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To study the vibration mechanism of ball bearings with localized defects, a vibration model of a ball bearing based on the
Hertzian contact stress distribution is proposed to predict the contact force and vibration response caused by a localized defect.
�e calculation of the ball-raceway contact force when the ball passes over the defect is key to establishing a defect vibration
model. Hertzian contact theory indicates that the contact area between the ball and the raceway is an elliptical contact surface;
therefore, a new approach is used to calculate the ball-raceway contact force in the defect area based on the stress distribution and
the contact area. �e relative motion between the inner ring, the outer ring, and the balls is considered in the proposed model,
and the Runge-Kutta algorithm is used to solve the vibration equations. In addition, vibration experiments of a bearing with an
outer ring defect under di	erent loads are performed.�e numerical signals and experimental signals are compared in the time and
frequency domains, and good correspondence between the numerical and experimental results is observed. Comparisons between
the traditional model and the proposed model reveal that the proposed model provides more reasonable results.

1. Introduction

�e failure of a properly installed and lubricated bearing
occurs in the form of surface fatigue cracks, such as spalls
and pits [1]. In a ball bearing, spalls and pits o
en form
on the contact surfaces between the raceways and balls. �e
variation of the contact deformation between the ball and the
raceway when the ball passes over a defect causes a sudden
change in the contact force, which causes periodic vibration
of the bearing. How to describe and explain this process using
mathematical and physical models is a major area of research
on bearings with defects.

In early studies [2, 3], the variation of the fault signals
of bearing defects in the frequency domain was analysed in
detail. Subsequently, a vibrationmodel of bearings was intro-
duced. �e research focused on the periodic vibration phe-
nomenon in bearings, and an impulse was used to describe
the impact force caused by a localized defect. Rafsanjani et
al. [4] developed a vibration model of ball bearings, studied
the vibration characteristics of localized defects on the inner
ring, outer ring, and balls, and established a pulse function
that contains several parameters, such as the position, angle,

and depth of the defects. Tandon and Choudhury [5, 6]
used a rectangular pulse, a triangular pulse, and a half-sine
pulse to express the impact force caused by localized defects,
correlated the severity of the defect and the defect generation
time with the amplitude of the pulse, and calculated the
width of the pulse from the width of the defect. �e results
showed that the vibration amplitude of the outer raceway’s
defect expressed by the rectangular pulse is greater than that
expressed by the half-sine pulse.

Although the periodic vibration of a bearing due to a fault
can be simulated somewhat by pulse functions, the geometric
morphology of defects cannot be adequately described, and
the generation of the impact force cannot be adequately
explained; thus, current research focuses on simulating the
impact process via mechanical calculations. In previous
studies [7–17], scholars suggested that when a ball passes
over a defect on the raceway, the ball will sink to a certain
depth, and the contact deformation between the ball and
raceway will change, resulting in a change in the ball-raceway
contact force; this process causes periodic vibration of the
bearings. Sawalhi and Randall [7, 8] presented a gearbox
model with bearing faults and compared it with the model
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in [9]. In [9], when the rolling element enters or exits the
spall region, the contact force between the elements and
the raceways will change instantly, which can cause sharp
vibrations in the gearbox system. �is model predicts very
large impulsive forces in the system as a result of the sharp
increase in acceleration required tomaintain a balancewithin
the system.�us, they updated the model to re�ect the actual
path of the rolling element and de�ned the depth of the
defect as a gradient function associated with the width of the
defect, the rolling element’s radius, and the race radius. Patel
et al. [10] reported a dynamic model of ball bearings with
single and double defects on the raceways; a �xed sinking
depth of the balls was obtained based on the defect width
and the ball radius. Patel et al. [11] updated the model by
considering the pro�le of a localized defect and assigning a
variable defect depth based on the variable size of the defect
and the ball radius.�e simulation results in these two papers
are generally consistent with the experimental results. Patil et
al. [12] proposed a ball bearing model with a localized defect
to predict the vibration response. In this model, the defect
is modelled as a circumferential half sinusoidal wave, and the
vibration amplitude of the ball is calculated based on the angle
of the defect, the rotational speed of the balls, and the defect
width. �e experimental results showed that the greater the
defect width is, the larger the vibration amplitude of the fault
signal is. Moazen Ahmadi et al. [13] established a nonlinear
dynamic model of roller bearings with a wider range of
defects. �e model considers the �nite size of the rollers,
the contact force, and the damping force between the rolling
elements and raceways to calculate the path and contact force
of rollers in the defect region. Comparisons between the
proposed model, the point mass model, and experimental
results were performed and showed that the proposed model
is more reasonable than the point model; the numerical
results are more consistent with the experimental results. Liu
et al. [14] proposed that the vibration amplitude and duration
of the impact force are determined by the geometric pro�le
and size of the defects. Based on the geometric pro�le and
size of the defects, ball-defect contacts were divided into �ve
types; moreover, the sinking depth of the ball was expressed
by piecewise functions according to the number of contact
points between the balls and the defects, and the contact
sti	ness of each type was calculated to obtain the contact
force. Gomez et al. [15] presented a deep groove ball bearing
model with localized defects to study the instantaneous
angular speed variations of the balls.�ismodel used a simple
localized defect model with a rigidly defect depth, and the
defect depth is also regarded as the variation of the contact
deformation when the balls pass over the defect. Mishra et
al. [16] proposed three di	erent ball bearing defect models, a
5-DOF vibration model developed in MATLAB Simulink, a
multibody dynamics model using bond graph by SYMBOLS
so
ware, and a multibody CAD model using ADAMS so
-
ware. �e simulated and the experimental vibration signals
of di	erent bearing faults are also compared. However, the
ball-raceway contact deformation has a constant value when
the balls pass over the defect in the vibrationmodel. Chen and
Kurfess [17] proposed a new rolling element bearingmodel to
estimate the defect size on the outer raceway. �e vibration

