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Abstract 

The paper introduces a novel approach for interactive video 
browsing that makes video content fully transparent to the user. 
Video clips are analysed and indexed by two tree structures: a 
content index tree representing the content of automatically 
segmented video shots and a time index tree representing the 
temporal structure. The index top levels give an overview over 
the entire content. Subsequent levels illustrate content 
relationships more detailed. Every level of both trees is a two-
dimensional self-organising map organising media objects by 
two degrees of freedom. Media objects are represented by 
content-based visual MPEG-7 descriptions. The implemented 
navigation scheme allows the user for switching between 
content index tree and time index tree without loosing the 
overview. Context information (position in the tree, content of 
next lower level, etc.) is permanently shown in auxiliary 
panels. The implementation is based on the scalable vector 
graphics standard (visualisation) and the MPEG-7 reference 
implementation. First evaluation results show that the proposed 
approach facilitates accessing video content in a novel way.  
Keywords : Video Browsing, Video Segmentation, Self-
Organising Map, MPEG-7. 

1. INTRODUCTION 

This paper describes a novel video browsing approach that is 
based on a neural network clustering technique. Interactive 
video browsing aims at making video content transparently 
accessible. Application scenarios include editing, post 
production and metadata annotation. Generally, video browsing 
problems are investigated in visual information retrieval 
research (VIR) [14, 17, 2]. Like the majority of VIR 
approaches, our approach is based on media representation by 
visual descriptions (e.g. colour histograms, edge maps). We 
employ the visual MPEG-7 descriptors [16, 15, 1, 8] to index 
video content and make it accessible for browsing in a web-
based user interface. Indexing is performed using self-
organising maps (see Subsection 2.2) [10, 9]. 
In our approach, video data is hierarchically indexed by two 
criteria: by shot content and by time. For the content index tree, 
video streams are segmented into shots (using automatic shot 

boundary detection). Shots are represented by average 
descriptions and visualised by representative key-frames (see 
Subsection 3.3 for details). Indexing is performed on multiple 
levels: from an overview level (coarse selection of 
representatives from all shots) to multiple detail levels (fine 
selection of representatives from similar shots). This is 
similarly true for time index tree. The difference is that for the 
time index tree, frames are selected at certain time intervals. 
On each level every n-th frame is used for indexing. n, the step 
width, is set to a large value for the overview level and to 
smaller values for the detail levels (see Subsection 3.2 for 
details). Hence, the time index tree represents a content-
independent top-down view on video data while the content 
index is constructed bottom-up based on shot boundaries. Since 
content index tree and time index tree are based on the same 
data, the user is enabled to switch between the two views at 
any time during the browsing process. 
Our video browsing approach differs from related approaches 
in the point that it employs both browsing and retrieval 
techniques: Visual descriptors are used to identify shot 
boundaries and to describe media objects. A similarity-based 
clustering algorithm is employed to cluster video segments. 
Similar video frames are located close to each other. Since we 
use a two-dimensional clustering technique, two degrees of 
freedom are available for clustering. Content-based and time-
based selection and similarity-based clustering in hierarchically 
organised index trees result in a structured transparent view of 
video data. Technically, a major novelty is that the 
implementation is exclusively based on free software. For 
example, the user interfaces are based on the scalable vector 
graphics standard (SVG) [21]. Description extraction is based 
on the free reference implementation of the MPEG-7 standard. 
Shot detection is based on state-of-the-art VIR procedures.  
The paper is organised as follows. Section 2 sketches relevant 
related work including the visual MPEG-7 descriptors, the 
clustering technique used, automatic video segmentation and 
recent video browsing approaches. Section 3 describes idea and 
design of the video browsing application and the implemented 
navigation paradigm. Section 4 deals with implementation 
issues: descriptor selection for video segmentation, description 
clustering and user interface implementation. Finally, Section 5 
presents experimental evaluation results. 

2. RELATED WORK 

2.1. Visual MPEG-7 descriptors 
In the video browsing application, we use visual MPEG-7 
descriptors for media description and video segmentation. The 
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visual part of the MPEG-7 standard defines several descriptors 
[16, 15, 1, 8]. Not all of them are actually descriptors in the 
sense that they extract properties of media content. Some of 
them are just structures for descriptor aggregation and 
localisation. The basic colour descriptors are Color Layout 
(first DCT coefficients of YCrCb averages of major 
image/frame regions), Color Structure (histogram of colour 
usage in colour regions), Dominant Color (colour value and 
percentage of eight most used colours) and Scalable Color 
(classic, scalable colour histogram). Texture descriptors are 
Edge Histogram (edge orientation histograms for 4x4 sub-
regions), Homogeneous Texture (energy values and 
distributions for 40 Gabor filters) and Texture Browsing 
(average coarseness and directionality of textures). Shape 
descriptors are Region-based Shape (35 ART coefficients for Y 
channel) and Contour-based Shape (contour descriptions of 
segmented objects). Motion descriptors are Camera Motion 
(based on optical flow), Parametric Motion (motion of 
predefined objects) and Motion Activity (motion vector-based 
frame by frame motion). 
Other descriptors are based on these low-level descriptors or on 
additional semantic information: Group-of-Frames/Group-of-
Pictures (aggregation of Scalable Color descriptions), Shape 
3D (based on 3D mesh information), Motion Trajectory (based 
on object segmentation) and Face Recognition (major face 
parameters like eye to eye distance, etc.; based on face 
extraction). Finally, supplementary (textual) structures exist for 
colour spaces, colour quantisation and multiple 2D views of 3D 
objects. Since our application is dealing with individual key-
frames, only the listed colour, texture and shape descriptors are 
considered below. 
2.2. Self-organising maps 
The self-organising map (SOM) [10, 9, 11] is a two-layer fully 
connected neural network that uses feed-forward learning. 
SOMs are mainly intended for clustering of high-dimensional 
data (see [7] for a survey). The input layer is interpreted as a 
one-dimensional data vector. The output layer is interpreted as 
a two-dimensional map of clusters. The clusters of the output 
map may have rectangular or hexagonal shape. Each cluster of 
the output map is described by a weight vector pointing to its 
center (codebook vector). In training and application, input 
data vectors are mapped to the codebook vector with minimum 
Euclidean distance (best matching unit, BMU). SOM learning 
is based on a predefined map size and randomly selected 
codebook vectors. The map is adapted by iteratively applying 
input vectors, selecting the codebook vector with minimum 
distance and changing its location by a fraction of the distance 
(weighted by learning rate α).  
One major innovation of SOMs over other clustering methods 
is the introduction of neighbourhood kernels. These two-
dimensional functions define the fraction, to which the BMU is 
adapted but also, to which extent neighbouring codebook 
vectors are adapted. Thus, SOM learning means learning of 
cluster neighbourhoods. A typical neighbourhood kernel is the 
two-dimensional Gaussian density function. Using 
neighbourhood kernels results in somewhat 'natural' cluster 
structures that intuitively fit with humans' similarity perception. 
This property is the major reason why we are using SOMs for 

