
A Video Browsing Application
based on visual MPEG-7 Descriptors and Self-Organising Maps

Horst Eidenberger
Vienna University of Technology, Interactive Media Systems Group

Vienna, 1040 Austria

Abstract

The paper introduces a novel approach for interactive video
browsing that makes video content fully transparent to the user.
Video clips are analysed and indexed by two tree structures: a
content index tree representing the content of automatically
segmented video shots and a time index tree representing the
temporal structure. The index top levels give an overview over
the entire content. Subsequent levels illustrate content
relationships more detailed. Every level of both trees is a two-
dimensional self-organising map organising media objects by
two degrees of freedom. Media objects are represented by
content-based visual MPEG-7 descriptions. The implemented
navigation scheme allows the user for switching between
content index tree and time index tree without loosing the
overview. Context information (position in the tree, content of
next lower level, etc.) is permanently shown in auxiliary
panels. The implementation is based on the scalable vector
graphics standard (visualisation) and the MPEG-7 reference
implementation. First evaluation results show that the proposed
approach facilitates accessing video content in a novel way.
Keywords : Video Browsing, Video Segmentation, Self-
Organising Map, MPEG-7.

1. INTRODUCTION

This paper describes a novel video browsing approach that is
based on a neural network clustering technique. Interactive
video browsing aims at making video content transparently
accessible. Application scenarios include editing, post
production and metadata annotation. Generally, video browsing
problems are investigated in visual information retrieval
research (VIR) [14, 17, 2]. Like the majority of VIR
approaches, our approach is based on media representation by
visual descriptions (e.g. colour histograms, edge maps). We
employ the visual MPEG-7 descriptors [16, 15, 1, 8] to index
video content and make it accessible for browsing in a web-
based user interface. Indexing is performed using self-
organising maps (see Subsection 2.2) [10, 9].
In our approach, video data is hierarchically indexed by two
criteria: by shot content and by time. For the content index tree,
video streams are segmented into shots (using automatic shot

boundary detection). Shots are represented by average
descriptions and visualised by representative key-frames (see
Subsection 3.3 for details). Indexing is performed on multiple
levels: from an overview level (coarse selection of
representatives from all shots) to multiple detail levels (fine
selection of representatives from similar shots). This is
similarly true for time index tree. The difference is that for the
time index tree, frames are selected at certain time intervals.
On each level every n-th frame is used for indexing. n, the step
width, is set to a large value for the overview level and to
smaller values for the detail levels (see Subsection 3.2 for
details). Hence, the time index tree represents a content-
independent top-down view on video data while the content
index is constructed bottom-up based on shot boundaries. Since
content index tree and time index tree are based on the same
data, the user is enabled to switch between the two views at
any time during the browsing process.
Our video browsing approach differs from related approaches
in the point that it employs both browsing and retrieval
techniques: Visual descriptors are used to identify shot
boundaries and to describe media objects. A similarity-based
clustering algorithm is employed to cluster video segments.
Similar video frames are located close to each other. Since we
use a two-dimensional clustering technique, two degrees of
freedom are available for clustering. Content-based and time-
based selection and similarity-based clustering in hierarchically
organised index trees result in a structured transparent view of
video data. Technically, a major novelty is that the
implementation is exclusively based on free software. For
example, the user interfaces are based on the scalable vector
graphics standard (SVG) [21]. Description extraction is based
on the free reference implementation of the MPEG-7 standard.
Shot detection is based on state-of-the-art VIR procedures.
The paper is organised as follows. Section 2 sketches relevant
related work including the visual MPEG-7 descriptors, the
clustering technique used, automatic video segmentation and
recent video browsing approaches. Section 3 describes idea and
design of the video browsing application and the implemented
navigation paradigm. Section 4 deals with implementation
issues: descriptor selection for video segmentation, description
clustering and user interface implementation. Finally, Section 5
presents experimental evaluation results.