signal from the time domain is used to estimate the defect
size. �e experiment results showed that this model provides
accurate estimation.

In the studies described above, the contact forces between
the balls and the defects are calculated based on the sinking
depth of the balls, which is related to the defect width and
the ball radius. �e advantage of this approach is that it can
calculate the impact forces of defects with di	erent sizes;
however, the disadvantage of this approach is that regardless
of how the load applied to the bearing changes, the rigidly
sinking depth of the ball is unchanged in the defect area.
To solve this problem, a vibration model of a bearing with
a defect that uses Hertzian contact stress distribution is
proposed. �e new model considers the contact area and the
stress distribution. It includes several important parameters,
the defect width and the ball radius, as well as the bearing
load, the defect geometry, and the sha
 rotational speed. In
the newmodel, the load on the bearings can a	ect the sinking
depth of the balls, and the geometric relationship between
the balls, raceways, and defects is di	erent from that in the
traditional models.

�is paper is divided into six sections.�e second section
presents the analysis of the contact process between a ball and
a defect, and the third section introduces the contact model
of balls and raceways. An experiment is presented in the
fourth section. In the �
h section, the numerical results of the
proposed model are analysed, and the experimental results
and the numerical results are compared. �e last section
presents the conclusions.

2. Analysis of the Contact Process between
the Ball and Defect Area

Hertzian contact theory is used to calculate the contact force
between the ball and the raceway over a long period, as shown
in the following:

� = � ⋅ ��, (1)

where� is the contact force,� is the contact sti	ness, � is the
contact deformation, and � = 1.5 for a ball bearing.

�e sinking depth of the ball in defect area is shown in
Figure 1. �e model in Figure 1(a) is the traditional model;
[7–11, 15–17] used this model. However, all the sinking depths
of the balls in Figure 1 are possible in the proposedmodel; the
sinking depth is a	ected by the applied load.

In Figure 1(a), the sinking depth Δ of the ball is obtained
from the width of the defect, as shown in the following:

Δ = � − √�2 − 
2, (2)

where � is the radius of the ball and 2
 is the width of the
defect.

As mentioned previously, � is the contact deformation
between the ball and the raceways before the ball reaches the
defect. When the ball passes over the defect, the remaining
deformation between the ball and the raceways is �−Δ; thus,
according to (1), the ball-defect contact force is

� = � ⋅ (� − Δ)3/2 . (3)
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Figure 1: �e sinking depth of the ball.

�is method can be considered an approximate method.
For details, refer to [11]. �is traditional model has the
following disadvantages.(1)�e sinking depth of the ball is a function of only the
ball radius and the defect width, and it is independent of the
applied load on the bearing.Moreover, a
er the sinking depth
of the ball is determined, the path of the ball is also limited.(2) When the ball contacts the raceways or the defect, a
small contact area is simpli�ed as a line contact or a point
contact, which results in an inaccurate contact force.

