
A VHDL Error Simulator for Functional Test Generation

Alessandro Fin Franco Fummi
DST Informatica

Università di Verona, 37134 Verona, ITALY

Abstract
This paper describes an efficient error simulator able to

analyze functional VHDL descriptions. The proposed simu-
lation environment can be based on commercial VHDL sim-
ulators. All components of the simulation environment are
automatically built starting from the VHDL specification of
the description under test. The effectiveness of the simulator
has been measured by using a random functional test gener-
ator. Functional test patterns produce, on some benchmark-
s, a higher gate-level fault coverage than the fault coverage
achieved by a very efficient gate-level test pattern genera-
tor. Moreover, functional test generation requires a fraction
of the time necessary to generate test at the gate level. This
is due to the possibility of effectively exploring the test pat-
terns space since error simulation is directly performed at
the VHDL level.

1 Introduction
Design verification is becoming the most complex task

of the entire design flow due to the continuous increas-
ing of the design complexity. Formal verification tech-
niques [1, 2, 3] would be the panacea if they would be
widely applicable. However, their computation complexity
is still prohibitive, thus the common practice for functional
verification is still based on simulation. Some simulation-
based verification approaches have been presented in the lit-
erature [4, 5, 6]. They usually compare the specification
and the implementation of a device described by means of a
hardware description language (HDL), such as VHDL [7] or
Verilog [8]. Such techniques differ in the way the functional
test patterns are identified since test patterns application to
both specification and implementation and results compari-
son can be performed by using standard HDL simulators.

Whenever production testing is approached, test patterns
are computed by means of defect and fault models related
to structural descriptions of the device. However, the use of
functional patterns for this task would be of extreme inter-
est if they would be able to cover faults. In fact, function-
al patterns are used to validate all transformations trough
the synthesis process and it would be a waste to discard
them during production testing. Some approaches for func-

tional testing have been investigated in the past years s-
tarting from microprocessors [10, 11] and finite state ma-
chine descriptions [12] until general specifications based on
a HDL [13, 5, 14, 15]. These last approaches inject errors
into a HDL descriptions and try to differentiate the erro-
neous behavior from the error-free behavior. An importan-
t component of such methodologies is the error simulator,
which simplifies the error list by removing covered errors.
Furthermore, if the functional test generation methodology
is simulation based (e.g, based on random test generation
or genetic algorithms [16]), the error simulator becomes the
most crucial component due to the required high number of
simulation sessions.

The aim of this paper is the presentation of a general er-
ror simulator for VHDL descriptions, which allows to use
the most common metrics for functional testing, that is, s-
tatements coverage, branch coverage, condition coverage
and path coverage [17]. The error simulator can be based on
any commercial VHDL simulator, or, for improving perfor-
mance, on the Model Technology simulator, which allows
the mixed simulation of VHDL and C modules. The cur-
rent implementation exploits this characteristic of the Mod-
el Technology simulator to generate a very efficient error
simulator.

A fault model and a fault simulator for VHDL descrip-
tions have been presented in [18]. This methodology pro-
duces a modified VHDL description for each fault and it
proposes to simulate them with a standard VHDL simula-
tor and to compare simulator output files to identify tested
faults. No multiple faults can be handled, and VHDL must
be recompiled at any new injected fault, but, more impor-
tant, no simulation optimizations can be implemented, for
instance no fault dropping can be performed. The simula-
tion methodology presented in [19] proposes to dynamical-
ly inject faults in the VHDL code by controlling some extra
inputs and it shows the general feasibility of VHDL fault
simulation.

The proposed VHDL error simulator has the following
characteristics:

� It analyzes any functional VHDL description.

� A modified version of the VHDL description is auto-
matically generated based on a error list.

� Each error, or a set of errors, can be injected, at any
time of the simulation process, in the description by
driving control lines.

� Some synchronization modules are automatically gen-
erated, eventually in C language, to produce a closed
design-entity, which performs all steps of the error
simulation process: error injection, test application, re-
sponse analysis and error list maintenance.

� The generated VHDL design-entity must be compiled
once and can be simulated by a commercial VHDL
simulator to perform error simulation.

The efficiency of the proposed simulator is measured in this
paper by randomly generating functional test patterns. The
possibility of exploiting error injection and simulation at the
VHDL level allows random generation to produce very ef-
fective test patterns, and this is not usually true whenever
performed at the gate level. The application of such patterns
on the gate-level implementations of the functional VHDL
specifications produces equal or even better fault coverage
than the application of a commercial gate-level test pattern
generator.

