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1. Introduction. Currently the theory of systems of distinct representatives (and

the closely allied theory of transversals) is being carefully examined and reworked,

often in a more general context which allows for the transfinite situation. This

theory can be said to have had its beginning in 1935 when P. Hall proved his now

celebrated theorem for the existence of a system of distinct representatives of a

finite family of sets. In a no less significant paper M. Hall, Jr. (in 1948) extended

P. Hall's theorem to infinite families of finite sets. Around these two theorems a

considerable literature has grown (for an excellent survey and thorough bibliog-

raphy see [10]). The two theorems have been refined in various ways by requiring

that the system of distinct representatives have additional properties. It is however

true that these refinements can be obtained by applying the original theorems to a

modified family of sets. For finite families this is implicit in the work of Ford and

Fulkerson [3] who show how most of these refinements can be obtained from their

maximum flow-minimum cut theorem for flows in networks. For finite or infinite

families Mirsky and Perfect [10], [11] have shown how these refinements can be

obtained from the original theorems of the two Halls and a generalization of a

mapping theorem of Banach [1]. In a recent paper [2] we obtained a further

generalization of Banach's mapping theorem. This theorem along with M. Hall's

theorem enables us to prove a very general theorem on systems of distinct rep-

resentatives, which is in fact a transfinite and symmetrized form of a theorem of

A. J. Hoffman and H. W. Kuhn. The theorem we prove contains as special cases

(that is, without further refinement) all theorems that we know which assert the

existence of a system of distinct representatives of a given family of sets or sub-

family thereof with certain properties being required. We then can prove a theorem

giving necessary and sufficient conditions that a family of sets possess a family of

subsets whose cardinalities lie within prescribed bounds and where the frequencies

of occurrences in these subsets of the elements lie within prescribed bounds. This

will be made more precise later. From this we also obtain an extension to locally

finite graphs of Ore's solution [12] of the so-called "subgraph problem for directed

graphs" and for that matter a generalization of Ore's solution due to Ford and

Fulkerson [3].
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2. Preliminaries. Let E be an arbitrary set and 9l(/) = (Ai : i e I) a family of

subsets of E indexed by a set /. Thus, although i^i', it may be that AK = Ai.. If

/'£/, then %(I') = (Ai : i e /'), a subfamily of 2Í(/). A family (x, : j e J) is a system

of representatives of 9l(/) if there is a bijection o;J-^-I such that x, g AaU) for all

/ g J. If in addition the x; are distinct, then (x, : j e J) is a system of distinct rep-

resentatives of 2l(/). The subset {x, :jeJ}ofEis then called a transversal of 9l(/).

Thus a subset £° of £ is a transversal of 91(Z) if and only if the elements of E° can

be indexed by /, (x¡ : i e I), in such a way that x¡ g At for all i e I. We shall usually

phrase our results in terms of transversals rather than systems of distinct rep-

resentatives.

With a given family <ñ(I) = (Ai : ie I) of subsets of a set E we associate a dual

family S(£) = (Ae : e e E) of subsets of / indexed by E. For e e E, A~e is defined by

Ae = {i e I : e e At}.

The dual of the family $(£) is the original family so that each determines the other.

Note that for ee E, Ae is finite if and only if e is a member of only finitely many ,4's.

The cardinality of a set X is denoted by | X \. If X and F are sets, then X\ F is the

set of those elements of X which are not elements of F. For X a set, 2/ces: Xk is a

partition of A' means X=lJfceK Xk and A^ r\ Xk.= 0 whenever k^=k'.

The following two theorems will be crucial in what follows.

Theorem 1. The family ln(I) = (Ai : ie I) of finite subsets of a set E has a trans-

versal (or, equivalently, a system of distinct representatives) if and only if for every

finite subset U of I

IIMI = \V\.
lieu        |

In case \I\ <oo it is not necessary that the A's be finite sets.

The theorem for arbitrary index sets /is due to M. Hall, Jr. [4]. For |/| <oo, the

theorem is the original one of P. Hall [5].