To address these problems, a Hertzian contact stress
distribution is applied to the calculation of the contact force
in the defect area. In the proposed model, the sinking depth
of the ball is related to the load applied on the bearing, and the
contact area between the ball and defect is also considered.

3. Bearing System Model

3.1. Vibration Model of the Bearing. A vibration model of
the bearing is presented in Figure 2. �e ball bearing (Type
6204) is mounted at the end of a sha
. �e inner ring is
�xed rigidly to the motor sha
, and the outer ring is �xed
to the housing. A constant additional load �� is applied to
the housing in the vertical direction, and an accelerometer
is mounted onto the housing to measure the vibration of
the outer ring. �e ball-raceway contact can be considered
a spring-mass system. �e proposed model incorporates the
following realistic assumptions and considerations.

(1)�e balls rotate with the cage; that is, the balls do not
slip.(2)�e forces act in the radial direction only; the contact
is an elastic contact and follows Hertzian contact theory.(3)�e forces act only in the radial plane of the bearing.(4) When the ball passes over the localized defect on
the raceway, the stress distribution between the ball and the
raceway follows Hertzian contact theory.(5) Because of the centrifugal force, the balls, cage, and
outer ring have the same rotational frequencies.(6) Grease is used in the bearing; the damping due to the
lubricating �lm between the ball and the raceways and the
damping of the sha
 and the housing are considered.

3.2. Kinematics of the Balls. �e inner and outer centres of
the rolling element bearings are not concentric because of the
applied load and the bearing clearance. Figure 3 illustrates the
relationships between the motions of the components of the
ball bearing, where�in(�, ��) and�out(�, ��) are the centres
of the raceways, ��(��,�, ��,�) is the centre of the �th ball, the
raceway radii are �� and ��, the angular positions of the �th
ball on the raceways are �in,� and �out,�, and �out,� can be
described as follows:

�out,� = 2� ⋅ �	 ⋅ � + �4 (� − 1) + �0. (4)

In Figure 3, the geometrical relationships of�in,� and�out,�
are as follows:
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Figure 2: �e bearing system model.

cos�in,� = (� + ��out,� ⋅ cos�out,� − �)��in,� ,

sin�in,� = (�� + ��out,� ⋅ sin�out,� − ��)��in,� ,
cos (�in,� − �out,�) = cos�in,� ⋅ cos�out,� + sin�in,�

⋅ sin�out,�,

(5)

where �	 is the cage frequency, �0 is the initial angular

position of the cage, ��in,� = √(��,� − �)2 + (��,� − ��)2,
��out,� = √(��,� − �)2 + (��,� − ��)2, and the ball-raceway

deformations are denoted as follows:

�in,� = � + �� − ��in,�,
�out,� = � − �� − ��out,�. (6)

3.3. Defect Model Based on the Hertzian Contact

Stress Distribution

3.3.1. Hertzian Contact Stress Distribution. �eanalysis of the
contact type of the bearing is presented below. In Figure 4,
when a ball contacts the raceway, the contact is a point contact
if the load is zero, as shown in Figure 4(a). A
er a load is
applied to the ball, the contact point expands to an ellipse,
as shown in Figure 4(b).

�e Hertzian contact force calculation of a ball bearing
was simpli�ed. For the contact area between the ball and the
raceway (both of which are made of steel), � is the semimajor
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Figure 3: Relationships between the motions of the components of
a ball bearing.

axis, and � is the semiminor axis; they can be obtained as
follows:

� = 0.0236�∗ ( �∑ )
1/3 ,

� = 0.0236�∗ ( �∑ )
1/3 ,

(7)

where ∑ is the sum of the curvatures of the ball and the
raceway and �∗ and �∗ can be obtained from [18].

�e stress on the elliptical contact area is shown in
Figure 5, and the normal stresswithin the contact area is given
by the following:

" = 3�2���√1 − 2�2 − �2�2 . (8)

3.3.2. LocalizedDefect Contact Force. When a ball passes over
the localized defect (Figure 6), the shape of the ball-defect
contact area changes as the ball moves. Figure 7 illustrates
the geometry of the contact area in Figure 6 with coordinates,
where the size of the localized defect is 2
; when the �th ball
moves from le
 to right, the contact area can be described as
follows:

2�2 +
(� − ��)2�2 = 1, (9)

where �� is the �-axis coordinate of the ellipse centre.
According to (8) and (9), the compressive stress distribution
of the contact ellipse is