2. RELATED WORK

2.1. Visual MPEG-7 descriptors
In the video browsing application, we use visual MPEG-7
descriptors for media description and video segmentation. The

Corresponding Author: Horst Eidenberger is with the Institute of
Software Technology and Interactive Systems, Vienna University of
Technology, Favoritenstrasse 9-11, Vienna, 1040, Austria. FAX: +43-
58801-18898
Email: eidenberger@ims.tuwien.ac.at

visual part of the MPEG-7 standard defines several descriptors
[16, 15, 1, 8]. Not all of them are actually descriptors in the
sense that they extract properties of media content. Some of
them are just structures for descriptor aggregation and
localisation. The basic colour descriptors are Color Layout
(first DCT coefficients of YCrCb averages of major
image/frame regions), Color Structure (histogram of colour
usage in colour regions), Dominant Color (colour value and
percentage of eight most used colours) and Scalable Color
(classic, scalable colour histogram). Texture descriptors are
Edge Histogram (edge orientation histograms for 4x4 sub-
regions), Homogeneous Texture (energy values and
distributions for 40 Gabor filters) and Texture Browsing
(average coarseness and directionality of textures). Shape
descriptors are Region-based Shape (35 ART coefficients for Y
channel) and Contour-based Shape (contour descriptions of
segmented objects). Motion descriptors are Camera Motion
(based on optical flow), Parametric Motion (motion of
predefined objects) and Motion Activity (motion vector-based
frame by frame motion).
Other descriptors are based on these low-level descriptors or on
additional semantic information: Group-of-Frames/Group-of-
Pictures (aggregation of Scalable Color descriptions), Shape
3D (based on 3D mesh information), Motion Trajectory (based
on object segmentation) and Face Recognition (major face
parameters like eye to eye distance, etc.; based on face
extraction). Finally, supplementary (textual) structures exist for
colour spaces, colour quantisation and multiple 2D views of 3D
objects. Since our application is dealing with individual key-
frames, only the listed colour, texture and shape descriptors are
considered below.
2.2. Self-organising maps
The self-organising map (SOM) [10, 9, 11] is a two-layer fully
connected neural network that uses feed-forward learning.
SOMs are mainly intended for clustering of high-dimensional
data (see [7] for a survey). The input layer is interpreted as a
one-dimensional data vector. The output layer is interpreted as
a two-dimensional map of clusters. The clusters of the output
map may have rectangular or hexagonal shape. Each cluster of
the output map is described by a weight vector pointing to its
center (codebook vector). In training and application, input
data vectors are mapped to the codebook vector with minimum
Euclidean distance (best matching unit, BMU). SOM learning
is based on a predefined map size and randomly selected
codebook vectors. The map is adapted by iteratively applying
input vectors, selecting the codebook vector with minimum
distance and changing its location by a fraction of the distance
(weighted by learning rate α).
One major innovation of SOMs over other clustering methods
is the introduction of neighbourhood kernels. These two-
dimensional functions define the fraction, to which the BMU is
adapted but also, to which extent neighbouring codebook
vectors are adapted. Thus, SOM learning means learning of
cluster neighbourhoods. A typical neighbourhood kernel is the
two-dimensional Gaussian density function. Using
neighbourhood kernels results in somewhat 'natural' cluster
structures that intuitively fit with humans' similarity perception.
This property is the major reason why we are using SOMs for

clustering in the video browsing application.
The tree-structured SOM [12] is a further developed SOM that
allows for constructing hierarchical cluster trees. Tree-
structured SOMs are related to our approach. The major
difference is that tree-structured SOMs cluster the entire data
on every level while in our approach every SOM consists only
of a small, carefully selected fraction of the entire data (video
frames). Hence, it would not have been possible to achieve the
effect desired by the proposed video browsing application by
using tree-structured SOMs.
2.3. Temporal video segmentation
Automatic temporal video segmentation aims at identifying
shot boundaries in video streams without user involvement. In
recent years, a significant number of approaches have been
proposed [2]. Today, state-of-the-art automatic video
segmentation procedures identify more than 90% of all
transitions (including fades and wipes) in video streams at
minimal numbers of false positive detections. Generally, shot
transitions can be distinguished in sharp cuts and effect
transitions (fades and wipes). Sharp cuts are, for example, used
in news videos. Effect transitions are regularly used in sports
programs.
Methods for detection of sharp cuts are either based on
uncompressed media data or compressed media data. The
simplest approach that uses uncompressed data is the frame
difference approach: Consecutive video frames are spatially
pixel-wise compared. If the sum of differences exceeds a
certain predefined threshold, a cut is assumed. This approach is
easy to implement but has several drawbacks: it is computation
power-demanding, not robust against global changes in the
video data (e.g. changed lighting conditions) and sensitive for
camera movement (e.g. zooming, panning, etc.). More
sophisticated approaches use visual features to summarise
frames. Examples are colour histograms (global features) or
edge maps (local features). Shot boundaries are assumed where
the distance of feature vectors exceeds a threshold. Obviously,
feature-based approaches do not suffer from lacking robustness
against photographing conditions and camera movement.
Furthermore, if features can be computed in advance, the cut
detection process is less computation power-demanding than
the frame difference approach. Recently, since the visual part
of the MPEG-7 standard for multimedia content description has
been released, more and more feature-based approaches
employ MPEG-7 descriptors for cut detection (e.g. Scalable
Color in [5]). In Subsection 4.2 we try to identify the best
MPEG-7 descriptors for cut detection.
Most methods for sharp cut detection that are based on
compressed media data make use of motion vectors (e.g. [24]).
If the optical flow changes significantly from frame to frame
(again, significance implemented by a threshold), a shot
boundary is assumed. The major advantage of compressed
data-based approaches is that they require less computation
power than approaches working on the uncompressed domain.
Methods for detection of effects are usually based on feature-
based approaches. Twin-comparison [23] employs two
thresholds: All inter-frame distances exceeding a first threshold
are summed up. If the sum exceeds the threshold for sharp cuts,
an effect transitions is assumed. This approach works