The second theorem that we shall need is a generalization of Banach's mapping

theorem. We state it in the language of the present paper.

Theorem 2. Let 91(/) = (A¡ : ie I) be a family of arbitrary subsets of a set E.

Let 2fceiï h and 2;e/ E¡ be partitions of I and E respectively. Suppose for each k e K

there are specified integers ck and c'k with 0 ^ ck á c'k, and that for each j eJ there are

specified integers d¡ and d] with O^d^d]. If there is a subfamily 91(/') which has a

transversal £" with

ckú\Ik\I'\ (keK)

IWISd?       (jeJ),

and if there is a subfamily ?!(/") which has a transversal E" with

\hV"\úc'k        (keK)

d, Ú \E,\E"\ (JeJ),
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then there exists a subfamily 9Jt(/°) which has a transversal E° with

ck S \Ik\I°\ S c'k       (keK)

d, S |£,\£°| S d]     (jeJ).

It is permissible that the cardinalities |4\F| and \E,\E"\ be infinite. Theorem 2 is

proved by the present author in [2].

3. The principal theorem. In [7] A. J. Hoffman and H. W. Kuhn prove a

theorem which gives necessary and sufficient conditions for a finite family of subsets

of a set E to have a transversal which intersects a given partition of E within

prescribed bounds. The theorem below generalizes their theorem in two directions :

(1) it makes the conclusion of the theorem symmetrical with respect to the sets and

elements and (2) it extends the theorem to infinite families. For further generality

to allow for the sets in the partition of the underlying set to be infinite, we state and

prove the theorem in the "defect" form; that is, rather than requiring that the

transversal intersect the partition within prescribed bounds, we require that the

(set-theoretic) complement of the transversal do so.

Theorem 3. Let 9i(F) = F4¡ : i el) be a family of subsets of a set E and let

%.(E) = (Ae : ee E) be the dual family. Let lkeK IkandlJeJ E¡ be partitions ofIand E

respectively. For each k e K let there be specified integers ck and c'k with 0SckSc'k,

and for each je J let there be specified integers d¿ and d'¡ with 0SdjSd¡. Let K'

={keK:c'k< |4|} andJ' = {jeJ : d'¡ < \E¡\}, and let I* = |J*.*< 4 andE* = \JW.E,.

Assume for each i e I* that A¿ is a finite set and for each ee E* that Ae is a finite set.

Let K* = {k e K : ck > 0} and J* = {jeJ : d¡ > 0}, and assume for each k e K* that

4 is a finite set and for eachj e J* that F, is a finite set.

Then there exists 7°S/and E°^E such that E° is a transversal o/9i(/°) with

(3.1) ck S \Ik\I°\ S c'k       (keK)

(3.2) d} S ¡EUE0] S d;     (JeJ)

if and only if the two conditions below are satisfied:

(3.3) For each finite subset U of I* and for each finite subset VofJ*,

|(U^iWUFz)| = |£/|+2«-|£zD-      2      c'k-
WieU      I        \itV      l\ fa k:UcXlk*2

(3.4) For each finite subset P of E* and for each finite subset Q of K*,

|(U^WU4)|=i |F|+ 2(a-141)-    2     d'i-

Proof. By Theorem 2 and the definition of the dual family there exists Io s / and

F°SF such that E° is a transversal of 9J(/°) with (3.1) and (3.2) valid if and only if

both (A1) and (B1) below are true.
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(A1) There exist /'S/ and E'çE such that E' is a transversal ofä(T) with

(3.5) \Ik\T\Zc'k       (keK)

(3.6) djZ\E,\E'\ (jej).

(B1) There exist E"^E and I"^I such that I" is a transversal of%(E") with

(3.7) \E,\E"\ Ú d)       ijej)

(3.8) ckú\Ik\I"\ (keK).

We shall show that (A1) is valid if and only if condition (3.3) is valid. By exploiting

the symmetry of the situation it will follow that (B1) is valid if and only if condition

(3.4) is valid. This will prove the theorem.