" = 3�2���√1 − (�)
2 − (� − ��� )2. (10)

Figure 7 illustrates the variation of the ball-raceway
contact area at the defect edge. As the ball begins to enter the
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Figure 4: �e contact area between the ball and raceway. (a) �e contact point under no load conditions; (b) the contact ellipse under an
applied load [18].
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defect (Figure 7(a)), the ball-raceway contact area at the le

edge of the defect becomes smaller; at this stage, the range of�� is −
 − � ≤ �� ≤ � − 
, and the contact force ��,� between
the �th ball and the le
 edge of the defect (contact force of the
shadow area) is

��,� = ∫−�
��−

*�∫�√1−((�−��)/)2
−�√1−((�−��)/)2

"*,
−
 − � ≤ �� ≤ � − 
.

(11)

Figure 7(b) shows that there is no contact between the ball
and the edge of the defect.When a ball enters the defect, if the
contact force of the inner raceway is smaller, the speed of the
bearing is faster, or the defect is larger, the sinking depth of
the ball decreases, and the ball is unable to contact the edges
of the defect.�us, the contact force is zero. For this condition
(� < 
), the contact force is

��,� = 0, � − 
 ≤ �� ≤ 
 − �. (12)

Figure 7(c) shows that the ball is in contact with both
edges of the defect; this condition is the opposite of that in
Figure 7(b). For this condition (� > 
), the contact force is

��,� = ∫−�
��−

*�∫�√1−((�−��)/)2
−�√1−((�−��)/)2

"*

+ ∫�
��+

*�∫�√1−((�−��)/)2
−�√1−((�−��)/)2

"*,

 − � ≤ �� ≤ � − 
.

(13)

In Figure 7(d), as the ball exits the defect, the contact area
becomes larger, the range of �� is 
 − � ≤ �� ≤ 
 + �, and the
contact force between the ball and the right edge of the defect
is

��,� = ∫�
��+

*�∫�√1−((�−��)/)2
−�√1−((�−��)/)2

"*,

 − � ≤ �� ≤ 
 + �.

(14)

For the ball bearingwith a localized defect on the raceway,
the centre of the contact ellipse is ��, its angular position on
the outer raceway is equal to the angular position of the ball
centre, and the angular position of the defect on the outer
raceway is �out,�. When the ball moves near the defect, the
relationship between �� and �out,� is as follows:
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Figure 7: �e variation of the ball-raceway contact area at the defect edge.

�out,� = �out,� + ���� , �� ≪ ��. (15)

3.4. Calculation of the Contact Force. �e contact forces
between the �th ball and the raceways are given by �in,� and�out,�:

�out,� = �out�3/2out ,
�in,� = �in�3/2in . (16)

When a ball passes the defect, the contact force between
the ball and the outer raceway in the defect area is given by

�out,� = ��,�,
�out,� − (
 + �)�� ≤ �out,� ≤ �out,� + (
 + �)�� . (17)

�e sums of the contact forces between the balls and
the raceways in the -axis and �-axis directions are as
follows:

�in,� = �∑
�=1
�in,� ⋅ sin�in,�,

�in,� = �∑
�=1
�in,� ⋅ cos�in,�,

�out,� = �∑
�=1
�out,� ⋅ sin�out,�,

�out,� = �∑
�=1
�out,� ⋅ cos�out,�.

(18)
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3.5. Damping. �e damping coe�cient 7 of the balls result-
ing from the built-up oil �lmduring rotation is as follows [19]:

0.25 × 10−5 × �lin ≤ 7 ≤ 2.5 × 10−5 × �lin. (19)

�e sha
 and housing damping coe�cients are calculated
using the following [20]:

7� = LF ⋅ ��8ext

, (20)

where�lin is the linear sti	ness of the bearing, the loss factor
LF depends on the material, 8ext is the excitation frequency,
and �� is the sti	ness of the support sha
, which can be
calculated by the �nite element so
ware ANSYS. �e values

of the parameters in (19) and (20) are�lin = 3.34 × 104N/mm,
LF = 0.01,�� = 3.70 × 104N/mm, and 8ext = 30.