clustering in the video browsing application. 
The tree-structured SOM [12] is a further developed SOM that 
allows for constructing hierarchical cluster trees. Tree-
structured SOMs are related to our approach. The major 
difference is that tree-structured SOMs cluster the entire data 
on every level while in our approach every SOM consists only 
of a small, carefully selected fraction of the entire data (video 
frames). Hence, it would not have been possible to achieve the 
effect desired by the proposed video browsing application by 
using tree-structured SOMs. 
2.3. Temporal video segmentation 
Automatic temporal video segmentation aims at identifying 
shot boundaries in video streams without user involvement. In 
recent years, a significant number of approaches have been 
proposed [2]. Today, state-of-the-art automatic video 
segmentation procedures identify more than 90% of all 
transitions (including fades and wipes) in video streams at 
minimal numbers of false positive detections. Generally, shot 
transitions can be distinguished in sharp cuts and effect 
transitions (fades and wipes). Sharp cuts are, for example, used 
in news videos. Effect transitions are regularly used in sports 
programs.  
Methods for detection of sharp cuts are either based on 
uncompressed media data or compressed media data. The 
simplest approach that uses uncompressed data is the frame 
difference approach: Consecutive video frames are spatially 
pixel-wise compared. If the sum of differences exceeds a 
certain predefined threshold, a cut is assumed. This approach is 
easy to implement but has several drawbacks: it is computation 
power-demanding, not robust against global changes in the 
video data (e.g. changed lighting conditions) and sensitive for 
camera movement (e.g. zooming, panning, etc.). More 
sophisticated approaches use visual features to summarise 
frames. Examples are colour histograms (global features) or 
edge maps (local features). Shot boundaries are assumed where 
the distance of feature vectors exceeds a threshold. Obviously, 
feature-based approaches do not suffer from lacking robustness 
against photographing conditions and camera movement. 
Furthermore, if features can be computed in advance, the cut 
detection process is less computation power-demanding than 
the frame difference approach. Recently, since the visual part 
of the MPEG-7 standard for multimedia content description has 
been released, more and more feature-based approaches 
employ MPEG-7 descriptors for cut detection (e.g. Scalable 
Color in [5]). In Subsection 4.2 we try to identify the best 
MPEG-7 descriptors for cut detection. 
Most methods for sharp cut detection that are based on 
compressed media data make use of motion vectors (e.g. [24]). 
If the optical flow changes significantly from frame to frame 
(again, significance implemented by a threshold), a shot 
boundary is assumed. The major advantage of compressed 
data-based approaches is that they require less computation 
power than approaches working on the uncompressed domain. 
Methods for detection of effects are usually based on feature-
based approaches. Twin-comparison [23] employs two 
thresholds: All inter-frame distances exceeding a first threshold 
are summed up. If the sum exceeds the threshold for sharp cuts, 
an effect transitions is assumed. This approach works 



excellently for gradual transitions as fades and wipes. The 
production model-based approach [6] analyses effects top-
down. Models for location (wipes) and intensity (fades) 
changes are derived. Frame sequences fitting to the models are 
assumed being effect transitions. 
2.4. Video visualisation for browsing 
The crucial user interface issue that has to be solved in video 
browsing systems is the visualisation of the temporal 
dimension of video. The spatial content of video changes over 
time. Since the view does not, there is no 'natural' way to 
visualise video content entirely on the spatial domain. In 
general, there are three solutions to present video information. 
Firstly, integration of the full video with player controls into 
the environment. This approach is CPU power- and network 
bandwidth-consuming. Secondly, creation and usage of 
animated iconic structures. Even though being less demanding 
in terms of network bandwidth, this approach is still 
computation power-consuming. Thirdly, creation of two- or 
three-dimensional models that represent the video content.  
Examples for animated iconic structures are the hierarchical 
video magnifier [2] and the scene transition graph [22]. The 
approach followed by the hierarchical video magnifier is 
similar to the time index tree proposed in this paper. It provides 
a simple hierarchical structure of key-frames: Key-frames 
selected from the entire video content are shown on the top 
level. On subsequent levels, key-frames selected from parts of 
the video (but at smaller intervals) are shown. Layers are 
simply rows of key-frames ordered by time. The user can select 
detail views by clicking on key-frames on higher levels. Scene 
transition graphs give a graph representation of video content: 
Shots with similar content are clustered in nodes. Nodes are 
connected by arcs depending on their temporal relationships.  
Model-based representation is the most widely applied video 
visualisation method. In the simplest form an image matrix of 
all key-frames in a video clip is used. A more sophisticated 
approach is the Micon [4], an image showing the first frame of 
a video clip as well as the first line and the last column of all 
consecutive frames in a cube-like view. Micons are easy to 
compute and give good indication on video motion for many 
types of content. The main shortcoming of Micons is that 
perspective cannot be changed easily. The video X-ray 
approach provides a fully three-dimensional model of video. 
Video X-rays are visualised as Micons but, since the model is 
three-dimensional, perspective can be adapted arbitrarily. 
Furthermore, video X-rays allow for editing of video clips (e.g. 
spatio-temporal cutting, compression, etc.). Another approach 
from a similar direction as the Micon is mosaic visualisation 
[2]. In a mosaic visualisation, the frames of a video clip are 
glued together to a panorama-like view. Stitching is based on 
object motion. See [4, 2] for comprehensive introductions to 
these and other video visualisation techniques. 