The paper is organized as follows. The proposed VHDL
error simulation methodology is described in Section 2 with
the description of the adopted VHDL error model and the
error injection strategy. The simulator architecture is pre-
sented in Section 3, where some optimization techniques for
error injection are also described. Section 4 presents some
experimental results aiming at showing the effectiveness of
the proposed VHDL error simulator. A random generator
approach has been used and the achieved gate-level fault
coverage is compared to the fault coverage achieved by an
efficient commercial TPG working at the gate level.

2 Simulation Methodology
The proposed simulation methodology for VHDL is

composed of the following elements (Figure 1):

� VHDL Component to be Tested. The design en-
tity of the VHDL component to be tested is
compiled in the LEDA database [20] and analyzed and
modified through the database routines.

� Error List . The Error List is generated by the
Error List Generator based on the error mod-
el described in [15] and briefly summarized in Sec-
tion 2.1. It contains the list of all stuck-at bit errors to
be injected. Each error is described by the type (stuck-
at zero/one or stuck-at false/true), the target signal or
variable and the bit position (see Figure 3).

� Simulator Generator. It is composed of a set of rou-
tines working on the LEDA database. By manipu-
lating the Error List and the description of the
VHDL Component to be Tested , such rou-
tines generate theVHDL Component with In-
jected Errors and the C descriptions of the
Error Driver , theTest Vector Generator
and theResult Analyzer (see Section 3).

� Simulator Architecture . The set of VHDL and C
modules previously introduced can be executed in a
VHDL simulation environment to efficiently measure
the error coverage of theVHDL Component to
be Tested .

VHDL
Component

to be
Tested

Error
List

LEDA
DB and
Routines

VHDL
Component

with
Injected
Errors

C
Description

of
Error-Driver
Test Vector
Generator
Result
Analyzer

Simulator
Architecture

Error List
Generator

Simulator
Generator

Figure 1. Simulator Developing Phase

2.1 VHDL Error Model
The adopted error model considers those failure modes

of VHDL closely related to RT-level stuck-at faults [15].
It assumes a single error model composed of the following
two kinds of errors:

Bit failures . Each variable, signal or port is considered
as a vector of bits. Each bit can be stuck-at zero or one.

Condition failures. Each condition can be stuck-at true
or stuck-at false, thus removing some execution paths in the
erroneous representation.

The error model excludes explicitly the incorrect behav-
ior of the elementary operators (e.g., +,-,*,...). Only single
bit input or output errors are considered, therefore including
all operator’s equivalent errors.

It has been proven in [21] that this VHDL error model
covers all statement, branch and condition errors, moreover
it covers an important part of all path errors. For this rea-
son, the simulation of theError List , generated by us-
ing this error model, allows to represent the most common
metrics for functional testing. However, the description of
the potentialities of the choosen error model is not one of
the goals of this paper, the interested reader is referred to
[21].

2.2 Error Injection Strategy
The aim of the adopted error injection strategy is the sim-

ulation of erroneous behaviors at simulation time without
requiring the re-compilation of the VHDL code or the mod-
ification of the simulator architecture. In this way, all op-
erations concerning repeated injection of errors can be con-
trolled by the simulator at run-time, thus allowing a func-
tional test generator to efficiently perform many simulation
cycles on different sets of errors. Control lines are added
to the entity of theVHDL Component to be Tested
to switch during simulation between the error-free and the
erroneous behaviors, thus creating the entity of theVHDL
Component with Injected Errors . Each error is
controlled by using 2 bits: ’11’ represents a stuck-at one or
stuck-at true, ’10’ a stuck-at zero or stuck-at false and ’0*’
represents no error. An example ofVHDL Component
with Injected Errors is shown in Figure 2.