Now if there exist I'^I and E'^E satisfying (A1), let (e¡ : i e I') be a system of

distinct representatives of 2t(P) with E' = (JiE¡. {e¡}. If/=/' n /* and E=\Jie, feK

then Eis a transversal of 31(7) with \Ik\I\ = \Ik\T\ for keK' and \E,\E'\ á \E,\E\ for

jeJ. Thus \Ik\I\Sc'k for keK' and d¡ ^\E}\E\ for je J. Conversely, if there

exists 7s/* and £e£ such that £ is a transversal of 21(7) with |/fc\7|^Cfc for

keK' and d¡ â \E,\E'\ for j e J, then also |/\7| ^ c'k for k e K\K' since for such k,

|4| =c'k. Thus by taking /' = 7 and E' = E, (A1) is true. Thus (A1) is equivalent to

(A2) There exist 7ç /* and E<^ E such that E is a transversal ofñ(I) with

(3.9) \Ik\î\âc'k       (keK')

(3.10) dfi\E}\E\ (jeJ).

We now show that (A2) is equivalent to finding a transversal of a family of sets

which we construct. Let (Fk : k e K') be a family of mutually disjoint sets indexed

by K' with (\JkEK- Fk) n E= 0 and \Fk\ = c'k for k e K'. Let (L; : ; g J*) be a family

of mutually disjoint sets indexed by J* with (\JjeJ*L,) n L*= 0 and \L¡\ =d, for

jej*. Let F=[JksK. Fk and L={JjeJ,Lj and consider the family 38(1* u L)

= (B¡ : ie I* u L) of finite subsets of E u F where

B¡ = Ai u Fk   if z g /* with i e Ik

and

B¡ = Ej   if i g L with z g L_j.

Suppose ^(/* u L) has a system of distinct representatives (x¡ : i e I* u L) with

corresponding transversal A"= (Jl6/.ut {xj. If I={iel* : x¡ g /4¡}, then (x¡ : z'g7)

is a system of distinct representatives of 2i(7) and E=(Jisj{Xi} is a transversal of

21(7). Moreover since \Fk\ =c'k for k e K' it follows that |/\7| ^c¿ for keK'; since

|L;| = d¡ forj g /* it follows that d¡ ̂  | E,\E \ forj ej* and thus forj e J. Conversely,

if (A2) is satisfied, it follows in the natural way that 3S(I* u L) has a transversal.

Hence (A2) is equivalent to

(A3) The family âS(I* Ul)=(i,:ie/»UL) of finite subsets of Exj F has a

transversal.
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We are now in a position to apply Theorem 1. Thus 3$(I* u L) has a transversal

if and only if

(3.11) For each finite subset T of I* ui

|U¿M = |f|.
I ¡eT

Let U=TnI* and W=TC\L. Then (3.11) is equivalent to

(3.12) For each finite subset U of I* and for each finite subset W of L,

\(K)Bi\KJ(\JBi\\ ä \U\ + \W\.

Now for ie U with z'e4, Bl = Ai*u Fk with \Fk\=c'k, and for ie W with ieL¡,

Bi = Ej. Thus (3.12) is equivalent to

(3.13) For each finite subset U of I* and for each finite subset W ofiL

|(LM.W     U     F,)|+     2     Ck
I Viet/       / \y.WnLj=z !\       k-.V7Jíkí 0

+   2   \E>\ = \v\+\w\-
j:Wrsl* 0

Now for F fixed the value of the left side of the inequality in (3.13) depends only on

whether W c\ L,= 0 or IF n F,/ 0 foreachy'eJ*, while the value of the right side

depends on the cardinality of W. Thus by replacing W by W = (Jj:WnLl¥,0 Lh the

value of the left side does not change while the value of the right side is \U\ +

li-.wnL,*0 df^\U\ + \W\. Thus (3.13) is equivalent to

(3.14) For each finite subset U of I* and for each finite subset V ofJ*

|(IMWUF;-)|+    2    ^+21^1 = 1^1+2^I VieU      / \ W      H       k.MZ?k*0 fa fa

Thus (A3), and therefore (A1), is equivalent to (3.14) which is equivalent to (3.3). As

previously remarked, it now follows by symmetry that (B1) is equivalent to (3.4).