3. VIDEO BROWSING APPLICATION 

This section describes the design of the proposed video 
browsing application. Subsection 3.1 illustrates the novel ideas 
implemented in the approach. Subsections 3.2 and 3.3 describe, 
how the two types of browsing criteria (time and content) are 

used. Subsection 3.4 sketches navigation in the browsing 
process and switching between time index tree and content 
index tree. 
3.1. Idea and motivation 
In our video browsing application, video streams are organised 
in tree structures. The top level gives an overview over the 
entire video content. Subsequent levels show detail information 
(on groups of shots, shots, temporal fractions of the video 
stream). Leaves of the tree are shots (content index tree) or 
single frames (time index tree), respectively. The user browses 
through the tree structures from top to bottom. Selecting a 
cluster from a map causes him stepping one level down in the 
index tree and seeing more details on the selected fraction of 
the video stream. The route taken through the index tree is 
visualised in the user interface by auxiliary panels (see 
Subsection 3.4). Generally, this paradigm is similar to the 
hierarchical video browser (as described in [4]). Two aspects 
are responsible for making video perception through the 
proposed video browsing application a completely new 
experience: 
 Two organisation criteria are used: time and content 
 Tree layers are maps of elements clustered by content 

similarity 
Mostly, existing video browsing approaches offer only a single 
view of video: a temporal view of key-frames selected at 
predefined intervals (independently of the content) or a 
content-based view of selected representative frames. In the 
author's opinion this is unsatisfactory, since many applications 
require having both types of index available simultaneously. 
For example, in video archival and browsing-based retrieval, 
the user might – depending on event characteristics – in some 
cases remember the time, when something happened and in 
other cases, in which context something happened: Regular 
viewers of soccer matches can easily remember when a goal 
was shot, if it was scored in overtime and decided the match, 
but hardly when a free kick was executed that did not have a 
major impact on the game. On the other hand, the free kick can 
easily be remembered, if it was the result of a brutal foul by a 
hated defender on a beloved star of the preferred team.  
Our video browser offers both views in independently 
organised index structures. Key-frames for time-based and 
content-based indexing are selected independently and 
clustered hierarchically using the same procedure (see 
Subsection 4.3). Additionally, a matching procedure is 
provided that allows for switching between the two views. 
Subsections 3.2 and 3.3 describe the two index types and 
Subsection 3.4 sketches the matching procedure. 
The second innovation in the proposed video browsing 
application is making use of content-based visual information 
retrieval for layer organisation to support the user's visual 
similarity perception. Key-frames are described by content-
based visual MPEG-7 descriptors (see Subsection 2.1). These 
media descriptions (technically, high-dimensional data vectors) 
are clustered using self-organising maps (SOMs, see 
Subsection 2.2). The result is a two-dimensional map of 
clusters, in which similar media objects are located closely to 
each other. Since we use MPEG-7 descriptors, similarity is 
defined on the basis of generally perceived (un-recognised) 



image properties (e.g. colour distributions). The major 
advantage of this approach is that it supports human visual 
similarity perception. Similarity-based clustered key-frame 
images allow the user to judge the content of a particular layer 
more quickly and to uncover implicit similarities in the content 
of video streams. This allows, for example, to understand 
colour codes applied in advertisements better (e.g. bright 
colours for product properties that should bet perceived 
positively, etc.). 
We use two-dimensional clustering in the video browser, 
because it supports human spatial perception. Additionally, it 
offers an additional degree of freedom in comparison to 
hierarchical clustering. Furthermore, maps can easily be 
illustrated in any type of user interface. In the past, we have 
also experimented with three-dimensional clustering based on 
Sammon mapping [19] and visualisation in virtual worlds using 
VRML [20]. We found that three-dimensional maps are more 
difficult to understand and navigation, overlapping and 
clipping can soon become confusing for the user. Therefore, 
we decided on two-dimensional clustering. SOMs were 
selected, because – as pointed out in Subsection 2.2 – by 
employing neighbourhood kernels for learning they provide a 
human perception-like cluster structure. 
Figure 1 illustrates the resulting type of index: Layers are 
derived from the video stream by time and content criteria. 
Every layer is a two-dimensional map clustering elements by 
content-based features (e.g. colour, structure). Top levels give 
overview information. Subsequent layers give detail 
information. The entire video browsing application comprises 
two independently organised index structures inter-connected 
on the frame level. See Figures 8, 9 for examples. 
3.2. Time index tree 
For the time index tree, key-frames are selected from the video 
stream in a way that preserves the temporal order. Even though 
content-based access is an important issue in visual information 
browsing, the temporal structure must not be neglected. 
Humans have an excellent memory for the temporal order of 
events. The time index tree is responsible for providing a 

hierarchical temporal view on the media. 
Key-frames are selected as follows (see Figure 1 for 
illustration): Every n-th frame of the video stream is selected. n 
(the step width) depends on l, the layer number (starting with 
'1' (top layer)). n(l) is defined by equation 1. Map dimensions 
are given by r (rows), c (columns). round_up(X) replaces X 
with the next higher cardinal number. 
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Thus, the step width for a map on a particular layer l decreases 
proportionally to the position of the layer in the time index tree. 
At most, one frame per map entry (cluster) is selected. Maps on 
layers below the top level are mapped to clusters on the next 
higher level by an offset function o(x, y) (see equation 2): The 
offset function defines the starting offset for key-frame 
selection from the video stream. 
 ( ) ( ) ( )