ENTITY gcd32 IS
PORT (

clock : IN bit;
reset : IN bit;
xi,yi : IN UNSIGNED (SIZE-1 DOWNTO 0);
out : OUT UNSIGNED (SIZE-1 DOWNTO 0)

);
ARCHITECTURE behavioral OF gcd32 IS
BEGIN

PROCESS
VARIABLE x,y : UNSIGNED (SIZE-1 DOWNTO 0) ;
VARIABLE temp : UNSIGNED (SIZE-1 DOWNTO 0) ;

BEGIN
WAIT UNTIL clock = ’1’;
x := xi;
y := yi;
WHILE (x> 0) LOOP

IF(x< y) THEN
temp := y;
y := x;
� � �

Figure 2. A VHDL Component to be Tested

0> Error on yi row 18 occurrence 1
List of bit-errors:

**SA 1 on bit 31 ... 0 **SA 0 on bit 31 ... 0
1> Error on x row 25 occurrence 2

List of bit-errors:
**SA 1 on bit 31 ... 0 **SA 0 on bit 31 ... 0

Figure 3. Example of Error List

Let us consider, for instance, the first error reported in Fig-
ure 3. It represents the stuck-at one and zero error on all 32
bits of theyi signal. This error is controlled by the added
input signaly18er , which is able to model all 64 stuck-
at bit errors. They18 inj LOOP checks all bits of such
a signal and modifies the value of they signal according
to the errors to be injected. Thus, by controlling values of
input signaly18er it is possible to simulate all 64 erro-
neous behaviors related to single errors or any combination
of multiple errors.

Note that, the complexity of the VHDL code of the
component with injected errors increases lin-
eary in the number of inputs, signals and variables involved.

3 Simulator Architecture

ENTITY gcd32 IS
PORT (

clock : IN bit;
reset : IN bit;
xi,yi, out : IN UNSIGNED (SIZE-1 DOWNTO 0);
out : OUT UNSIGNED (SIZE-1 DOWNTO 0);

y18err, x25err : IN ERRORLINE;
);
ARCHITECTURE behavioral OF gcd32 IS
BEGIN

PROCESS
VARIABLE x : UNSIGNED (SIZE-1 DOWNTO 0) ;
VARIABLE y : UNSIGNED (SIZE-1 DOWNTO 0) ;
VARIABLE temp : UNSIGNED (SIZE-1 DOWNTO 0) ;
VARIABLE op : UNSIGNED (SIZE-1 DOWNTO 0) ;

BEGIN
WAIT UNTIL clock = ’1’;
x := xin;

y := yin;
y18 inj: FOR i IN 0 SIZE-1
LOOP

CASE y18err(i) IS
WHEN STUCK0 => y(i) := ’0’;
WHEN STUCK1 => y(i) := ’1’;
WHEN OTHERS => null;

END CASE;
END LOOP y18 inj;

WHILE (x> 0) LOOP
IF (x< y) THEN

temp := y;
y := x;
x := temp;

END IF;

op := x;
x25 inj: FOR i IN 0 SIZE-1
LOOP

CASE x25err(i) IS
WHEN STUCK0 => op(i) := ’0’;
WHEN STUCK1 => op(i) := ’1’;
WHEN OTHERS => null;

END CASE;
END LOOP x25inj;

Figure 4. VHDL Component with Injected Er-
rors

Test Vector
Generator

VHDL
Component
to be Tested

VHDL
Component

with
Injected
Errors

Error Driver

Sync Master
Result
Analyzer

Input
Vector

Output

Output
Injected
Error

TVG clock

clock

RA clock

CIE clock

ED clock

Simulation
Output

1

2 3

4

56

C codeVHDL code

Figure 5. Simulator Architecture

Figure 5 shows the architecture of the proposed VHDL er-
ror simulator. It is composed of six modules automatically
generated by the routines working on the LEDA database,
as shown in Figure 1. Such routines produce all simula-
tor elements by reading from the database theVHDL Com-
ponent to be Tested and theError List . In the
current implementation some modules are written in VHDL
and other modules in C to improve the simulation perfor-
mances. However, if the used VHDL simulation environ-
ment does not allow such a mixed simulation, C modules

can be rewritten in VHDL. Let us describe each module:
� Sync Master. This module is responsible for the

synchronization of the other modules. It is con-
nected to a different clock line for any module. It
drives theTest Vector Generator , which gen-
erates new input vectors for both theVHDL Com-
ponent to be Tested and theVHDL Compo-
nent with Injected Errors . Moreover, the
Sync Master commands theError Driver to
inject new errors in theVHDL Component with
Injected Errors and commands theResult
Analyzer to compare the output of both VHDL
components, when they finished the computation.

� Test Vector Generator. This module produces
test patterns for theVHDL Component to be
Tested and the VHDL Component with In-
jected Errors . In the current implementation this
module produces random patterns, however it could
be replaced by any functional test generator since it is
written in C and it can be interfaced to any other pro-
grams by using, for instance, the socket library. Note
that the rest of the simulator architecture is left un-
changed if theTest Vector Generator is mod-
ified.

