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Abstract—This paper presents a new and very simple strategy
for torque and flux control of ac machines. The method is based on
model predictive control and uses one cost function for the torque
and a separate cost function for the flux. This strategy introduces
a drastic simplification, achieving a very fast dynamic behavior
in the controlled machines. Experimental results obtained with an
induction machine confirm the drive’s very good performance.

Index Terms—Drives, power electronics, predictive control.

I. INTRODUCTION

T
HE control of electrical machines has been one of the

most classical and challenging problems of electrical

engineering.

With the explosive development observed in electromobility

in the last decade, the control of electrical machines is of the

highest interest for industry today.

Two strategies are widely accepted as standard solutions for

high-performance ac drives: field oriented control (FOC) and

direct torque control (DTC). FOC was invented in 1972 [1], [2]

and DTC was invented in 1986 [3], [4]. These strategies were

developed more than 30 years ago, at a time where modern

microprocessors were not available. Microprocessors have since

been used to improve the performance of these strategies without

introducing significant changes in the basic concepts of the

theories.
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However, the tremendous calculation power available today

at high speeds and reduced costs makes it possible to develop

different control strategies. In effect, model predictive control is

one of these modern control strategies that use microprocessors’

calculation power differently in the field of power electronics

[5]–[15]. Up to now, the finite control set model predictive con-

trol (FCS-MPC) of torque and flux of ac machines has been

done mainly using a single cost function with a weighting fac-

tor to give more importance to one of these control objectives

[16]–[18].

The calculation of the weighting factor has been one of

the control strategy’s important challenges. In most cases, the

weighting factor is obtained by a trial and error process that is

not easy or elegant, nor is it acceptable for many users [13]–[15],

[19]–[23].

This paper presents a new strategy for predictive torque and

flux control of ac machines that does not use weighting fac-

tors. This strategy is called sequential model predictive control

(SMPC), and it uses a sequential structure with a single cost

function for each control objective in the system. The first stage

controls the torque, and the second stage is dedicated to con-

trolling the flux. The resulting strategy solves, in a very simple

and logical way, all the problems and difficulties related to the

calculation of the weighting factors.

The following sections of the paper will present the mathe-

matical models for the machine and the inverter, the prediction

equations, the control strategy, and the experimental results ob-

tained with an induction machine (IM).

II. MATHEMATICAL MODELS

A. Power Inverter

The inverter used in this work is the two-level voltage source

inverter (2L-VSI). Fig. 1 shows the power circuit of the 2L-VSI.

This inverter is the simplest and most mature power inverter

technology; it has only two power switches for each output leg

that work complementarily, but it generates a large harmonic

content. However, as the focus of this work is the control strat-

egy, this simple inverter is used.

Fig. 2 shows the possible voltage vectors generated by the

2L-VSI. There are eight possible voltage vectors described in
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Fig. 1. Power circuit of the 2L-VSI.

Fig. 2. Vectors of the three-phase 2L-VSI.

TABLE I
POSSIBLE SWITCHING STATES OF THREE-PHASE 2L-VSI

Switching State Voltage Vector

SA SB SC vα vβ

v0 0 0 0 0 0
v1 1 0 0 2VDC /3 0

v2 1 1 0 VDC /3
√

3VDC /3

v3 0 1 0 −VDC /3
√

3VDC /3
v4 0 1 1 −2VDC /3 0

v5 0 0 1 −VDC /3 −
√

3VDC /3

v6 1 0 1 VDC /3 −
√

3VDC /3
v7 1 1 1 0 0

Table I, and vectors v0 and v7 are the null voltage vectors (vα =
0; vβ = 0).

The mathematical equations that describe the 2L-VSI are as

follows:

va = Sa
VDC

2
(1)

vb = Sb
VDC

2
(2)

vc = Sc
VDC

2
. (3)

The voltage in α − β frame can be written as follows:

[

vα

vβ

]

=
2

3
VDC

[

1 −0.5 −0.5

0
√

3/2 −
√

3/2

]

⎡

⎢

⎢

⎣

Sa

Sb

Sc

⎤

⎥

⎥

⎦

.

B. Model of the IM

To generate the mathematical model of the IM, the stator

flux Ψs and stator current is are taken as state variables. The

dynamic equations of IM can be expressed in a stationary frame

as follows [24], [25]:

vs = Rs is +
dΨs

dt
(4)

0 = Rr ir +
dΨr

dt
− j

ω

p
Ψr (5)

Ψs = Ls is + Lm ir (6)

Ψr = Lm is + Lr ir (7)

T =
3

2
p|Ψs ⊗ is | (8)

J
dω

dt
= T − TL (9)

where vs is the voltage vector, ω denotes the rotor angular speed,

p is the pair of poles, and Rs and Rr are the stator and rotor

resistance, respectively. Ls , Lr , and Lm are the stator, rotor,

and mutual inductance, respectively. Finally, T and TL are the

electrical torque and load torque, respectively.

