our final and main result is obtained by summing over the inducing modes m (eq. (9)): 

         
2

12 12, FCWT 12 FCWT 12( ) ( ) 1I I I I

m m m m m

m

k M N E N E


            
   (16) 

The expression above is essentially a generalization of several existing models and the best way 

to explore its meaning is to take few limits to show that it can be reduced to any of the expressions 

that have been proposed so far to discuss charge transport in semiconducting polymers. 
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2.3 Limiting cases 

Absence of active accepting modes. In this limit, there are no vibrations with different 

equilibrium position in electronic states 1 and 2. Thus, only transitions where 'w w  can take 

place and the function  FCWT 12E   simply becomes the Dirac delta function  12E  . One can 

obtain the same expression also by taking the limit 0   of eq. (5), which highlights the nature 

of accepting modes as “broadening” of the electron donor and acceptor levels, as noticed for 

example by Gerisher’s formulation of Marcus theory.37 

The hopping rate in this limit becomes simply 

         
2

12 12, 12 12( ) ( ) 1I I I I

m m m m m

m

k M N E N E


            
  .  (17) 

This is the rate that has been extensively used by Vukmirovic et al.18 in their exploration of the 

charge transport in polymeric systems from atomistic calculations.38 This derivation highlights that 

eq. (17) is valid in the limit of vanishing reorganization energy (or local electron-phonon coupling). 

Good polymers supporting very delocalized states have indeed very low reorganization energy 

(the latter is inversely proportional to the delocalization of the orbital)39 and it is therefore expected 

that eq. (17) should be a good approximation if the important transitions do not involve very 

localized trap states. Obviously, in this limit there is a vanishing rate between states whose energy 

difference is larger than any inducing vibration present in the system. This can be a problem if the 

transitions to and from deep traps in the polymer are important, a situation possibly encountered 

at low temperature and charge density.40 

An alternative way to interpret eq. (17) is to assume that there is a set of electronic states weakly 

coupled with a thermal bath (the inducing phonons). The eq. (17) can be also derived using the 

language of quantum dynamics of open systems, where the electronic states of interest are 

considered the “system” and the inducing phonons represent the “bath”. The weak nature of the 

interaction only allows single phonon transitions to take place. Such derivation is presented in the 

supporting information.  

The Miller-Abrahams limit. The Miller-Abrahams limit is obtained in the same limit of eq. (17) 

with further (and fairly stringent) conditions. In the original Miller-Abrahams paper,19 the inducing 

modes were assumed to be acoustic modes (below the Debye cut-off) and no accepting modes 

were included. To recover the Miller-Abrahams limit we rewrite eq. (17) with an integral instead 

of a summation as we wish to describe the continuum of acoustic modes: 

 
2 I

,
( )

ij m m

m

J M             (18) 

     12 12 12

0

( ) ( ) ( ) 1k J N E N E d


       


            (19) 

( )J   is a spectral density, measuring how strongly the inducing modes promote the electronic 

transition a given frequency. Using the properties of the delta function we have 
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 12 12 12

12

12 12 12

( / ) ( / ) 1 0

( / ) ( / ) 0

J E N E for E

k

J E N E for E






    

 
    


     (20) 

or, more explicitly,  

   

 

 

 

12 B

12 12

12 B

12

12 12

12 B

exp
( / ) 0

exp 1

1
( / ) 0

exp 1

E k T
J E for E

E k T
k

J E for E
E k T






  

 
 
   
  

     (21)  

The equations above have the form of the Miller-Abrahams expression (eq. (1)) as a limit for 

12 BE k T   and ( ) ~ constantJ  . It was already noted31 that the Miller-Abrahams rate is a (very) 

low temperature limit. The fact that J  becomes a constant for sufficiently large frequencies is 

acceptable in the original formulation of the theory, where localized impurities are coupled by 

acoustic modes. If the wavelength of the acoustic phonon is shorter than the distance between 

interacting sites (which happens at large E ), the relative displacement between the two sites is 

little dependent on the wavelength. Also, in the opposite limit of 0  the electron-phonon 

coupling should vanish for acoustic phonons because the inter-site distance is not changed by the 

phonon displacements. In summary, for acoustic phonon coupling and localized impurities the rate 

expression becomes similar to the Miller-Abrahams rate. The equation becomes exactly the Miller-

Abrahams (eq. (1)) if the following spectral density is used  

   
 B

B

exp 1
( )

exp( )

k T
J A

k T







          (22) 

The conditions required for the Miller-Abrahams rate to be valid are very difficult to justify in the 

context of charge hopping in polymeric materials. Computations have revealed the importance of 

optical modes and, very often, the hopping takes place between sites that are very close in space, 

while the original theory is developed for well separated (diluted) impurities.19 On the other hand, 

only by comparing the rate computed under more lenient conditions with the Miller-Abrahams 

rate it is possible to establish whether the differences are important for the description of the 

material’s properties.  