� Error Driver . This module injects a single bit stuck-at
error in theVHDL Components with Inject-
ed Errors , by driving the error control lines, as de-
scribed in Section 2.2. The module manages an error
table, which has been generated by the simulator gen-
erator starting from theError List . The error table
allows to identify detected errors and the correspond-
ing detecting test patterns. Moreover, in fault dropping
mode, only undetected errors are injected, thus sensi-
bly improving the simulation efficiency.

� Result Analyzer. This module verifies if the current
test pattern, generated by theTest Vector Gen-
erator , is able to detect the injected error. The anal-
ysis compares the outputs of theVHDL Component
to be Tested and the outputs of theVHDL Com-
ponent with Injected Errors . This com-
parison is performed every time the two components
assert their respectivedone signals. Such signals have
been inserted in the original VHDL description at the
time an output port is assigned. The use of suchdone
signals allows the synchronization of the error-free and
erroneous VHDL components which could produce
results at different times due to the injection of er-
rors. The result of this component is the error coverage
achieved at the end of the simulation.

� VHDL Component with Injected Errors . This
VHDL component has been derived from the origi-

nal VHDL description by adding error control signals
anddone signals as described before. If no error is
injected the output of this component is equal to the
output produced by theVHDL Component to be
Tested .

4 Experimental Results
The proposed error simulation methodology has been

implemented by using:

� The LEDA LVS Libraries [20] for VHDL parsing, er-
ror generation, error injection and simulator architec-
ture generation. It is composed of about 10K C code
lines and it has been inserted into the Commit [21] en-
vironment. This part automatically realizes the simula-
tor architecture reported in Figure 5 starting from any
VHDL design entity.

� The Model Technology VHDL simulator, which al-
lows the linking and concurrent simulation of VHDL
and C code. The interface between VHDL and C code
is based on the FLI library, which converts C function
parameters into VHDL input/output ports and vice ver-
sa.

All experiments have been performed on a SUN Ultra5
333MHz with 256MByte RAM.

The effectiveness of the proposed approach has been e-
valuated on some behavioral VHDL designs of the high-
level-synthesis set [22]. Such benchmarks have been ana-
lyzed for different data size: 8, 16 and 32 bits to evaluate the
dependency of the random functional test generator from
the data size. Characteristics of the analyzed benchmarks
are summarized in the leftmost part of Table 1 in terms of
inputs, outputs and modeled VHDL errors. Two different
combinations of scheduling and allocation have been per-
formed on each benchmark by using the high-level synthe-
sis tool Visual Architect [23]. Different clock cycle lengths
produce such different combinations of scheduling and al-
location. RTL and logic synthesis have been executed by
using a commercial RTL synthesis tool. The rightmost part
of Table 1 shows structural information for each benchmark
in terms of scheduled control steps, number of gates, mem-
ory elements and stuck-at faults. Table 2 shows the average

Table 2. Average simulation times.
Name CPUs. CPUs.WEI �%

diffeq 542 595 9.8
ellipf 664 718 8.1
fir 712 786 10.4
gcd 323 365 13.0
average 487 544 10.3

CPU run times necessary to simulate 1000 test vectors on

Table 1. Characteristics of the analyzed benchmarks.
Name BUS-size In.bits Out.bits VHDL Errors Ctrl.Steps Gates F.F. Stuck-at Faults

8 42 24 672 4 1679 83 5078
7 2077 99 5160

diffeq 16 82 48 1344 4 4637 163 11448
7 4988 195 12358

32 162 96 2688 4 14026 323 30808
7 14727 387 32720

8 66 64 1424 5 1848 123 6432
12 2300 140 5866

ellipf 16 130 128 2848 5 3900 243 12956
12 4373 276 10926

32 258 256 5696 5 8985 483 26708
12 10540 548 22616

8 194 8 1532 5 1507 43 4438
12 2233 118 6482

fir 16 384 16 3056 5 2957 75 9258
12 4570 262 14704

32 768 32 6104 5 8329 139 21868
12 8827 204 23672

8 18 8 164 3 398 26 1102
7 636 35 1588

gcd 16 34 16 324 3 781 50 2274
7 1143 67 3338

32 66 32 644 3 1649 98 4714
7 2153 131 6386

the benchmarks before and after transformations for errors
injection. The 32-bit versions of the benchmarks have been
used. The average cpu time overhead produced by the trans-
formation is only 10.3%.