This completes the proof of the theorem.

Remark. Since d¡ = 0 for j eJ\J*, we may replace J* by J in condition (3.3).

Likewise we may replace K* by Kin condition (3.4). Also since c'k ä |4| fork e K\K'

we may replace /* by / in (3.3). Likewise we may replace F* by E in (3.4).

4. Special cases of the principal theorem. The principal theorem, Theorem 3,

contains as special cases all theorems that we know which assert the existence of a

transversal of a family of sets (or subfamily thereof) with or without additional

properties. We shall indicate in this section some of these special cases. First we

shall take Theorem 3 out of the "defect" form and put it into a less general but

somewhat more direct form(2).

(2) It has recently come to our attention that Theorem 4 has been independently established

by J.Folkman and D. R. Fulkerson (Subgraphs of bipartite and directed graphs. Rand report,

April 1968). Their method of proof is quite different from ours.
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Theorem 4. Let 2t(/) = (Ai : ie I) be a family of subsets of a set E and let

ft(E) = (Ae : ee E) be the dual family. Let 2fcex 4 and 2ie/ Ej be partitions of I and

E respectively into finite sets. For each k e K let there be specified integers ak and a'k

with 0^akiia'k and for each j ej let there be specified integers b¡ and b'¡ with 0 ¿ b¡

úb'j. Let K' = {keK: ak>0} and J' = {jeJ : b¡>0}, and let /*=UfcSjr-4 and

E* = (Jjej' Ej. Assume for each i e I* that A¡ is a finite set and for each ee E* that

Ae is a finite set.

Then there exists Ie's / and £°ç£ such that E° is a transversal o/2X(/°) h>z7/z

(4.1) ak ^ \Ik nP\ < a'k       (keK)

(4.2) b, á \E, n E°\ á b'j     (JeJ)

if and only if the following two conditions below are satisfied:

(4.3) For each finite subset U of I* (or equivalently of I) and for each finite subset

VofJ,

\({JAi)nlUEj)\ï \U\-Jb'}-     2      (141-**).

(4.4) For each finite subset P of E* (or equivalently of E) and for each finite

subset Q of K,

|(U^WU4)|=^|-2a*-    2     (\Ei\-°i)-
\\eeP       I \kiQ     !\ ^ i:PrVE,*0

Theorem 4 is a direct consequence of Theorem 3 and the remark following its

proof. It is not as general as Theorem 3, for in Theorem 4 all the 4 and £; must be

finite sets. In case we insist that Io = I, that is, require a transversal for the whole

family 2I(Z), then further simplification takes place. We state this as another

theorem. It is the transfinite generalization of the Hoffman-Kuhn theorem [7].

Theorem 5. Let (ä(I) = (Ai : ie I) be a family of finite subsets of a set E and let

$(£) = (Ae : e e E) be the dual family. Let 2Je/ E¡ be a partition of E into finite sets.

For each je J let there be specified integers bf and b'¡ with Oikbjik b'j. Let J' = {j : b¡ > 0}

and let E* = (Jj€j. E¡. Assume for each ee E* that Ae is a finite set.

Then there exists E°^E such that E° is a transversal o/2t(/) with

(4.5) bj è \Ej n E°\ ï %       (jeJ)

if and only if the following two conditions below are satisfied:

(4.6) For each finite subset U of I and for each finite subset V ofiJ,

(4.7) For each finite subset P of E* (or equivalently of E)

\\jÂ.\>\p\-  2   (l^i-*>)•
I eeP I j:PnEf*0
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Theorem 5 follows from Theorem 4 by taking K=I, f = {i} for each i el, and

ai = a'i = l for each i el. Condition (4.6) follows directly from that of (4.3) by

observing that I* = I here. Condition (4.4) becomes here: For each finite subset

P of E* and for each finite subset Q of /,

|(U^W/\ô)| + |Ôl è \P\-     2     (1^1-^)-
\\eeP       / I j:PnE,*0

But for F fixed, the value of the right side of the above inequality is fixed while the

smallest value of the left side is \(Jeep Ae\. Thus (4.4) reduces to (4.7).