�edamping forces between �th ball and the raceways can
be expressed as ��,in,� = 7 ⋅ ̇�in,� and ��,out,� = 7 ⋅ ̇�out,�, and
the total contact damping forces acting on the inner and outer
raceways in the -axis and �-axis directions are given by

��,in,� = �∑
�=1
��,in,� ⋅ cos�in,�,

��,out,� = �∑
�=1
��,out,� ⋅ cos�out,�,

��,in,� = �∑
�=1
��,in,� ⋅ sin�in,�,

��,out,� = �∑
�=1
��,out,� ⋅ sin�out,�.

(21)

3.6. Vibration Equations of the Bearings. According to the
bearing system model shown in Figure 2, the vibration
equations for the inner and outer rings of the ball bearing in
the -axis and �-axis directions are as follows:

:in ⋅ ̈�in + 7� ⋅ ̇�in + �� ⋅ �in + �in,� + ��,in,�
= −:in?,

:in ⋅ ̈in + 7� ⋅ ̇in + �� ⋅ in + �in,� + ��,in,� = 0,
:out ⋅ ̈out + ��,out,� − �out,� = 0,
:out ⋅ ̈�out + ��,out,� − �out,� = −:out? − ��,

(22)

where:in is the mass of the inner ring and sha
,:out is the
mass of the outer ring and housing, and �� is the gravitational
load. �e vibration equation of the �th ball in the outer ring’s
radial direction is given by

@ ⋅ ̈�out,� + ��,out,� + ��,in,� ⋅ cos (�in,� − �out,�)
= −�out,� + �in,� ⋅ cos (�in,� − �out,�) − @82�, (23)

where 8 = 2��	, the initial coordinates, velocities, and
acceleration of the raceways and balls are set to reasonable

Table 1: Parameters of the type 6204 bearing.

Inner groove radius 4.088mm

Outer groove radius 4.168mm

Inner raceway radius 13.281mm

Outer raceway radius 21.226mm

Number of balls 8

Ball radius 3.969mm

Radial clearance 3.25 um

values, and the angular positions of the balls vary according
to (4). �e fourth-order Runge-Kutta algorithm is used to
solve (22) and (23) with the commercial so
ware MATLAB
to calculate the motion parameters of each component. �e
damping and sti	ness values in the numerical model are
given as follows: 7� = 0.74Ns/mm, 7 = 0.8Ns/mm, �� = 8.98× 105N/mm3/2, and�� = 8.98 × 105N/mm3/2. �e �ow chart
of the numerical computation is shown in Figure 8.

4. Experimental Setup

�e experimental rig and the bearing (Type 6204) are shown
in Figure 9. �e mass of the housing is 1.345 kg; additional
loads of 4.9N, 9.8N, 14.7N, and 19.6N are applied to the
housing in the vertical direction. When a ball passes over the
defect on the outer raceway, the periodic vibration response
is recorded by the acceleration sensor above the bearing
housing. �e experimental vibration signals and the numer-
ical signals are analysed by the resonance demodulation
method, which is used to diagnose early fault defects of
rolling bearings; [21] introduces the theory of this method in
detail.

�e type 6204 bearing shown in Figure 9(b) has a
localized defect on the outer raceway. �e defect is 0.2mm
wide, 14.0mm long, and 1.0mm deep, and it is located
vertically in the loaded region. �e rotational frequency of
the bearing is 1800 rpm. �e bearing parameters are given in
Table 1.

5. Experimental and Numerical Results

5.1. Comparison between Experimental Signals and Numer-
ical Signals. Figure 10 shows the vibration responses of
the experimental and numerical signals under the di	erent
load conditions. �e results show that, with an increase of
the additional load, the amplitude of the vibration signals
increases; because the bearing has a random vibration, the
vibration amplitude of the numerical signals coincides some-
what with the mean vibration amplitude of the experimental
signals.

Figure 11 shows the frequency spectra of the experimen-
tal and numerical signals under the di	erent load condi-
tions. For the ball bearing with a localized defect on the
outer raceway, the theoretical fault characteristic frequency
(ball pass frequency for the outer race) is 92.39Hz. �e
vibration amplitude and frequency of the fault signals are
given in Table 2. �e fault characteristic frequencies of the
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Figure 9

experimental signals and the numerical signals are consistent
and are very similar to the theoretical fault characteristic
frequency. �e vibration amplitudes of the experimental
and numerical signals both increase with increases of the
additional load because a greater load will cause the impact

forces between the balls and the defect to increase, which will
increase the vibration amplitudes of the signals. In addition,
the vibration amplitudes of the numerical signals are slightly
greater than those of the experimental signals. �e defect’s
surface morphology may have an e	ect on the distribution of