The proposed VHDL error simulator has been used in
conjunction with a random test generator. Test vectors are
randomly generated as bit vectors. The size of these vectors
is twice the sum of the size of the added signals for error
injection (see the stuck-at error encoding presented in Sec-
tion 2). The fault coverage of such random functional test
patterns has been compared to the fault coverage achieved
by running one of the most efficient commercial gate-level
TPG, which performs at first random generation followed
by deterministic test generation. Results of this comparison
are reported in Table 3, where all versions of each bench-
mark are identified by a suffix composed of the data size
and the number of control steps: e.g., the first benchmark of
Table 1 is referred to asdiffeq 8 4.

Table 3 shows the number of stuck-at faults (Tot.F.), the
CPU time, the number of detected faults and the corre-
sponding fault coverage for the random generation based
on the proposed VHDL error simulator and for the deter-
ministic gate-level TPG. For this second generator, the fault
coverage randomly achieved at the gate level is also report-
ed (%Rnd.F.C.). The gate-level fault coverage achieved by
the VHDL random test generator is on average higher than
the global fault coverage achieved by the gate-level TPG.
Gate-level random fault coverage is a fraction of the func-

tional random fault coverage. Moreover, functional test
generation time is sensibly lower than gate-level generation
time. These results highlight that the adoption of an effi-
cient VHDL error simulator allows a functional test gener-
ator (even random) to effectively explore the test patterns
space. To improve the fault coverage it would be neces-
sary to adopt some deterministic techniques applicable to
behavioural component descriptions [15].

5 Concluding Remarks
The paper has presented the architecture of an error sim-

ulator able to analyze functional VHDL descriptions. The
simulation environment is based on a commercial VHDL
simulator, which analyzes some modules automatically de-
rived from the VHDL description to be tested. Errors are
injected during simulation without being constrained to re-
compile any VHDL description. Injected errors are based
on a error model, which guarantees to be equivalent to the
well known metrics based on branch, condition and state-
ment coverage. The proposed error simulator, in conjunc-
tion with a simple random test generator, produced test pat-
terns achieving very high gate-level fault coverage in a frac-
tion of the time required by an efficient gate-level TPG.

Future work will concern the use of the error simulator
with more efficient functional test pattern generators based
on implicit techniques and genetic algorithms and the exten-
sion of the simulator to sequential circuits and multiproces
descriptions.

Table 3. VHDL random TPG versus gate-level deterministic TPG.
Functional VHDL Random TPG Gate-level Deterministic TPG

Name Tot.F. CPUs. Det.F. %F.C. CPUs. %Rnd.F.C. Det.F. %F.C.

diffeq 8 4 4896 9 4524 92.4 221 0.0 4269 87.2
diffeq 8 7 5156 9 4723 91.6 220 0.0 4676 90.7
diffeq 16 4 11068 98 10334 93.4 2382 0.0 9607 86.8
diffeq 16 7 11916 98 11030 92.6 1282 3.6 1124 94.2
diffeq 32 4 30044 595 28064 93.4 19388 3.9 27100 90.2
diffeq 32 7 31830 595 29520 92.7 6097 3.6 30524 95.9

ellipf 8 5 6190 62 5564 89.9 171 13.0 5571 90.0
ellipf 8 12 5830 62 5427 93.1 113 8.9 5451 93.5
ellipf 16 5 12114 211 11316 93.4 750 9.6 10951 90.4
ellipf 16 12 10828 211 10150 93.7 290 8.8 10146 93.7
ellipf 32 5 25746 718 23537 91.1 4186 10.3 23377 90.8
ellipf 32 12 22380 718 21054 94.1 1120 9.3 2160 94.1

fir 8 5 4182 89 3855 92.2 257 11.2 3889 93.0
fir 8 12 6218 89 5733 92.2 793 8.2 5024 80.8
fir 16 5 8994 312 8427 93.7 760 7.6 8472 94.2
fir 16 12 12868 312 11954 92.9 8637 9.8 8583 66.7
fir 32 5 20034 786 18050 90.1 3667 11.1 19313 96.4
fir 32 12 21496 786 19625 91.3 5616 9.3 20700 96.3

gcd 8 3 1094 3 1041 95.0 18 6.6 1025 93.7
gcd 8 7 1575 3 1500 95.2 290 4.6 1462 92.8
gcd 16 3 2248 72 2112 94.0 193 6.0 2043 90.9
gcd 16 7 3260 72 3079 94.4 890 4.1 2090 64.1
gcd 32 3 4637 365 4293 92.6 2184 5.6 3450 74.4
gcd 32 7 6234 365 5809 93.2 4020 4.2 4208 67.5

average 92.8 6.7 88.8

Acknowledgments
We would like to acknowledge Prof.Sciuto and

Dot.Ferrandi of Politecnico di Milano for the useful discus-
sions on functional testing.