1
2

−++= lOln.c.r.xc.r.yy,xo  (2) 
x, y (cardinal numbers starting with zero) identify a cluster on 
layer l-1 (that is elaborated on level l). Ol-1 is the offset of the 
map on layer l-1. (Remark on navigation: It is important to 
notice that, since temporal order is lost in the content-based 
map clustering process, the pair <x, y> does not simply 
identify the (y*rows+x)-th cluster of the map on layer l-1. The 
corresponding cluster has to be located by establishing a link 
from map elements on layer l back to map elements on layer l-
1 using the input video stream.) 
In conclusion, the content of maps of the time index tree is 
determined by <n(l), o(x, y)> pairs. On the top level, just one 
map exists. On subsequent levels, exactly one map exists for 
every cluster on the preceding level. Consequently, the time 
index tree is always a balanced tree. Leaves are single frames. 
If rows=columns=2, the time index tree is a quad-tree 
structured by visual content. 
3.3. Content index tree  
The content index tree is an iconic shot index. While the time 
index tree is constructed top-down, the content index tree is 
built bottom-up based on shots. Shot boundaries are detected 
using automatic video segmentation (see Subsections 2.3, 4.2). 
Even though automatic shot detection does not provide full 
accuracy, it is sufficiently good for our purpose.  
In the indexing process, shots are represented by average media 
descriptions. Media descriptions are extracted from frames 
using the content-based visual MPEG-7 descriptors. These 
descriptions are averaged for the relatively coherent content of 
single shots. Generally, using a simple mean should be 
sufficient as an averaging method. The averaged descriptions 
are clustered using self-organising maps. In contrast to the time 
index tree, where only a fraction of frames are employed for 
clustering, all averaged descriptions are considered for 
clustering on the top level. Then, in a recursive process all 
clusters containing a number of elements that exceeds a 
predefined threshold are clustered again and mapped to clusters 
on the next higher level as detail levels. For practical reasons 
the threshold should be set larger than map size. Smaller 
threshold values would result in unnecessarily deep index 
structures.  
Shots are the leaves of the content index tree. Since it is not 
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Media stream
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Figure 1. Video index trees. Every index tree consists of 
multiple layers. The number of layers depends on the media
stream size. Indexes are constructed from the temporal video
view (by selecting every n-th frame) and the content view (by
selecting representative frames of shots). 



predictable, which content-based relations exist among shots, 
the content index tree is generally unbalanced containing deep, 
highly differentiated structures for frequently appearing content 
(e.g. shots of leading actors in movies) and less differentiated 
structures for less frequently appearing content (e.g. extras). 
This is desired by the approach as it supplements the context-
free view provided by the time index tree elegantly. 
The major design issue connected to the content index tree is 
selecting representative media objects for map clusters. Since, 
in contrast to the time index tree, clustered media descriptions 
are artificial, we cannot simply employ the cluster medians as 
representatives. A two-step procedure is required: Firstly, we 
identify the median average description vector (the one with 
minimum Euclidean distance to the codebook vector; see 
Subsection 2.2). Then, we identify the frame with the most 
similar description to the average vector (again, by Euclidean 
distance). This frame is selected as cluster representative and 
visualised in the map. 
3.4. Tree matching and navigation 
Above, it was mentioned that the video browsing application 
allows the user to switch from content index tree to time index 
tree and back during browsing. The implementation of this 
feature requires matching between the index trees. Starting 
from a selected cluster in one index tree, two parameters have 
to be determined for switching: map cluster correspondence 
and layer correspondence. A content index cluster and a time 
index cluster are defined as corresponding, if they use the same 
representative media object for cluster visualisation: 
 Mediancontent index tree cluster ≡ Besttime index tree cluster (3) 
This is a one-to-many relationship: multiple clusters in the 
second tree may correspond to the selected cluster. In order to 
reduce the number of candidates to one, we use layer 
correspondence: The cluster is selected as switching target that 
is located on the layer with minimum hierarchical distance to 
the switching source. Formally: 

 select mt with 
( ) ( )
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treeetargt
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mlayer
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⎞
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where ms, mt are the maps in source and target index trees that 

contain the corresponding cluster representatives, layer(X) 
gives the layer number of map X, |X| is the span (number of 
layers) of index tree X and d() measures Euclidean distance. 
These two conditions define a unique mapping between content 
index tree and time index tree. 
However, there is still one problem that needs to be solved. 
The time index tree contains all frames of an indexed video 
clip. Therefore, for any cluster representative in the content 
index tree it is possible to identify a corresponding cluster 
element in the time index tree. The other way around, this is 
not the case: In the content index tree entire shots are 
represented by a single frame. We suggest the following 
solution to overcome this problem: If, for a particular switching 
source in the time index tree, no corresponding frame exists in 
the content index tree, then the leaf map and cluster are chosen 
as switching target, that refer to the video shot containing the 
corresponding frame. In this case, the layer condition cannot be 
satisfied. To avoid a confusing effect on the user, she is 
notified by a system message. 
Generally, browsing through and switching between trees can 
easily become confusing. We have implemented several user 
interface components to avoid such an effect. These 
components will be described in detail in Subsection 4.4. The 
major guidelines are: Trees are never shown entirely 
(information overload). Instead, we display the active layer, the 
preceding layer (with the selected cluster highlighted) and a 
preview of the next layer that corresponds to the cluster that is 
highlighted in the active layer. Moreover, in an additional 
panel the corresponding map in the non-active index tree is 
shown. Besides avoidance of information overload this scheme 
has the advantage that it can be implemented without complex 
and resource-consuming three-dimensional tree visualisations. 