excellently for gradual transitions as fades and wipes. The
production model-based approach [6] analyses effects top-
down. Models for location (wipes) and intensity (fades)
changes are derived. Frame sequences fitting to the models are
assumed being effect transitions.
2.4. Video visualisation for browsing
The crucial user interface issue that has to be solved in video
browsing systems is the visualisation of the temporal
dimension of video. The spatial content of video changes over
time. Since the view does not, there is no 'natural' way to
visualise video content entirely on the spatial domain. In
general, there are three solutions to present video information.
Firstly, integration of the full video with player controls into
the environment. This approach is CPU power- and network
bandwidth-consuming. Secondly, creation and usage of
animated iconic structures. Even though being less demanding
in terms of network bandwidth, this approach is still
computation power-consuming. Thirdly, creation of two- or
three-dimensional models that represent the video content.
Examples for animated iconic structures are the hierarchical
video magnifier [2] and the scene transition graph [22]. The
approach followed by the hierarchical video magnifier is
similar to the time index tree proposed in this paper. It provides
a simple hierarchical structure of key-frames: Key-frames
selected from the entire video content are shown on the top
level. On subsequent levels, key-frames selected from parts of
the video (but at smaller intervals) are shown. Layers are
simply rows of key-frames ordered by time. The user can select
detail views by clicking on key-frames on higher levels. Scene
transition graphs give a graph representation of video content:
Shots with similar content are clustered in nodes. Nodes are
connected by arcs depending on their temporal relationships.
Model-based representation is the most widely applied video
visualisation method. In the simplest form an image matrix of
all key-frames in a video clip is used. A more sophisticated
approach is the Micon [4], an image showing the first frame of
a video clip as well as the first line and the last column of all
consecutive frames in a cube-like view. Micons are easy to
compute and give good indication on video motion for many
types of content. The main shortcoming of Micons is that
perspective cannot be changed easily. The video X-ray
approach provides a fully three-dimensional model of video.
Video X-rays are visualised as Micons but, since the model is
three-dimensional, perspective can be adapted arbitrarily.
Furthermore, video X-rays allow for editing of video clips (e.g.
spatio-temporal cutting, compression, etc.). Another approach
from a similar direction as the Micon is mosaic visualisation
[2]. In a mosaic visualisation, the frames of a video clip are
glued together to a panorama-like view. Stitching is based on
object motion. See [4, 2] for comprehensive introductions to
these and other video visualisation techniques.

3. VIDEO BROWSING APPLICATION

This section describes the design of the proposed video
browsing application. Subsection 3.1 illustrates the novel ideas
implemented in the approach. Subsections 3.2 and 3.3 describe,
how the two types of browsing criteria (time and content) are

used. Subsection 3.4 sketches navigation in the browsing
process and switching between time index tree and content
index tree.
3.1. Idea and motivation
In our video browsing application, video streams are organised
in tree structures. The top level gives an overview over the
entire video content. Subsequent levels show detail information
(on groups of shots, shots, temporal fractions of the video
stream). Leaves of the tree are shots (content index tree) or
single frames (time index tree), respectively. The user browses
through the tree structures from top to bottom. Selecting a
cluster from a map causes him stepping one level down in the
index tree and seeing more details on the selected fraction of
the video stream. The route taken through the index tree is
visualised in the user interface by auxiliary panels (see
Subsection 3.4). Generally, this paradigm is similar to the
hierarchical video browser (as described in [4]). Two aspects
are responsible for making video perception through the
proposed video browsing application a completely new
experience:
 Two organisation criteria are used: time and content
 Tree layers are maps of elements clustered by content