If, in addition, 9t(/) is a finite family and F is a finite set, condition (4.7) can be

put in terms of the original family 51(7) = (A, : i e I). For if we fix a subset V ofJ',

then condition (4.7) is equivalent to: For each FsiJ;eV E,,

\(jAe\+2\EÁ~\p\ = 2è-
I e=P        |       jeV jeV

This being true for all subsets VofJ'. But by the König-Egervary Theorem [10], [11]

(we do not go into details here) the preceding inequality is equivalent to: For all

t/ç/and for all V^J',

But if this inequality is satisfied for all Vçzj\ it is also satisfied for all Ks7 since

bj = 0 forje J\J'. Thus, under the assumption that 2Í(F) is a finite family of subsets

of a finite set E, conditions (4.6) and (4.7) can be combined into the single condition

(4.8) For all Uçl and for all Vçzj,

Condition (4.8) is the one found by Hoffman and Kuhn [7].

Another special case of Theorem 4 is a theorem proved by Mirsky and Perfect

[11] which is a transfinite generalization of a theorem of Mendelsohn and Dulmage

[8].

Theorem 6. Let 9t(/) = (y4i : ie I) be a family of subsets of a set E and $(F) =

(Ae : ee E) be the dual family. Let I* ÇI and E*^E be given and assume for each

i e I* that A¡ is a finite set and for each ee E* that Ae is a finite set. Then there exists

Io and E° with /*£ J°£/ and E*^E°çzE such that E° is a transversal ofñ(I°) ¡fand

only if the two conditions below are satisfied:

(4.9) For each finite subset U of I*, \\JieU A¡\ Z\U\.

(4.10) For each finite subset VofE*, \\JeeV A~e\^\V\.

Several other known theorems can be deduced as special cases of Theorem 4.

We do not continue in this direction any further. The reader is referred to the

expository paper [10] by Mirsky and Perfect for additional theorems of this type.
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5. Systems of representatives. In this section we no longer insist that the

representatives of a family of sets be distinct. More precisely, if *ñ(K) = (Ak : k e K)

is a family of subsets of a set £, then the family (ek : k e K) of elements of £ is a

system of representatives ofii(K) provided eke Ak for all keK. Recently Mirsky [9]

obtained necessary and sufficient conditions that a family %(K) = (Ak : k e K) of

subsets of a set £ (with suitable finiteness assumptions) have a system of repre-

sentatives (ek : k e K) such that the frequency of occurrence of each element e of £

in this system of representatives (that is, \{k e K : ek = e}\) lies within prescribed

bounds. We shall obtain from Theorem 4 a theorem which, in essence, symmetrizes

Mirsky's theorem. We now make this precise. Following Mirsky, if (C¡ : i el) is a

family of sets and J^I, then C(J) = (JiE} C¡.

Theorem 7. Let <ä(K) = (Ak : k e K) be a family of finite subsets of a set E. Let

yi(E) = (Ae : e e E) be the dual family and suppose each Ae is finite. For each keK

let integers ak and a'k be given with 0^ak^ a'k, and for each e e E let integers be and

b'e be given with Ofíbefíb'e. Then there exists a family &(K) = (Sk : k e K) of subsets

of E with dual family B(E) = (Se : ee E) such that Sk^Ak for all k e K and thus

Se^Aefor all eeE with

(5.1) akú\Sk\úa'k       (keK)

(5.2) b, Ú \Se\ ^ K       (eeE)

if and only if the two conditions below are satisfied:

(5.3) For each finite subset X of K,

2    min{\Ien X\,b'e} £  2 «*■
eeAXX) keX

(5.4) For each finite subset Y of E,

2 min{\Akn Y\,a'k) ä 2 K-
keA(Y) eeY

Proof. For each keK, let Ik = {(k, e) : ee Ak} so that |4| = \Ak\. Let /= (JkeK Ik

so that 2iceK 4 is a partition of /. For each eeE, let Fe = {(e, k) :k e Ae} so that

|£e| = |y4e|. Let F=(JeeE Fe so that 2eeB Ee is a partition of F. Let a:/->£

be a bijection such that if (k, e) e Ik then o((k, e)) e Fe. (By well-ordering K certainly

such a bijection can be defined.) Let ¿%t(I) = (£¡ : i el) be the family of one element

subsets of F defined by Bi = {o(i)} for all i el. Then there exists a family 'B(K)

= (Sk : keK) of subsets of £ satisfying the conclusion of the theorem if and only if

there exists /°ç/and £°s£such that F° is a transversal of 8$(I°) with

(5.5) ak ^ \lknl°\ g a'k       (keK)

(5.6) be ^ \Fe n £°| g V.      (ee £).
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For, if there exists such a family S(K) = (Sk : k e K), take

Io =  U I U (k, e)\   and   F° =  U ( U <K(*, e))\.
ksK   \eeSk ) keK   \eeSk /

Then surely F° is a transversal of 3S(I°). Since Sk satisfies (5.1), 7° satisfies (5.5). Also

since \Fe n F°| = |5e| and Se satisfies (5.2), F° satisfies (5.6). Conversely, if there

exists /°ç/ and F°^F such that F° is a transversal of ^(7°) with (5.5) and (5.6)

valid, then for each keK let Sk = {e e Ak : (k, e) e Ikn I0}. It follows that \Sk\

= \IkrM°\ for all keK and that |5e| = |FenF°| for all e e E. Thus <B(K) =

(Sk : k e K) is a family of subsets of E with Sk^Ak for all A: e .£ such that <&(K)

and its dual ©(F) satisfy (5.1) and (5.2).

We are now in a position to apply Theorem 4 to the family ¿$(I) of subsets of F.

Thus there exists 7°s7 and F°ç7 such that F° is a transversal of @(I°) with (5.5)

and (5.6) valid if and only if the following two conditions are true:

(5.7) For each finite subset U of I and for each finite subset V of E,

|(UA)n(UFe)|+2^= \U\-     2     (I4|-a*).
WieU      I        \etV      !\       fa k;UMk*0

(5.8) For each finite subset P of F and for each finite subset Q of K,

I(u*,wu4)|+2a^ \p\-   2  (i^.i-*.)-
WfeP       I        \kte     l\      jfaQ e-.P¿Fe*0

Consider condition (5.7) with F fixed. Let U be a finite subset of 7 and let U'

= {Jk-.umk*0 h- If (5-7) is satisfied with U replaced by U', then since the F¡ are one

element subsets of F, (5.7) will also be satisfied for U. Thus (5.7) is equivalent to

(5.9) For each finite subset X of K and for each finite subset V of E,

2l^n^|+2*U2^-
etV eeV keX

But for X fixed, the minimum of the left side of the previous inequality is

2    min{\Ien X\,b'e}.
eeA(X)

Thus (5.9) and therefore (5.7) is equivalent to (5.3). Similarly (5.8) is equivalent to

(5.4). This completes the proof of the theorem.

In proving Theorem 7 we have not used the full strength of Theorem 4, for we

have assumed all the sets Ak and all the sets Ae are finite. Thus a somewhat stronger

theorem can be proved in which those Ak with ak=0 and those Ae with ¿ze=0 are

not assumed to be finite. However the notation to derive such a result from Theorem

4 is rather formidable, and we forego the details.

Corollary. Let <ñ(K) = (Ak : keK) be a family of finite subsets of a set E and

suppose each ee E is an element of only finitely many A's. For each e e E let integers
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be and b'e be given. Then 'ä(K) has a system of representatives (ek : k e K) such that

be í \{k : ek = e}\ ï b'e       (e e E)

if and only if the two conditions below are valid:

(5.10) For each finite subset X of K,

2    min{\{keX: e e Ak}\, b'e} ̂  \X\.
esA(X)

(5.11) For each finite subset Y of E,

\{keK:AknY¿0}\^J/ be.
eeY

Proof. Since each e e E is an element of only finitely many ,4's, each set Ae in the

dual family Ñ.(E) = (Ae : eeE) of 2I(/) is a finite set. The corollary then follows by

defining ak=a'k= 1 and applying Theorem 7.