4. IMPLEMENTATION 

Below, we describe relevant implementation issues of the 
video browsing application. Subsection 4.1 gives an overview 
over workflow and data flow in the index preparation process. 
Subsection 4.2 describes descriptor selection for automatic shot 
boundary detection. Subsection 4.3 gives details on the 
clustering process used. Finally, Subsection 4.4 sketches 
important visualisation and user interface aspects. 
4.1. Overview 
Figure 2 illustrates the index tree preparation workflow in the 
video browsing application. Starting from the input video 
stream, media descriptions are extracted. We apply the MPEG-
7 image descriptors and describe each frame of a video clip by 
colour content, textures and general shape properties. 
Subsection 5.1 gives detailed information on the descriptors 
and parameters used. The media descriptions are the input for 
the automatic shot segmentation procedure. It employs 
description-based comparison (for sharp cuts) and twin 
comparison (for fades and wipes) on optimised MPEG-7 
descriptions to identify shot boundaries (see Subsection 4.2 for 
details).  
Shot boundary information and visual descriptions are fed into 
the index tree construction and clustering process. In the first 
step, averaged shot descriptions are computed. Then, 

Video
stream

Description
extraction

Media
descriptions

Shot
segmentation

Index
construction

and clustering

Shot
boundaries

Cluster
maps

Visualisation Visualised
index trees

Figure 2. Workflow and data flow in the data preparation
process of the video browsing application. 
 



independently for time index tree and content index tree, 
frames are selected and the top views of both indexes are 
computed using self-organising maps (see Subsection 4.3 for 
details and Subsection 5.1 for parameters). Based on the top 
view clustering, SOM calculation is recursively repeated for 
the content index tree. The time index tree is computed by top-
down selection of step widths and offsets (as described in 
Subsection 3.2). The resulting index trees are stored in a simple 
XML format that marks the endpoint of the pre-processing 
steps. 
The XML document describing the two index trees is used as 
input for the visualisation process. Visualisation target is the 
web browser. Hence, we employ web-based standards for 
visualisation. Specifically, index tree components are 
visualised by scalable vector graphics (SVG). Visualisation is 
supplemented by event-based interaction: SVG supports 
ECMAScript, which is used for handling user requests. The 
visualisation part of the video browsing application is 
described in detail in Subsection 4.4. 
4.2. Shot boundary detection 
In the video browser we require a procedure for shot boundary 
detection. We use description-based cut detection in 
combination with the twin comparison approach for effect 
detection (see Subsection 2.3). Since we use visual MPEG-7 
descriptors for media description, we want to use the same 
descriptions for cut detection. Below, we aim at identifying the 
best application domain-independent MPEG-7 description 
scheme for automatic cut detection. Optimising the 
performance of shot boundary detection is crucial for the 
quality of the video browser index trees. To reach this goal we 
apply the majority of content-based visual MPEG-7 descriptors 
on video clips of varying content and compare the results of 
automatic detection to ground truth information provided by 
human users. 
Experimental Setup: We split the process of identifying the 
best description scheme for MPEG-7-based cut detection into 
two steps: First, we compute the individual performance of 
descriptors. Then, we try to identify combinations of 

descriptors that improve the individual results. This section 
describes the media sets used for evaluation, the visual 
descriptors we apply and the methods we apply for cut 
detection (including threshold optimisation), performance 
evaluation, descriptor combination and ranking. 
The test data comprises media clips from five different genres: 
advertisements, cartoons, documentaries, movies and news (see 
also Subsection 5.1). Figure 3 shows example frames. The 
genres differ widely in cut rate and transition types used. In 
advertisements clips cuts occur after at least 2,5 percent of 
frames, in cartoons after about one percent and in 
documentaries, films and news after less than 0,5 percent. 
News programs and advertisements mostly apply sharp cuts 
while cartoons and documentaries often use transitions 
(mainly, fades) over twenty or more frames. 
We apply the visual MPEG-7 descriptors (using the 
eXperimentation Model version 5.6) on all frames of the test 
videos. All colour descriptors are used: Color Layout, Color 
Structure, Dominant Color, Scalable Color, two texture 
descriptors: Edge Histogram, Homogeneous Texture, and the 
Region-based Shape descriptor. All descriptors are applied 
with maximum resolution. The feature vector elements are 
normalised to the interval [0, 1]. In total, every frame is 
described by a feature vector of 306 elements. For dissimilarity 
measurement we employ the distance measures and parameters 
suggested by the MPEG-7 authors (mostly, city block distance 
without weights). 
For cut detection we define a threshold tb (individually for each 
descriptor). Additionally, we use the twin comparison approach 
[2] to detect fades and wipes: A second threshold ts is defined 
for gradual changes (ts << tb). Two indicators are computed to 
evaluate the performance of a descriptor: the number of correct 
hits and the number of false positives. Calculation of indicators 
is based on ground truth information provided by test users. 
Since we want to measure the best possible performance for 
each descriptor it is crucial guaranteeing that no descriptor is 
discriminated by false threshold values. Therefore, the 
thresholds are iteratively optimised in an automated procedure 

 
Figure 3. Example frames from advertisement, cartoon, documentary, movie and news clips employed in the evaluation (captured 
from German satellite television). 
 



based on ground truth information. This optimisation is 
performed per genre. Then, the best identified thresholds are 
used to compute the hits and false positives indicators. 
In this process we have to deal with two optimisation criteria. 
As the numbers of hits (correct / present) and false positives 
(false / present) cannot be easily combined, it is almost 
impossible to define a single goal function. Giving preference 
to one of them depends heavily on the considered type of 
application. Hence, we decided to base the ranking procedure 
on a superiority principle: One descriptor is considered being 
superior to another if it leads to better results for one indicator 