similarity
Mostly, existing video browsing approaches offer only a single
view of video: a temporal view of key-frames selected at
predefined intervals (independently of the content) or a
content-based view of selected representative frames. In the
author's opinion this is unsatisfactory, since many applications
require having both types of index available simultaneously.
For example, in video archival and browsing-based retrieval,
the user might – depending on event characteristics – in some
cases remember the time, when something happened and in
other cases, in which context something happened: Regular
viewers of soccer matches can easily remember when a goal
was shot, if it was scored in overtime and decided the match,
but hardly when a free kick was executed that did not have a
major impact on the game. On the other hand, the free kick can
easily be remembered, if it was the result of a brutal foul by a
hated defender on a beloved star of the preferred team.
Our video browser offers both views in independently
organised index structures. Key-frames for time-based and
content-based indexing are selected independently and
clustered hierarchically using the same procedure (see
Subsection 4.3). Additionally, a matching procedure is
provided that allows for switching between the two views.
Subsections 3.2 and 3.3 describe the two index types and
Subsection 3.4 sketches the matching procedure.
The second innovation in the proposed video browsing
application is making use of content-based visual information
retrieval for layer organisation to support the user's visual
similarity perception. Key-frames are described by content-
based visual MPEG-7 descriptors (see Subsection 2.1). These
media descriptions (technically, high-dimensional data vectors)
are clustered using self-organising maps (SOMs, see
Subsection 2.2). The result is a two-dimensional map of
clusters, in which similar media objects are located closely to
each other. Since we use MPEG-7 descriptors, similarity is
defined on the basis of generally perceived (un-recognised)

image properties (e.g. colour distributions). The major
advantage of this approach is that it supports human visual
similarity perception. Similarity-based clustered key-frame
images allow the user to judge the content of a particular layer
more quickly and to uncover implicit similarities in the content
of video streams. This allows, for example, to understand
colour codes applied in advertisements better (e.g. bright
colours for product properties that should bet perceived
positively, etc.).
We use two-dimensional clustering in the video browser,
because it supports human spatial perception. Additionally, it
offers an additional degree of freedom in comparison to
hierarchical clustering. Furthermore, maps can easily be
illustrated in any type of user interface. In the past, we have
also experimented with three-dimensional clustering based on
Sammon mapping [19] and visualisation in virtual worlds using
VRML [20]. We found that three-dimensional maps are more
difficult to understand and navigation, overlapping and
clipping can soon become confusing for the user. Therefore,
we decided on two-dimensional clustering. SOMs were
selected, because – as pointed out in Subsection 2.2 – by
employing neighbourhood kernels for learning they provide a
human perception-like cluster structure.
Figure 1 illustrates the resulting type of index: Layers are
derived from the video stream by time and content criteria.
Every layer is a two-dimensional map clustering elements by
content-based features (e.g. colour, structure). Top levels give
overview information. Subsequent layers give detail
information. The entire video browsing application comprises
two independently organised index structures inter-connected
on the frame level. See Figures 8, 9 for examples.
3.2. Time index tree
For the time index tree, key-frames are selected from the video
stream in a way that preserves the temporal order. Even though
content-based access is an important issue in visual information
browsing, the temporal structure must not be neglected.
Humans have an excellent memory for the temporal order of
events. The time index tree is responsible for providing a

hierarchical temporal view on the media.
Key-frames are selected as follows (see Figure 1 for
illustration): Every n-th frame of the video stream is selected. n
(the step width) depends on l, the layer number (starting with
'1' (top layer)). n(l) is defined by equation 1. Map dimensions
are given by r (rows), c (columns). round_up(X) replaces X
with the next higher cardinal number.