Shock and Vibration 9

(h)(d)

(g)(c)

(f)(b)

(e)(a)

−4

−2

0

2

4

A
m

p
li

tu
d

e 
(m

/s
2
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

−4

−2

0

2

4

A
m

p
li

tu
d

e 
(m

/s
2
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

−4

−2

0

2

4

A
m

p
li

tu
d

e 
(m

/s
2
)

−4

−2

0

2

4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

A
m

p
li

tu
d

e 
(m

/s
2
)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

−5

0

5

A
m

p
li

tu
d

e 
(m

/s
2
)

A
m

p
li

tu
d

e 
(m

/s
2
)

2

0

4

6

−4

−2

−6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

Time (s)

−6

−4

−2

0

2

4

6

A
m

p
li

tu
d

e 
(m

/s
2
)

A
m

p
li

tu
d

e 
(m

/s
2
)

2

0

4

6

−4

−2

−6

Figure 10: Vibration responses of the experimental signals and the numerical signals under di	erent loads. Experimental signals: (a) 4.9N,
(b) 9.8N, (c) 14.7N, and (d) 19.6N. Numerical signals: (e) 4.9N, (f) 9.8N, (g) 14.7N, and (h) 19.6N.

Table 2: Comparison of the fault signals in Figure 11.

Load (N)
Numerical signals Experimental signals

Frequency (Hz) Amplitude (m/s2) Frequency (Hz) Amplitude (m/s2)

4.9 92.19 85.92 92.19 60.49

9.8 92.19 119.7 92.19 74.69

14.7 92.19 150.1 92.19 93.74

19.6 92.19 184.9 92.97 169.4
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Figure 11: Frequency spectra of the experimental signals and the numerical signals under di	erent loads. Experimental signals: (a) 4.9N, (b)
9.8N, (c) 14.7N, and (d) 19.6N. Numerical signals: (e) 4.9N, (f) 9.8N, (g) 14.7N, and (h) 19.6N.

the contact stress and the shape of the contact area; this e	ect
will be studied in future articles.

5.2. Comparison between the Proposed Model

and the Traditional Model

5.2.1. Sinking Depth of the Balls. In contrast to the traditional
model, which only considers the e	ect of the defect size
on the sinking depth of balls in the defect area, the model
proposed in this paper considers both the defect size and the
load. Figure 12 shows the relationships among the maximum
sinking depth of the balls, the size of the defect, and the
load for the traditional model and the proposed model.
�e sinking depth of the ball in the traditional model is

independent of the load, whereas, in the proposedmodel, the
maximum sinking depth increases with increases of the load
and the size of the defect.

�e paths of the balls passing through the defect area
under di	erent loads calculated with the proposed model are
shown in Figure 13. �e sinking depths of the balls increase
with increasing load.�e sinking depths of the balls shown in
Figure 13 are listed in Table 3; the trend is consistent with that
in Figure 12(b) because a greater applied load causes greater
acceleration and velocity of the balls, as shown in Figures 14
and 15.

Table 4 shows the relationships between the contact
ellipse and the sinking depth of the ball. In Figure 13, the

sinking depth of the ball ranges between 0.8 × 10−3mm and
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Table 3: Relationship between the additional load and the change of the sinking depth of the balls in Figure 13.

Additional load (N)
Change of sinking depth Δ (10−3mm)

Traditional model Proposed model

4.9

1.26

0.70

9.8 0.80

14.7 0.91

19.6 1.02

0
40

1

0.3

Load (N) Size (mm)
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o
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)

×10−3

(a) Traditional model
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Figure 12: Maximum sinking depth of the balls at the centre of the defect.
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Figure 13: Paths of the balls passing through the defect area under
di	erent loads.

2.2 × 10−3mm; the values of the semimajor and semiminor
axes of the contact ellipse based on this range are given in

Table 4. When the sinking depth of the ball is 0.8 × 10−3mm,
the ball does not enter the defect; at this stage, the semiminor
axis of the contact area is 0.0485 × 2 = 0.097mm, and the
width of the defect is 0.2mm. �e size of the contact ellipse
is clearly nonnegligible because the ball-raceway contact
force was a	ected by the defect before the ball enters the
defect.