(more hits, less false positives) while being at least as good for 
the other indicator. Two descriptors, for which superiority 
cannot be clearly identified, are given the same rank 
(independently of the size of the performance gaps). 
 Based on the ranking of individual MPEG-7 descriptors we 
aim at identifying the best overall description scheme by 
combining descriptors using logical operators. Generally, cut 
detection results of two descriptors can be combined in two 
ways: Either, all cuts are assumed correct that are detected by 
both descriptors (AND) or all cuts that are detected by one of 
them (OR). An AND combination of two descriptors reduces 
the hits indicator to the value of the worse descriptor. The false 
positives indicator is reduced to a value in the interval [0, 
min(FP1, FP2)] where FP1 and FP2 are the false positive 
indicators for the first and second descriptor, respectively. In 
the best case, all false positives are eliminated. If two 
descriptors are combined by the OR operator the number of hits 
equals the hits indicator of the better descriptor. The false 
positives indicator becomes a value of [max(FP1, FP2), FP1 + 
FP2]. In the worst case, all false positives are part of the 
combined analysis. Obviously, OR-combined descriptors can 
never be superior to the involved descriptor with the higher 
correct hits rate. In consequence, the OR operator is not further 
considered in this study.  
Results: In the first step the performance of individual MPEG-
7 descriptors is analysed. For example, Figure 4 shows the 
distance signature of the Color Structure descriptor over time 
(frames). This feature is highly discriminant for sharp cuts and 
leaves enough space between cuts, fades and wipes, and object 
and camera movement to define the thresholds for twin 
comparison clearly. Actually, Color Structure showed the best 

performance of all evaluated MPEG-7 descriptors. 
Table 1 summarises optimal threshold values and performance 
indicators for all descriptors. Color Structure and Color Layout 
retrieve most cuts correctly, while the texture features Edge 
Histogram and Homogeneous Texture minimise the number of 
false positives. This may be the case because edge information 
is more robust against camera operation than colour 
information. Characteristics of descriptors and distance 
measures can be seen from the threshold values. For some 
descriptors (especially, Scalable Color) it is highly difficult to 
set the threshold for gradual transitions. In consequence, the hit 
rate is significantly less than for the best descriptors. The first 
rank (in terms of superiority) is shared between Color Layout, 
Color Structure, Edge Histogram and Homogeneous Texture. 

Only these descriptors were considered for combination. 
Computing the performance for all AND-combined description 
schemes reveals three description schemes being superior over 
all others (see Table 2). The highest hit rate is achieved by the 
Color Structure descriptor alone. Using Color Layout and 
Color Structure in combination leads to a high hit rate and few 
false positives. If Color Structure is used in combination with 
Color Layout and Edge Histogram, the number of false 
positives drops to zero. This description scheme may be 
considered optimal for most applications. Consequently, it is 
used for shot boundary detection in the video browsing 
application. 
4.3. Description clustering 
The data clustering procedure of the video browsing 
application is responsible for visual similarity-based 
organisation of index tree layers. It takes its input from the key-
frame selection procedure (as described in Subsections 3.2, 
3.3). Key-frames are described by visual MPEG-7 descriptions, 
i.e., basically, high dimensional vectors of floating point 
numbers (in our case normalised to interval [0, 1]). The 
descriptions of key-frames are clustered by self-organising 
maps. Subsection 2.2 describes the learning process in self-
organising maps and their specific advantages. SOMs have 
been used in visual information retrieval and browsing before: 
The PicSOM system of the Helsinki University of Technology 

 
Figure 4. Frame difference signature of Color Structure
descriptor applied to advertisement clips (X axis: time, Y axis:
distance, grey lines: thresholds). 
 

Descriptor tb ts Hits FP Rank
Color Layout 0,465 0,027 95,4% 6,5% 1 
Color Structure 0,096 0,036 97,2% 10,2% 1 
Dominant Color 0,429 0,230 57,4% 61,1% 4 
Edge Histogram 0,191 0,071 85,2% 1,9% 1 
Homog. Texture 0,074 0,015 76,9% 5,6% 1 
Region-based Shape 0,173 0,022 87,0% 15,7% 2 
Scalable Color 0,078 0,015 68,5% 19,4% 3 

Table 1. Shot detection thresholds and performance indicators 
for visual MPEG-7 descriptors. 

Description Scheme Hits FP 
Color Structure 97,2% 10,2%
Color Layout, Color Structure 95,4% 1,9%
Col. Layout, Col. Struct., Edge Hist. 85,2% 0,0%

Table 2. Shot boundary detection performance of best MPEG-7 
description schemes. 



[13] is a successful content-based image retrieval system that 
employs SOMs for data clustering and incorporates iterative 
refinement by relevance feedback [18] into the retrieval 
process (based on tree-structured SOMs; see Subsection 2.2). 
Self-organising maps offer two degrees of freedom for 
similarity-based media organisation. The SOM decides 
implicitly, which properties it selects for spatial organisation. 
Generally, the description elements with the highest variance 
have the most significant influence on the cluster structure. In 
visual information retrieval usually the strongest stimuli are 
colour and structure (textures, shapes) properties. Therefore, it 
is likely that SOMs trained from key-frames described by 
MPEG-7 descriptors are spatially organised by colour and 
structure appearance.  
Figure 5 illustrates the workflow in the clustering process. 
Media descriptions are repeatedly fed into the SOM learning 
process. The output map has a predefined size. Every cluster is 
described by a vector pointing to the cluster center (so-called 
codebook vector). The codebook vectors are adapted in the 
learning process until the quantisation error is minimal. To 
compute the quantisation error, every input vector is fed into 
the SOM once and mapped to the codebook vector that has 
minimum Euclidean distance (best matching unit, BMU). The 
sum of distances over all vectors (normalised by the number of 
input vectors) defines the quantisation error: the average 
displacement, if input vectors would be replaced by their 
BMUs. 
The set of codebook vectors completely defines a SOM but it 
does not explicitly express, to which clusters input vectors 
belong. Identifying the cluster structure requires locating the 
BMU for every input vector in an additional iteration. In some 
cases multiple input vectors are mapped to the same BMU and 
other BMUs are not associated with any input vectors. In our 
application, this behaviour is acceptable for the content index 
tree: similar shots are clustered together. Holes in the map may 