References
[1] T. Filkorn, M. Payer, and P. Warketin. Symbolic verification of high-

level synthesis results from Callas.Proc. 6th International Work-
shop on High-Level Synthesis, pages 344–353, nov 1992.

[2] O. Coudert, C. Berthet, J.C. Madre. Verification of Sequential Ma-
chines Based on Symbolic Execution.Proc. Workshop on Automatic
Verification Methods for Finite State Systems, 1989.

[3] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, D.L. Dill.
Symbolic Model Checking for Sequential Circuit Verification.IEEE
Trans. on CAD/ICAS, 13(4):401–424, April 1994.

[4] R. Vemuri and R Kalyanaraman. Generation of design verification
tests from behavioral VHDL programs using path enumeration and
constraint programming.IEEE Trans. on VLSI Systems, 3(2):201–
214, June 1995.

[5] F. Fallah, P. Ashar, and S. Devadas. Simulation vector generation
from HDL descriptions for observability-enhanced statement cover-
age.Proc. ACM/IEEE DAC, pages 666–671, 1999.

[6] F. Fallah, S. Devadas, and K. Keutzer. Functional vector genera-
tion for HDL models using linear programming and 3-satisfaiability.
Proc. ACM/IEEE DAC, pages 528–533, 1998.

[7] IEEE standard VHDL language reference manual.IEEE Sid 1076-
1993, The Institute of Electrical and Electronic Engineerings, Inc.,
New York, NY, 1993.

[8] D.E. Thomas, P. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publisher, Nowell Massachusetts, 1991.

[9] Synopsys VSS user’s manual.Synopsys, 1998.
[10] D. Brahme and J.A. Abraham. Functional testing of microproces-

sors.IEEE Trans. on Computers, C-33(6):475–485, 1985.

[11] J. Lee and J.H. Patel. Architectural level test generation for micro-
processors.IEEE Trans. on CAD/ICAS, 13(10):1288–1300, October
1994.

[12] K.T. Cheng and A.S. Krishnakumar. Automatic generation of func-
tional vectors using the extended finite state machine model.ACM
Trans. on design Automation of Electronic Systems, 1(1):57–59,
January 1996.

[13] U.H. Levendel and P.R. Menon. Test generation algorithms for com-
puter hardware description languages.IEEE Trans. on Computers,
C-31(7):557–588, July 1982.

[14] S.R. Rao, B.Y. Pan, and J.R. Armstrong. Hierarchical test genera-
tion for VHDL behavioral models.Proc. European Design Automa-
tion Conference, pages 175–182, 1993.

[15] F. Ferrandi, F. Fummi, and D. Sciuto. Implicit test generation for
behavioral VHDL models.Proc. IEEE ITC, pages 436–441, 1998.

[16] E.M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. Prinetto and M. Sonza
Reorda. Fast Sequential Circuit test Generation Using High-Level
and Gate-Level Techniques.Proc. IEEE DATE, pages 570–576,
1998.

[17] Glenford J. Myers. The Art of Software Testing. Wiley - Inter-
science, New York, 1979.

[18] T. Riesgo, J. Uceda. A Fault Model for VHDL Descriptions at the
Register Transfer Level.Proc. EURO-DAC/EURO-VHDL, 1996.

[19] F. Celeiro, L. Dias, J. Ferreira, M.B. Santos, J.P. Texeira. VHDL
Fault Simulation for Defect-Oriented Test and Diagnosis of Digital
ICs. Proc. EURO-DAC/EURO-VHDL, 1996.

[20] LEDA VHDL*Verilog System user’s manual.VHDL Compiler Ver-
sion 4.1, 1993.

[21] F. Ferrandi, F. Fummi, and D. Sciuto. Design Verification of VHDL
Specifications through Functional Testing.Internal Report 3-99,
Universitá di Verona, 1999.

[22] 1991 and 1992 high level synthesis benchmarks.
ftp://mcnc.mcnc.org/pub/benchmark/HLSynth91[92], 1992.

[23] Visual architect user’s manual.Cadence, 1998.