In [9] Mirsky proves a similar theorem (he allows those e with be = 0 to be

elements of infinitely many A's), but while he obtains condition (5.11), his con-

dition corresponding to (5.10) is different. More precisely, in Mirsky's theorem

(5.10) is replaced with

(5.12) For each finite subset X of K, 2ee^(x> K ä | X\.

It follows therefore that (5.10) is equivalent to (5.12).

6. The subgraph problem for directed graphs. A directed graph D = (P, L)

consists of a set P the elements of which are called points and a set L of ordered pairs

of points which are called lines [6]. Ifp and q are points and l=(p, q) is a line, then /

is said to be a line from p to q. If A'sP, then

A(X) = {q e P : (p, q) e L for some p e X}

and

B(X) = {q e P : (q, p) e L for some p e X}.

If X consists of a single point p, then we shall identify A({p}) and B({p}) with A(p)

and B(p) respectively. The outdegree of a point/?, odD(p)= \A(p)\, the number of

lines from p; the indegree ofp, idD(p) = \B(p)\, the number of lines top. A (spanning)

subgraph of a directed graph (P, L) is a directed graph D' = (P, L') with L'sL. The

subgraph problem for directed graphs asks for necessary and sufficient conditions

that a directed graph have a subgraph with prescribed indegrees and outdegrees

for each of its points. This was solved for finite directed graphs (that is, directed

graphs with a finite number of points) by Ore [12]. In their book [3] Ford and

Fulkerson gave and solved an extension of this problem for finite directed graphs.

Their problem was that given a finite directed graph find necessary and sufficient

conditions that there exist a subgraph such that the indegrees and outdegrees of the

points lie within prescribed bounds. We shall extend the theorem of Ford and
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Fulkerson to locally finite directed graphs. A directed graph D = (P,L) is locally

finite provided the indegrees and outdegrees of each of its points are finite.

Theorem 8. Let D = (P, L) be a locally finite directed graph. Corresponding to each

p e P let there be prescribed integers ap, a'p, bp, b'p satisfying

0 S ap S a'p,   0 S bpS b'p       (pe P).

Then D has a subgraph D' with

(6.1) ap S iàD>(p) S a'p (peP)

(6.2) bp S odD,(p) Sb'p (pe P)

if and only if for all finite subsets XofiP the following two conditions are satisfied:

(6.3) 2   rnin{\B(q)r,X\,b'q}Z  2 a*
qeA(X) peX

(6.4) 2   rnin{\A(q)nX\,a'q}^  ^ bp.
qeBlX) peX

Proof. Let 91(7") = (AP : p e P) be a family of subsets of F defined by Ap = A(p)

={qeP :(p,q)eL}. The dual family %(P) = (IP : peP) satisfies Ap = B(p). Since

the directed graph D is locally finite, for each p e P both Ap and Av are finite sets.

It is clear that the directed graph D has a subgraph D' satisfying (6.1) and (6.2) if

and only if there exists a family S>(P) = (Sp : p e P) of subsets of F with dual family

&(P) = (SP : peP) such that SP^AP and SPQ Jp with

ap S \SP\ S a'p,   bp S \SP\ S b'p       (peP).

The theorem now follows by applying Theorem 7.

In case D is a finite directed graph, Theorem 8 reduces to the theorem of Ford

and Fulkerson. If also ap = a'p and bp = b'p for all peP, then Theorem 8 reduces to

the theorem of Ore. For D a locally finite directed graph, if ap = a'p and bp = b'p for all

pe P, then Theorem 8 describes when D has a subgraph for which the indegree and

outdegree of each point p is ap and bp respectively.
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