exist. See Figure 9 for examples. It is not acceptable for the 
time index tree. In the time index tree every cluster should 
consist of exactly one frame (time interval) that is detailed by a 
map on the subsequent layer. See Figure 8 for an example. To 
implement such a behaviour based on SOMs, we require an 
algorithm that identifies the best combination (e.g. in terms of 
quantisation error) of input vectors and codebook vectors. 
Since, generally this is a problem of order O(n)=n!, we use a 
simple heuristics to identify a sufficiently good 1:1 association 
of input and codebook vectors: For every randomly chosen 
codebook vector (map entry) we identify the best matching 
input vector (frame). Then, this input vector is removed and the 
procedure is repeated until all codebook vectors are mapped to 
input vectors. Experimental results show that this mapping 
procedure generates acceptable results. 
After finished SOM training and identification of the BMU for 
every input key-frame, cluster coordinates and frame IDs of the 
key-frames representing clusters (see Subsections 3.2, 3.3 for 
the selection procedures) are stored in a simple XML 
document. The XML descriptions are used in the visualisation 
process described in the next subsection. 
4.4. User interface design 
User interface design for the video browsing application 
comprises two activities: visualisation of index tree layers and 
visualisation of the navigation system. As described in 
Subsection 3.4, we decided not to visualise entire index trees. 
Instead, the user interface displays the active map layer, the 
preceding layer and a preview of the subsequent layer (for the 
active cluster). 
The basic building block of each layer is the cluster cell. Figure 
6 describes its shape and functionality. Since we are using self-
organising maps with hexagonal layout (every non-border 
codebook vector has six neighbours), the cluster cell is also of 
hexagonal shape. The cell is implemented by a scalable vector 
graphics (SVG) document. Every layer map consists of one cell 
per cluster. Hence, every map is a collection of SVGs that can 
easily be displayed and manipulated in a web browser window. 
The SVG cell is based on the key-frame representing a cluster. 
A polygon of hexagonal shape is laid over this image. A copy 
of this hexagon is used as a clip-path to cut off those parts of 
the image that should not be visible in the cluster map. The 
resulting image is associated with an ECMAScript event 
listener for handling of mouse events. If the mouse cursor is 
moved over the cell, a listener method changes the border 
colour and triggers a user-defined event handler. This event 
handler can, for example, be responsible for displaying the 
preview of the map on the next lower level. The entire user 
interface of the video browsing application is based on this 
simple active SVG cell. 
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Figure 5. Workflow in MPEG-7 description clustering process. Every layer of the time index tree and the content index tree is
clustered based on visual similarity criteria. 
 

 
Figure 6. The SVG cell is the basic building block of the video
browser user interface. A clip path is used to create the 
hexagonal shape. Event handling is implemented using W3C
DOM event types and JavaScript listener procedures. 



Figure 7 illustrates the user interface layout. Central element is 
the selected layer of the active index tree ("C" for content index 
tree, "T" for time index tree). The selected cluster is shown 
highlighted. Above the active layer a smaller panel shows the 
next higher layer. In this window, the cluster is highlighted that 
is associated with the active layer. A window below the active 
layer shows a preview of the layer associated with the selected 
cluster in the active layer. If the active layer points to a leaf of 
the index tree (key-frames or shots, respectively), the 
associated video clip can be viewed in a playback window. 
Next to the three layers of the active index tree, the 
corresponding layer of the second index tree (see Subsection 
3.4) is rendered in a smaller panel. Finally, on the top right a 
panel with navigation tools is shown (back button, history, 
etc.).  
This user interface allows for browsing through the video 
content without having to visualise the entire three-dimensional 
index trees. In earlier experiments we found that two-
dimensional user interfaces are easier to handle for non-expert 
users, if sufficient context information is given. Furthermore, 
this user interface can be implemented at a minimum demand 
of resources. All panels are based on the SVG cell. Interaction 
is exclusively based on ECMAScript and mostly executed 
locally. Remote access is only required if the user switches to a 
layer that has not been used before. The next section gives first 
evaluation results of the proposed video browsing application. 

5. EVALUATION 

5.1. Test environment 
The following components were used for the prototype 
presented in this section. Firstly, clips with the following 
content were used: advertisements clips (short shots, fast 
changes, high quality images), cartoons (reduced colour 
palette, few colour gradations, slow scene changes, low motion 
activity), documentaries (alternating videos and animations, 
slow scene changes), movie clips (average image quality, 
average motion activity) and news clips (low motion activity, 
sometimes bad image quality). The media clips were captured 
from German satellite programs and stored in PAL format (720 
by 576 pixels, 25 fps). Figure 3 shows examples. 
Frames were described by seven visual MPEG-7 descriptors: 

Color Layout, Color Structure, Dominant Color, Edge 
Histogram, Homogeneous Texture, Region-based Shape and 
Scalable Color. Descriptor extraction was performed using the 
MPEG-7 eXperimentation model. After extraction, 
descriptions elements were normalised to identical intervals 
([0, 1]). 
Indexing was performed using self-organising maps (SOM; see 
Subsection 2.2). SOMs were computed with a hexagonal layout 
(every non-border cluster has six neighbours), six rows and 
eight columns. For learning, a Gaussian neighbourhood kernel 
was used. Maps were initialised randomly. Learning was 
performed in two iterations. In the first iteration 10000 learning 
steps were performed with learning rate α=0,05 and radius 5 
(clusters). In the second iteration (fine tuning) 100000 learning 
steps were performed with learning rate α=0,02 and radius 3. 
For every dataset 15 separate SOMs were computed and the 
best map was chosen by the minimum quantisation error (as 
suggested in [11]). 
The entire video browsing prototype is based on free software. 
Media access is implemented using Java and the Java Media 
Framework. Descriptions are extracted by the MPEG-7 
reference implementation from the eXperimentation Model. 
SOMs are computed using the C-implementation provided by 
the Helsinki University of Technology [11]. Visualisation of 
maps is based on scalable vector graphics [21]. Visualisation of 
maps is implemented in Perl scripts and the SVG output is 
rendered by the Adobe SVG Viewer plug-in (tested for 
Netscape Navigator and Microsoft Internet Explorer). Finally, 
event-based interaction is implemented in ECMAScript scripts. 
5.2. Experimental results 
This subsection summarises our experiences with the video 
browser prototype. So far, we have not conducted a user study. 
Therefore, all presented results are preliminary based the 
authors' observations. In the first part of this section we will 
investigate the look-and-feel of the video browser. The second 
part discusses quantitative criteria, advantages and 
disadvantages as well as usage types. 
Figures 8 and 9 illustrate hierarchical layer dependencies of 
time index tree and content index tree. The time index tree 
shows the top layer and two detail layers. Time-code values of 
key-frames depicted in clusters act as an additional source of 
information to the user. Since all elements are required for 
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Figure 7. Navigation layout of the video browser user interface (see Subsection 4.4 for details). 
 