Classical inducing modes. We consider now the case were accepting modes play a role and we 

consider the limit where inducing modes can be assumed to be classical, i.e. 
I

m Bk T . In this 

limit we have ( ) 1I I

m B mN k T   and eq. (16) becomes   

     
2{ } 0 B

12 12, 12

2
m

m FCWT

m m

k T
k M E

 





        (23) 
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In the classical limit, B

m

k T


 is the average squared displacement 2

mq  of an oscillator with 

potential energy 
21

2
m mq . The rate can be rewritten as 

     
2{ } 0 2

12 12 12,

2
m

FCWT m m

m

k E M q
 


    .                                                                    (24) 

The quantity in the summation has a very intuitive meaning in the classical limit: this is the thermal 

fluctuation of the electronic coupling between electronic states 1 and 2 and can be written as 
2

12| |V . The final rate in this limit takes a particularly simple form: 

     { } 0 2

12 12 12

2
| |m

FCWTk V E
 


  .       (25) 

This is just like the electron-transfer rate where the electronic coupling is replaced by its average 

value (see eq. (4)). In this way it is particularly easy to “visualize” the role of inducing modes in 

the hopping process: thermal fluctuations mix initial and final states and the hopping rate is related 

to the magnitude of this mixing. Eq. (25) was used for the study of charge transport in polymers 

in refs.23,41 and different derivations that can be reduced to eq. (25) have been also proposed.42,43 

The same result has often been used in the context of electron transfer in donor-bridge-acceptor 

systems or in biological systems.44-46 When comparing eq. (25) with the more general eq. (16) it 

becomes easier to understand the general process of charge hopping in polymeric systems. The 

static disorder in the polymer generates localized states with a given 12E . The accepting modes 

generate an effective Gaussian “broadening” of these states, allowing transition also when initial 

and final energy are far off-resonance. The coupling between states is zero by construction but 

there are fluctuations around the equilibrium position that promote the transition between the states.  

 

3. Discussion 

The main advantage of our formulation of the hopping rate is that it is possible to build a model 

that continuously interpolates between the various limiting cases. This is useful to appreciate under 

what conditions a particular limit is invalid or, equivalently, what is the minimal model with the 

desired qualitative features. The drawback of a general formulation is that the parameter space is 

extremely large. In fact, it is essentially impossible to start with something as general as eq. (16) 

to build a phenomenological model because the model would depend on too many choices that 

one has to make. To use eq. (16) for interpreting realistic data, it is essential to feed the equation 

with detailed computational results on the electron-phonon coupling terms so that the adjustable 

parameters are kept to a minimum.  

In this work, we wish to study the main qualitative differences of the general rate expression (eq. 

(16)) with respect to the other expressions used in the literature. A rather surprising property of 

the Miller-Abrahams rate is that this rate does not decrease as 12E becomes more negative. Such 

behaviour would be expected for non-radiative transitions involving molecular levels and it is well 
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documented in the photophysics literature.21 We therefore express the hopping rate as a function 

of 12E  for various choices of the system parameters at a constant temperature of 300 K. 

We consider a system with four inducing modes and all matrix elements 12,mM = 10-3 eV set to 

give plausible rates. We consider a Model 1 where the inducing modes are low energy (i.e. 

comparable to kBT) and fixed at 0.01, 0.02, 0.03 and 0.04 eV. Then we consider a Model 2 where 

two of the modes are at low energies, 0.01 and 0.03 eV, and two at intermediate/high energies 

(0.10 and 0.18 eV). We further consider a Model 3 where the inducing modes are at high energy 

(0.16, 0.17, 0.18, 0.19 eV). Model 1 is in line with the assumption of ref.23 that low frequency 

modes, mostly hindered torsions, are the main inducing modes. Model 2 samples more uniformly 

across the vibrational spectrum of a typical material. Model 3 is more unrealistic but useful to see 

the effect of quantum inducing modes, otherwise hidden in the other models.    

For FCWT  we consider a case with a single quantum oscillator (eq. (6)), whose energy is set to 

0.186 eV, the energy of the C=C bond stretching as a representative quantum mode in conjugated 

molecules. The function FCWT  can be fully determined by the total reorganization energy, 

q c    , and the fraction f determining the partition of the reorganization between the classical 

and quantum component ( q f  and (1 )c f   ). We consider the cases of    0.06, 0.2, 0.6 

eV, corresponding to small, intermediate and extremely large reorganization energies using 

electronic structure calculations as a reference,47 and f = 0.15 (close to the Marcus limit of fully 

classical reorganization energy), f = 0.50 (closer to the what emerges from electronic structure 

calculations48) and f = 0.85 (a more extreme case where the quantum mode is dominating). 

The results are provided in Figure 2, where each panel reports the rate as a function of 12E  for 

three different ratios of classical versus quantum reorganization energies. In the panels, we have 

added the Miller-Abrahams dependence for comparison purposes. The curves are reported in a 

broader energy range, to better see the trends, however it is unlikely that hopping between states 

whose energy difference is larger than 0.3 eV would be relevant in realistic polymers. The results 

for Model 1 are very simple to interpret, because they are qualitatively similar to the behaviour of 

standard non-adiabatic rate theory given the relation we have shown in (eq. (23)) for low energy 

inducing modes. The maximum rate is observed for 12E    . The rate decreases more steeply 

than the Miller-Abrahams limit and the difference between the two rates is particularly remarkable 

for negative 12E . It is coincidental that the curve that most resembles the Miller-Abrahams limit 

is that for high reorganization energy and strong quantum component of the reorganization energy. 