 ()
()

() ⎟
⎠
⎞

⎜
⎝
⎛

= lcolumns.rows
clipvideolength

up_roundln (1)

Thus, the step width for a map on a particular layer l decreases
proportionally to the position of the layer in the time index tree.
At most, one frame per map entry (cluster) is selected. Maps on
layers below the top level are mapped to clusters on the next
higher level by an offset function o(x, y) (see equation 2): The
offset function defines the starting offset for key-frame
selection from the video stream.
 () () ()

1
2

−++= lOln.c.r.xc.r.yy,xo (2)
x, y (cardinal numbers starting with zero) identify a cluster on
layer l-1 (that is elaborated on level l). Ol-1 is the offset of the
map on layer l-1. (Remark on navigation: It is important to
notice that, since temporal order is lost in the content-based
map clustering process, the pair <x, y> does not simply
identify the (y*rows+x)-th cluster of the map on layer l-1. The
corresponding cluster has to be located by establishing a link
from map elements on layer l back to map elements on layer l-
1 using the input video stream.)
In conclusion, the content of maps of the time index tree is
determined by <n(l), o(x, y)> pairs. On the top level, just one
map exists. On subsequent levels, exactly one map exists for
every cluster on the preceding level. Consequently, the time
index tree is always a balanced tree. Leaves are single frames.
If rows=columns=2, the time index tree is a quad-tree
structured by visual content.
3.3. Content index tree
The content index tree is an iconic shot index. While the time
index tree is constructed top-down, the content index tree is
built bottom-up based on shots. Shot boundaries are detected
using automatic video segmentation (see Subsections 2.3, 4.2).
Even though automatic shot detection does not provide full
accuracy, it is sufficiently good for our purpose.
In the indexing process, shots are represented by average media
descriptions. Media descriptions are extracted from frames
using the content-based visual MPEG-7 descriptors. These
descriptions are averaged for the relatively coherent content of
single shots. Generally, using a simple mean should be
sufficient as an averaging method. The averaged descriptions
are clustered using self-organising maps. In contrast to the time
index tree, where only a fraction of frames are employed for
clustering, all averaged descriptions are considered for
clustering on the top level. Then, in a recursive process all
clusters containing a number of elements that exceeds a
predefined threshold are clustered again and mapped to clusters
on the next higher level as detail levels. For practical reasons
the threshold should be set larger than map size. Smaller
threshold values would result in unnecessarily deep index
structures.
Shots are the leaves of the content index tree. Since it is not

View layer 1

Layer 2

Layer 3

Media stream

Content view

Time view

Figure 1. Video index trees. Every index tree consists of
multiple layers. The number of layers depends on the media
stream size. Indexes are constructed from the temporal video
view (by selecting every n-th frame) and the content view (by
selecting representative frames of shots).

predictable, which content-based relations exist among shots,
the content index tree is generally unbalanced containing deep,
highly differentiated structures for frequently appearing content
(e.g. shots of leading actors in movies) and less differentiated
structures for less frequently appearing content (e.g. extras).
This is desired by the approach as it supplements the context-
free view provided by the time index tree elegantly.
The major design issue connected to the content index tree is
selecting representative media objects for map clusters. Since,
in contrast to the time index tree, clustered media descriptions
are artificial, we cannot simply employ the cluster medians as
representatives. A two-step procedure is required: Firstly, we
identify the median average description vector (the one with
minimum Euclidean distance to the codebook vector; see
Subsection 2.2). Then, we identify the frame with the most
similar description to the average vector (again, by Euclidean
distance). This frame is selected as cluster representative and
visualised in the map.
3.4. Tree matching and navigation
Above, it was mentioned that the video browsing application
allows the user to switch from content index tree to time index
tree and back during browsing. The implementation of this
feature requires matching between the index trees. Starting
from a selected cluster in one index tree, two parameters have
to be determined for switching: map cluster correspondence
and layer correspondence. A content index cluster and a time
index cluster are defined as corresponding, if they use the same
representative media object for cluster visualisation:
 Mediancontent index tree cluster ≡ Besttime index tree cluster (3)
This is a one-to-many relationship: multiple clusters in the
second tree may correspond to the selected cluster. In order to
reduce the number of candidates to one, we use layer
correspondence: The cluster is selected as switching target that
is located on the layer with minimum hierarchical distance to
the switching source. Formally:

 select mt with
() ()

min
treeetargt
mlayer

,
treesource
mlayer

d ts →⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (4)