browsing, no holes are allowed in the SOMs. The algorithm 
describes in Subsection 4.3 solves this problem sufficiently. 
Some artefacts (e.g. some non-circular clusters) are due to its 
heuristic nature. Still, clustering of similar content is 
semantically understandable (especially on detail levels). The 
major clustering criteria seem to be colour distributions and 
edge layouts. This is similarly true for the content index tree 
(Figure 9). The figure illustrates the top layer for the test data 
used and one detail layer. If shots have similar content, they are 
clustered together. Hence, content index tree SOMs have holes 
and varying numbers of detail layers. Shot-content is visualised 
spatially. For example, Layer 2 organises the content of an 
animation sequence in a looped path (starting from bottom 
right; see time-code values). Interestingly, colour information 
is not the dominating clustering criterion. For example, the 
third and fourth cluster in the fifth row of Layer 1 of the 
content index tree have similar structures but different colours. 
In conclusion, since colour and structure are the two 

dominating clustering criteria, similarity is spatially 
perceivable in the two-dimensional SOMs. 
Generally, the layer map size determines the capacity of the 
video browser index trees. For the example, we use maps with 
six rows and eight columns per row. Therefore, every map 
layer has 48 elements and a time index tree with three layers 
has a capacity of 483 = 110592 frames. For a frame rate of 25 
frames per second (PAL, SECAM), this number equals to 73 
minutes of video: Three layers are sufficient to browse through 
73 minutes of content. A map size of 48 elements was chosen, 
because humans are able to perceive between 50 and 100 icons 
spatially by one look. Therefore, 48 is a very convenient 
number of items. Additionally, smaller maps can be computed 
faster and be visualised easier. 
Next, we investigate major differences (in terms of practical 
usage) of content index tree and time index tree. The content 
index tree clusters dependencies in the content: Scenes that 
have no temporal relationship. Scenes with similar colour and 
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Figure 8. Example screenshot of time index view. The figure shows maps on three layers. Layer 1 is the top layer computed from
the test videos used in the evaluation. 
 



structure properties are clustered together. For very similar 

scenes, one representative is chosen and the others are omitted. 

The content index tree shows the 'assets' of a video stream: it 

successfully selects prototypes of all appearing types of content 

and presents them to the user. Furthermore, the content index tree 

guarantees (on the top level) that the entire content is visualised in 

one view. In contrast, the time index tree clusters temporal 

transitions. To a certain extent it preserves the story and gives 

'suggestions' for more detailed analysis in temporal order. 
Technically, content index tree and time index tree are not that 

different: the frames selected as representatives for clusters are 

often located in close proximity in the video stream (of course, 

depending on the shot structure). If shots are short (as, for 

example, in advertisement clips) content-index tree and time 

index tree use mostly similar selections of key-frames. 

Additionally, since SOM clustering destroys the order in the set of 

selected key-frames anyway, content index tree and time index 

tree may appear highly similar (especially, on the top levels). 
Usage experience shows that the content index tree is the main 
browsing tool. It is employed to identify interesting areas in the 

video content and analyse them in greater detail. The time 
index tree is mainly used in the starting phase to get a first 
impression of the video data, for orientation during a browsing 
session and as a tool for associative browsing. Since it 
preserves the temporal order (the story) of the video, it allows 
for semantic browsing through the content. 
From our experiments, we draw the conclusion that the 
proposed video browsing approach is reasonable. Its major 
advantages are: Firstly, the video browser makes use of content 
analysis techniques and similarity-based clustering. This 
supports human visual perception and allows fast and effective 
browsing. Secondly, it summarises the assets of a video stream 
in an easy to overlook structure. The video browser allows real 
content-based random access of video data. Spatially, the video 
browser user interface makes use of human spatial memory. 
Since information overload is avoided by using small maps, the 
user can browse through the data quickly. Furthermore, the 
implemented navigation style is easy to understand. It does not 
implement revolutionary new interaction paradigms but is 
based on simple click operations. Finally, the spatial layout 
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Figure 9. Example screenshot of content index view. The top layer visualises shots by representative frames. Layer 2 shows an
animation shot in detail. Clustered spatially by similarity, the frames of the animation shot follow a loop. 
 



used in the layer maps fits to the users spatial expectations. In 
the video browser, video content is presented in a natural way. 
One major disadvantage of the proposed video browser is that 
temporal organisation of video is destroyed. The 'video feeling' 
is lost when analysing the content by the index trees. Even 
though illustrating the time-code together with cluster 
representatives allows the user to comprehend temporal 
organisation intellectually, the obvious visual temporal flow is 
lost (especially in the content index tree). 

6. CONCLUSIONS 

The paper describes a novel video browsing application that is 
based on two index structures. A time index tree visualises the 
temporal structure and a content index tree visualises the video 
stream content. The application is interactive: The user can 
browse through the trees and switch between the trees. 
Browsing is easy, because several additional panels visualise 
navigation-relevant context information. Furthermore, the 
index trees integrate visual information retrieval know-how as 
media objects used on index layers are clustered content-based. 
Media objects are described by visual MPEG-7 descriptions. 
Similarity-based clustering is performed using self-organising 
maps. From the implementation point of view, the video browser 
is novel as it is exclusively based on free software. Scalable 
vector graphics are used for index visualisation and the entire 
browsing application can be accessed through a web browser. 
The major contribution of the video browsing application is 
allowing time and content-based access simultaneously. 
Moreover, it integrates ideas from information visualisation, 
information browsing and content-based information retrieval. 
The result is a powerful application that makes video content 
transparently accessible.  
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