Large values of reorganization energy are in fact found in the opposite limit with respect to the 

Miller-Abrahams limit and the weak energy dependence for negative 12E  is due to multi-phonon 

transitions involving the quantum mode (also absent in the Miller-Abrahams theory).  

When inducing modes at higher frequency are introduced in going from Model 1 to Model 2, the 

differences are qualitatively modest. For this reason one may argue that, to define an appropriate 

charge transport model with a limited number of parameters, it may not be necessary to have a 

very detailed set of electron-phonon couplings 12,mM . A similar conclusion was achieved with 

different arguments in ref. 25. Moreover, if quantum inducing modes are not too important, one 

can neglect them altogether using the equation valid in the classical limit of inducing modes (eq. 
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(25)) where there is only one parameter incorporating the effect of all inducing modes, which is 

the approach adopted in ref. 23. However it can be instructive to consider also the situation of only 

high energy inducing modes, i.e. our Model 3. At low reorganization energy, the hopping rate is 

reduced at 12 0E  , because the FCWT  functions are very narrowly peaked at the origin and the 

closest maxima in the rates are found near 12 ~ I

mE   . The anomaly of 12k  increasing as 12E  

increases disappears when the reorganization energy becomes comparable with the inducing mode 

energy. 

 

     

 

Figure 2. Charge hopping rates as a function of 12E  for different parameter sets. Moving from 

top to bottom row the total reorganization energy is increased from 0.06 to 0.6 eV. Moving from 

left to right column the importance of quantum (high frequency) inducing modes is increased 

(see text for the definition of Model 1, 2, 3). The curves in each panel correspond to the rate with 

the same total reorganization energy but a different fraction (15% red, 50% green, 85% blue) of 

the quantum high frequency mode contributing to the reorganization energy. The grey line (for 

reference) is the Miller-Abrahams rate. 
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It seems not possible to approach the Miller-Abrahams limit using a reasonable choice of 

parameters. Nevertheless, for the development of a phenomenological theory, in the limit of small 

reorganization energy (the same where the Miller-Abrahams rate was developed), it seems possible 

to substitute the expression in eq. (1), with the following empirical variant: 

  
 

 

0

12 B 12

12 0

12 B 12

exp ( 1) 0

exp 0

k E k T for E
k

k E k T for E





    
 

   
      (26) 

which would reproduce the behaviour of the realistic rates at the cost of only one additional 

parameter 1   that re-establishes the energy gap law.  

Finally, and very importantly, this work was concerned with the evaluation of the correct rate 

expression and did not explore the effect on the coupling matrix elements of the distance between 

sites. It has been noted that 0k  is not a simple function of the distance between states 1 and 2 and 

this may have a dramatic effect on the global theory. Thereby, if one is interested in exploring the 

effect of different rate expressions on the charge carrier mobilities of polymers, it is essential to 

consider a rate expression that not only includes the correct dependence on the energy difference 

(energy gap law) but also the correct distance dependence. As the latter depends on a number of 

further assumptions, it will not be explored here. 

Several assumptions implicit in the use of the Fermi Golden rule to obtain rates (coupling should 

be weak, hopping rate should be slower than thermal relaxation rate, i.e. the process is always 

incoherent) have not been described in detail as they are common to all other models discussed 

here. However, it is important to stress that the Hamiltonian we started with is based on the 

assumption that initial and final states are obtained by diagonalizing the electronic Hamiltonian of 

the system and they are localized by the disorder in such Hamiltonian. If the polaronic effects are 

stronger than the disorder effect, i.e. if the charge is localized more by polarization than by disorder, 

this treatment is invalid. There is some consensus that charge carriers in most polymers are 

localized by disorder3,6 but it should be mentioned that some more recent experimental and 

theoretical works suggested that, in the best available polymers, the disorder is not very effective 

in localizing the carriers and the polarization effect can effectively compete with the disorder 

effects.41,49 This could be the effect in action in the recently reported Hall effects in polymeric 

semiconductors.50 

In summary, this paper establishes a relation between various hopping rate expressions proposed 

in the literature to study charge hopping in semiconducting polymers by building a more general 

rate expression from a Hamiltonian that should capture the main physics of charge hopping in 

various situations. We have stressed the different roles played by vibrations associated with 

polarization effects (accepting modes) and vibrations that promote the electron transfer via non-

adiabatic coupling (inducing modes). The final rate expression can incorporate the effect of any 

number of modes with any frequency and it is therefore suitable to be used in conjunction with 

atomistic models that provide the appropriate parameters for the simulation of realistic polymers. 

Like in many physical problems, it is very difficult to establish the best level of simplification for 

any given model so that only the details that are essential are kept in the description. The 

formulation of the hopping rate proposed in this work will allow a more systematic study of the 

level of detail that needs to be included to understand charge transport in semiconducting polymers.  
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