III. EQUATIONS FOR PREDICTION

For prediction of torque and flux [8], [14], [20], estimation

of the stator flux Ψs and the rotor flux Ψr are required at the

present sampling time k.

The rotor flux can be calculated using the equivalent equation

of the rotor dynamics of an IM in rotating reference frame

aligned with the rotor winding, which gives

Ψr + τr
dΨr

dt
= Lm is (10)

where τr = Lr/Rr is the rotor time constant. Using the

backward-Euler discretization and considering Ts as the sam-

pling time, the discrete-time equation for the rotor flux estima-

tion is as follows:

Ψr
k = Lm

Ts

τr
is

k−1 +
(

1 − Ts

τr

)

Ψr
k−1 . (11)

The stator flux can be estimated by

Ψs
k = Lm

L r
Ψr

k +
(

1 − L2
m

L s L r

)

is
k . (12)

Now, the stator flux prediction is obtained by the forward-

Euler discretization:

Ψs
k+1 = Ψs

k + Tsvs
k − TsRs is

k . (13)

The stator current prediction is also obtained by the forward-

Euler discretization:

is
k+1 = C1 is

k + C2Ψs
k + Ts

Lσ
vs

k (14)

where Rσ = (Rs + (Lm/Lr )
2Rr ) corresponds to the equiv-

alent resistance, C1 = (1 − (RσTs/Lσ )), Lσ = σLs is

the leakage inductance of the machine, and C2 =
(Lm /Lr )Ts/Lσ ((1/τr ) − jωk ).
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Fig. 3. Block diagram of SMPC of a 2L-VSI.

Fig. 4. Flow diagram of SMPC of a 2L-VSI.

Finally, the torque prediction depends on the stator flux and

stator current predictions and can be written as follows:

T k+1 = 3
2 p|Ψs

k+1 ⊗ i
k+1
s

|. (15)

IV. CONTROL STRATEGY

The proposed control strategy, called SMPC, uses a cascade

structure to control more than one control objective. The strat-

egy uses a sequence of cost functions to control each control

objective. Instead of using a single cost function with several

control objectives related by a weighting factor, the problem

is solved by using different cost functions, each of which is

dedicated to controlling a single control objective.

It should be noted that in the implementation of the predictive

control strategy, the delay in the application of the optimal vector

must be considered because the measurement, the data process-

ing, and the optimization algorithm are not instantaneous. To

Fig. 5. Experimental test bench.

compensate for this delay, the control variables should be pre-

dicted for the future instant k + 2. This delay compensation

strategy is well documented in [26].

The block diagram of the SMPC strategy is presented in Fig. 3.

The error between the reference speed (ω∗) and the measured

speed (ω) is introduced to a proportional-integral (PI) controller,

which delivers the reference torque (T ∗) to be generated by the

machine.

The cost function for the torque control (g1) is given by

g1 = (T ∗ − T k+2)2 (16)

where T k+2 is the predicted torque, given by

T k+2 = 3
2 p|Ψs

k+2 ⊗ i
k+2
s

|. (17)

This cost function is represented by block 2 of the block

diagram in Fig. 3. In addition, g1 is calculated for all seven

different voltage vectors generated by the inverter.

The two voltage vectors that generate the smallest values for

g1 (that is, the smallest error) are selected for the next control

step, which corresponds to the minimization of the flux error.

This action is performed by the cost function g2 , which corre-

sponds to the flux error, defined by

g2 = (Ψs
∗ − Ψs

k+2)2 (18)
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Fig. 6. Experimental results for speed reversal of ±2772 r/min. (a) Rotor
speed (ω). (b) Torque (T). (c) Stator current (ia ).

Fig. 7. Experimental results for steady state. (a) Stator current (iα ). (b) Torque
(T). (c) Stator flux (ψα ). (d) Stator voltage (va ).

where Ψs
k+2 is the predicted flux, given by

Ψs
k+2 = Ψs

k+1 + Tsvs
k+1 − TsRs is

k+1 . (19)

This cost function is evaluated for each of the two voltage

vectors selected by the previous step of torque control. This

operation is represented by block 3 in Fig. 3.

Finally, the voltage vector that minimizes g2 is selected and

delivered to the load.

In Fig. 3, block 4 represents the power circuit of the inverter,

block 5 represents (11) and (12) for flux estimation and block 6

represents (19) and (17) for flux and torque prediction.

Fig. 8. Experimental results for torque control. (a) Torque and its reference
(T∗, T). (b) Stator current (iα ).

Fig. 4 presents the flow diagram of the control strategy.