When the sinking depth of the ball is 2.2 × 10−3mm, the
semiminor axis of the contact area is 0.0805 × 2 = 0.1610mm,
which is smaller than the width of the defect, so there is
no contact between the ball and the defect edges when the
ball is in the centre of the defect; at this stage, contact force
between the ball and the outer raceway is zero. �e ball has
le
 the defect area on the outer raceway before it reaches the

maximum sinking depth 6 × 10−3mm.

In general, the sinking depth in Figure 12(b) is the
maximumsinking depthwhen the ball stays at the defect area.
In Figure 13, the ball has a velocity when it passes through the
defect area, the movement of the ball will a	ect the paths of
the balls.

5.2.2. Contact Force. �e ball-raceway contact forces of the
traditional and proposedmodels in the defect area under dif-
ferent loads are shown in Figure 16. In the traditional model,
the contact force changes suddenly when the ball enters and
leaves the defect area, whereas there is a continuous and
gradual change in the proposedmodel.�e traditionalmodel
presented in this paper is only a basic model; the contact
forces of the traditionalmodels in [11, 12] also have nonabrupt
changes. We do not compare the di	erences between the
changing processes of the contact forces in the proposed
model and the traditional models. Whether the traditional
model or the proposed model is used, the change of the
contact forces increases with an increase in the applied load.
�ere are two other di	erences between these two models.(1)�e duration of the change in the contact force in the
defect area in the proposed model is greater than that in the
traditional models.(2) �e change of the contact force in the traditional
model is smaller than that in the proposed model; when the
ball is at the centre of the defect, the contact force between
the ball and the raceway is zero in the new model.

�e reasons for these di	erences are as follows.(1) �e traditional model neglects the contact areas
between the ball and the raceways; a change occurs onlywhen
the centre of the ball enters the defect.(2)When the minor axis of the contact ellipse is smaller
than the size of the defect, the ball cannot come into contact
with the raceway when it passes over the defect; thus, the
contact force becomes zero.
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Figure 14: Velocities of the balls in the radial direction in the defect area under di	erent loads: (a) 4.9N, (b) 9.8N, (c) 14.7N, and (d) 19.6N.
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Figure 15: �e spectra of velocities of the balls in the radial direction in the defect area under di	erent loads: (a) 4.9N, (b) 9.8N, (c) 14.7N,
and (d) 19.6N.

In Figure 16(a), the duration of the change in the contact
force is the time required for the ball to pass over the defect.
�e width of the defect is 2
, and the velocity of the ball is2��	��; therefore, the duration of the change in the contact
force in the defect area is 
/��	��. For the experiment in this

article, the duration is 1.298 × 10−4 s.
As shown in Figure 16(b), the duration of the change in

the contact force is greater than that in the traditional model.

When the ball is still far from the defect edge, the contact
force decreases. In the proposed model, this distance is the
semiminor axis of the contact ellipse, the time for the ball
to travel this distance is �/2��	��, and the total duration of
the change in the contact force when the ball passes over the
defect is (
 + �)/��	��. �e value of the semiminor axis of
the contact ellipse is constantly changing and is determined
by the applied load on the ball. �erefore, with an increase of
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Table 4: Relationships of Δ-�-�.
Sinking depth (10−3mm) Semimajor axis a (mm) Semiminor axis b (mm)

0.8 0.3046 0.0485

1.0 0.3405 0.0543

1.2 0.3730 0.0595

1.4 0.4029 0.0642

1.6 0.4307 0.0687

1.8 0.4569 0.0728

2.0 0.4816 0.0768

2.2 0.5051 0.0805
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Figure 16: Ball-raceway contact forces in the defect area under di	erent loads.

the applied additional load (from 4.9N to 19.6N), the total
duration of the change in the contact force becomes longer.

6. Conclusions

Amodel for predicting the vibration response of ball bearings
with a localized defect based on the Hertzian contact stress
distribution is proposed. �e mechanism of the vibration
response in the defect area and the solution method of the
traditional model are analysed. �e Hertzian contact stress
distribution and the contact area are used to calculate the
ball-raceway contact force in the defect area. An experiment
using a ball bearing with a defect in the outer raceway is
performed, and the vibration responses of the experimental
and numerical signals are compared to verify the applicability
of the proposedmodel. Comparisons between the traditional
model and the proposed model show that, unlike in the
traditional model, in the proposed model, with an increase
in the applied load, the sinking depth of balls in the defect
area increases, and the contact force begins to change before
the ball enters the defect region and stops changing a
er the
ball leaves the defect region.
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