where ms, mt are the maps in source and target index trees that

contain the corresponding cluster representatives, layer(X)
gives the layer number of map X, |X| is the span (number of
layers) of index tree X and d() measures Euclidean distance.
These two conditions define a unique mapping between content
index tree and time index tree.
However, there is still one problem that needs to be solved.
The time index tree contains all frames of an indexed video
clip. Therefore, for any cluster representative in the content
index tree it is possible to identify a corresponding cluster
element in the time index tree. The other way around, this is
not the case: In the content index tree entire shots are
represented by a single frame. We suggest the following
solution to overcome this problem: If, for a particular switching
source in the time index tree, no corresponding frame exists in
the content index tree, then the leaf map and cluster are chosen
as switching target, that refer to the video shot containing the
corresponding frame. In this case, the layer condition cannot be
satisfied. To avoid a confusing effect on the user, she is
notified by a system message.
Generally, browsing through and switching between trees can
easily become confusing. We have implemented several user
interface components to avoid such an effect. These
components will be described in detail in Subsection 4.4. The
major guidelines are: Trees are never shown entirely
(information overload). Instead, we display the active layer, the
preceding layer (with the selected cluster highlighted) and a
preview of the next layer that corresponds to the cluster that is
highlighted in the active layer. Moreover, in an additional
panel the corresponding map in the non-active index tree is
shown. Besides avoidance of information overload this scheme
has the advantage that it can be implemented without complex
and resource-consuming three-dimensional tree visualisations.

4. IMPLEMENTATION

Below, we describe relevant implementation issues of the
video browsing application. Subsection 4.1 gives an overview
over workflow and data flow in the index preparation process.
Subsection 4.2 describes descriptor selection for automatic shot
boundary detection. Subsection 4.3 gives details on the
clustering process used. Finally, Subsection 4.4 sketches
important visualisation and user interface aspects.
4.1. Overview
Figure 2 illustrates the index tree preparation workflow in the
video browsing application. Starting from the input video
stream, media descriptions are extracted. We apply the MPEG-
7 image descriptors and describe each frame of a video clip by
colour content, textures and general shape properties.
Subsection 5.1 gives detailed information on the descriptors
and parameters used. The media descriptions are the input for
the automatic shot segmentation procedure. It employs
description-based comparison (for sharp cuts) and twin
comparison (for fades and wipes) on optimised MPEG-7
descriptions to identify shot boundaries (see Subsection 4.2 for
details).
Shot boundary information and visual descriptions are fed into
the index tree construction and clustering process. In the first
step, averaged shot descriptions are computed. Then,

Video
stream

Description
extraction

Media
descriptions

Shot
segmentation

Index
construction

and clustering

Shot
boundaries

Cluster
maps

Visualisation Visualised
index trees

Figure 2. Workflow and data flow in the data preparation
process of the video browsing application.

independently for time index tree and content index tree,
frames are selected and the top views of both indexes are
computed using self-organising maps (see Subsection 4.3 for
details and Subsection 5.1 for parameters). Based on the top
view clustering, SOM calculation is recursively repeated for
the content index tree. The time index tree is computed by top-
down selection of step widths and offsets (as described in
Subsection 3.2). The resulting index trees are stored in a simple
XML format that marks the endpoint of the pre-processing
steps.
The XML document describing the two index trees is used as
input for the visualisation process. Visualisation target is the
web browser. Hence, we employ web-based standards for
visualisation. Specifically, index tree components are
visualised by scalable vector graphics (SVG). Visualisation is
supplemented by event-based interaction: SVG supports
ECMAScript, which is used for handling user requests. The
visualisation part of the video browsing application is
described in detail in Subsection 4.4.
4.2. Shot boundary detection
In the video browser we require a procedure for shot boundary
detection. We use description-based cut detection in
combination with the twin comparison approach for effect
detection (see Subsection 2.3). Since we use visual MPEG-7
descriptors for media description, we want to use the same
descriptions for cut detection. Below, we aim at identifying the
best application domain-independent MPEG-7 description
scheme for automatic cut detection. Optimising the
performance of shot boundary detection is crucial for the
quality of the video browser index trees. To reach this goal we
apply the majority of content-based visual MPEG-7 descriptors
on video clips of varying content and compare the results of
automatic detection to ground truth information provided by
human users.
Experimental Setup: We split the process of identifying the
best description scheme for MPEG-7-based cut detection into
two steps: First, we compute the individual performance of
descriptors. Then, we try to identify combinations of