The strategy starts measuring stator current (is) and speed at

sampling interval (k), what is observed in step 1 of Fig. 4.

In step 2, the voltage vector calculated in the previous sam-

pling interval is applied.

Step 3 estimates stator flux and rotor flux at sampling

interval k.

Step 4 calculates g1 for all seven voltage vectors.

Step 5 selects the two vectors with the smallest value for g1 .

Step 6 calculates g2 for the two voltage vectors selected in

the previous step.

Finally, step 7 selects the voltage vector that minimizes g2 to

be applied at the next sampling interval.

V. EXPERIMENTAL VALIDATION

A. Test Bench

The test bench consists of two 2.2-kW squirrel-cage induction

motors, the load-side, and main motors. The load-side machine

is driven by a Danfoss VLT FC-302 3.0-kW inverter. The main

motor is driven by a modified SERVOSTAR620 14-kVA inverter

that provides full control of the IGBT gates.

A selfmade 1.4 GHz real-time computer system is used. The

rotor position is measured by a 1024-point-per-revolution incre-

mental encoder. The sampling frequency is 16 kHz. The average

switching frequency is around 3.3 kHz.

Table II shows the parameters of the test bench and Fig. 5

shows the equipment used in the laboratory.

B. Results

Fig. 6 shows the drive’s dynamic response in a speed reversal

of ±2772 r/min. The variables recorded are speed (ω), torque

(T), and stator current (ia ). During this operation, the amplitude

of the stator flux is kept constant. It can be observed that the

stator current has a fast increase in its amplitude, generating a

fast change in the torque. The speed shows a smooth transition

from 2772 to −2772 r/min.

Fig. 7 shows the steady-state behavior of the drive. The vari-

ables in this figure are stator current (iα ), torque (T), stator flux
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Fig. 9. Block diagram of (a) DTC and (b) standard MPC.

TABLE II
TEST BENCH PARAMETERS

Parameter Value

DC-link voltage VDC 582 V
Rs 2.68 Ω
Rr 2.13 Ω
Lm 275.1 mH
Ls 283.4 mH
Lr 283.4 mH
p 1
ωnom 2772.0 r/min
Tnom 7.5 N·m
J 0.005 kg/m2

(ψα ), and stator voltage (va ). All variables show the typical

waveforms delivered by a two-level inverter.

As the flux is estimated based on the original measurement,

i.e., the phase currents (a and b) in our test-bench, the mea-

surements are not perfect in accuracy, errors will happen, which

will introduce small bias at the end of this estimated flux. Some

analysis has already been published in e.g. [27], and a potential

solution can be that, using a full order estimator to get rid of this

flux bias. A relevant report can be seen in [27] as well. But this

is not our major goal in this paper; therefore, we could not deal

with this in more detail.

Fig. 8 shows the transient behavior of the torque in greater

detail. The variables included in this figure are reference torque

(T∗), torque (T), and stator current (iα ). It can be observed that

the torque reaches the reference in less than 1 ms. However, a

PI controller could be adjusted so that the transient response is

as fast as possible. The design procedure for this purpose is the

magnitude optimum method [28], [29].

VI. CONCEPTUAL ASSESSMENT WITH DTC

The proposed strategy is different to DTC and standard model

predictive control.

The main features of DTC are as follows:

(1) Two hysteresis are used to control torque and flux.

(2) The engineer/user must know the effect that each voltage

vector will have on the behavior of torque and flux to

decide which voltage will be delivered to the load.

(3) The position of the stator flux in the complex plane must

be identified by the control to select the right direction of

the lookup table.

None of these important and necessary features are needed or

considered using our proposed strategy, making it much simpler

than DTC.

Fig. 9 shows the block diagram of DTC and the standard MPC.

It is possible to see that DTC is different from MPC schemes

(standard or proposed), and as the standard MPC uses only one

cost function with a weighting factor, also it is possible to see the
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difference between the standard MPC and the proposed control

strategy.

VII. COMMENTS AND CONCLUSION

This paper has presented a new and very simple strategy for

high-performance control of an IM called SMPC.

The method uses the approach of model predictive control

and is based on the fundamental equations of the machine and

of the inverter.

SMPC calculates the variables of the system in a sequential

way using a single cost function for each control objective.

Moreover, this work demonstrates that it is not necessary to

use weighting factors to control torque and flux when using

predictive control.

Experimental results confirm that the strategy effectively con-

trols torque and flux. This simple strategy eliminates the problem

of calculating any weighting factor.

MPC is conceptually different from established strategies for

high-performance control of ac machines. It uses the capabili-

ties of modern microprocessors and the discrete analysis of the

system to be controlled (inverter and machine) in a simple way.

Finally, these results confirm that this strategy is a very attrac-

tive and promising alternative for high-performance ac drives.
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