descriptors that improve the individual results. This section
describes the media sets used for evaluation, the visual
descriptors we apply and the methods we apply for cut
detection (including threshold optimisation), performance
evaluation, descriptor combination and ranking.
The test data comprises media clips from five different genres:
advertisements, cartoons, documentaries, movies and news (see
also Subsection 5.1). Figure 3 shows example frames. The
genres differ widely in cut rate and transition types used. In
advertisements clips cuts occur after at least 2,5 percent of
frames, in cartoons after about one percent and in
documentaries, films and news after less than 0,5 percent.
News programs and advertisements mostly apply sharp cuts
while cartoons and documentaries often use transitions
(mainly, fades) over twenty or more frames.
We apply the visual MPEG-7 descriptors (using the
eXperimentation Model version 5.6) on all frames of the test
videos. All colour descriptors are used: Color Layout, Color
Structure, Dominant Color, Scalable Color, two texture
descriptors: Edge Histogram, Homogeneous Texture, and the
Region-based Shape descriptor. All descriptors are applied
with maximum resolution. The feature vector elements are
normalised to the interval [0, 1]. In total, every frame is
described by a feature vector of 306 elements. For dissimilarity
measurement we employ the distance measures and parameters
suggested by the MPEG-7 authors (mostly, city block distance
without weights).
For cut detection we define a threshold tb (individually for each
descriptor). Additionally, we use the twin comparison approach
[2] to detect fades and wipes: A second threshold ts is defined
for gradual changes (ts << tb). Two indicators are computed to
evaluate the performance of a descriptor: the number of correct
hits and the number of false positives. Calculation of indicators
is based on ground truth information provided by test users.
Since we want to measure the best possible performance for
each descriptor it is crucial guaranteeing that no descriptor is
discriminated by false threshold values. Therefore, the
thresholds are iteratively optimised in an automated procedure

Figure 3. Example frames from advertisement, cartoon, documentary, movie and news clips employed in the evaluation (captured
from German satellite television).

based on ground truth information. This optimisation is
performed per genre. Then, the best identified thresholds are
used to compute the hits and false positives indicators.
In this process we have to deal with two optimisation criteria.
As the numbers of hits (correct / present) and false positives
(false / present) cannot be easily combined, it is almost
impossible to define a single goal function. Giving preference
to one of them depends heavily on the considered type of
application. Hence, we decided to base the ranking procedure
on a superiority principle: One descriptor is considered being
superior to another if it leads to better results for one indicator

(more hits, less false positives) while being at least as good for
the other indicator. Two descriptors, for which superiority
cannot be clearly identified, are given the same rank
(independently of the size of the performance gaps).
 Based on the ranking of individual MPEG-7 descriptors we
aim at identifying the best overall description scheme by
combining descriptors using logical operators. Generally, cut
detection results of two descriptors can be combined in two
ways: Either, all cuts are assumed correct that are detected by
both descriptors (AND) or all cuts that are detected by one of
them (OR). An AND combination of two descriptors reduces
the hits indicator to the value of the worse descriptor. The false
positives indicator is reduced to a value in the interval [0,
min(FP1, FP2)] where FP1 and FP2 are the false positive
indicators for the first and second descriptor, respectively. In
the best case, all false positives are eliminated. If two
descriptors are combined by the OR operator the number of hits
equals the hits indicator of the better descriptor. The false
positives indicator becomes a value of [max(FP1, FP2), FP1 +
FP2]. In the worst case, all false positives are part of the
combined analysis. Obviously, OR-combined descriptors can
never be superior to the involved descriptor with the higher
correct hits rate. In consequence, the OR operator is not further
considered in this study.
Results: In the first step the performance of individual MPEG-
7 descriptors is analysed. For example, Figure 4 shows the
distance signature of the Color Structure descriptor over time
(frames). This feature is highly discriminant for sharp cuts and
leaves enough space between cuts, fades and wipes, and object
and camera movement to define the thresholds for twin
comparison clearly. Actually, Color Structure showed the best

performance of all evaluated MPEG-7 descriptors.
Table 1 summarises optimal threshold values and performance
indicators for all descriptors. Color Structure and Color Layout
retrieve most cuts correctly, while the texture features Edge
Histogram and Homogeneous Texture minimise the number of
false positives. This may be the case because edge information
is more robust against camera operation than colour
information. Characteristics of descriptors and distance
measures can be seen from the threshold values. For some
descriptors (especially, Scalable Color) it is highly difficult to
set the threshold for gradual transitions. In consequence, the hit
rate is significantly less than for the best descriptors. The first
rank (in terms of superiority) is shared between Color Layout,
Color Structure, Edge Histogram and Homogeneous Texture.

Only these descriptors were considered for combination.
Computing the performance for all AND-combined description
schemes reveals three description schemes being superior over
all others (see Table 2). The highest hit rate is achieved by the
Color Structure descriptor alone. Using Color Layout and
Color Structure in combination leads to a high hit rate and few
false positives. If Color Structure is used in combination with
Color Layout and Edge Histogram, the number of false
positives drops to zero. This description scheme may be
considered optimal for most applications. Consequently, it is
used for shot boundary detection in the video browsing
application.
4.3. Description clustering
The data clustering procedure of the video browsing
application is responsible for visual similarity-based
organisation of index tree layers. It takes its input from the key-
frame selection procedure (as described in Subsections 3.2,
3.3). Key-frames are described by visual MPEG-7 descriptions,
i.e., basically, high dimensional vectors of floating point
numbers (in our case normalised to interval [0, 1]). The
descriptions of key-frames are clustered by self-organising
maps. Subsection 2.2 describes the learning process in self-
organising maps and their specific advantages. SOMs have
been used in visual information retrieval and browsing before:
The PicSOM system of the Helsinki University of Technology

Figure 4. Frame difference signature of Color Structure
descriptor applied to advertisement clips (X axis: time, Y axis:
distance, grey lines: thresholds).

Descriptor tb ts Hits FP Rank
Color Layout 0,465 0,027 95,4% 6,5% 1
Color Structure 0,096 0,036 97,2% 10,2% 1
Dominant Color 0,429 0,230 57,4% 61,1% 4
Edge Histogram 0,191 0,071 85,2% 1,9% 1
Homog. Texture 0,074 0,015 76,9% 5,6% 1
Region-based Shape 0,173 0,022 87,0% 15,7% 2
Scalable Color 0,078 0,015 68,5% 19,4% 3

Table 1. Shot detection thresholds and performance indicators
for visual MPEG-7 descriptors.

Description Scheme Hits FP
Color Structure 97,2% 10,2%
Color Layout, Color Structure 95,4% 1,9%
Col. Layout, Col. Struct., Edge Hist. 85,2% 0,0%

Table 2. Shot boundary detection performance of best MPEG-7
description schemes.

[13] is a successful content-based image retrieval system that
employs SOMs for data clustering and incorporates iterative
refinement by relevance feedback [18] into the retrieval
process (based on tree-structured SOMs; see Subsection 2.2).
Self-organising maps offer two degrees of freedom for
similarity-based media organisation. The SOM decides
implicitly, which properties it selects for spatial organisation.
Generally, the description elements with the highest variance
have the most significant influence on the cluster structure. In
visual information retrieval usually the strongest stimuli are
colour and structure (textures, shapes) properties. Therefore, it
is likely that SOMs trained from key-frames described by
MPEG-7 descriptors are spatially organised by colour and
structure appearance.
Figure 5 illustrates the workflow in the clustering process.
Media descriptions are repeatedly fed into the SOM learning
process. The output map has a predefined size. Every cluster is
described by a vector pointing to the cluster center (so-called
codebook vector). The codebook vectors are adapted in the
learning process until the quantisation error is minimal. To
compute the quantisation error, every input vector is fed into
the SOM once and mapped to the codebook vector that has
minimum Euclidean distance (best matching unit, BMU). The
sum of distances over all vectors (normalised by the number of
input vectors) defines the quantisation error: the average
displacement, if input vectors would be replaced by their
BMUs.
The set of codebook vectors completely defines a SOM but it
does not explicitly express, to which clusters input vectors
belong. Identifying the cluster structure requires locating the
BMU for every input vector in an additional iteration. In some
cases multiple input vectors are mapped to the same BMU and
other BMUs are not associated with any input vectors. In our
application, this behaviour is acceptable for the content index
tree: similar shots are clustered together. Holes in the map may

exist. See Figure 9 for examples. It is not acceptable for the
time index tree. In the time index tree every cluster should
consist of exactly one frame (time interval) that is detailed by a
map on the subsequent layer. See Figure 8 for an example. To
implement such a behaviour based on SOMs, we require an
algorithm that identifies the best combination (e.g. in terms of
quantisation error) of input vectors and codebook vectors.
Since, generally this is a problem of order O(n)=n!, we use a
simple heuristics to identify a sufficiently good 1:1 association
of input and codebook vectors: For every randomly chosen
codebook vector (map entry) we identify the best matching
input vector (frame). Then, this input vector is removed and the
procedure is repeated until all codebook vectors are mapped to
input vectors. Experimental results show that this mapping
procedure generates acceptable results.
After finished SOM training and identification of the BMU for
every input key-frame, cluster coordinates and frame IDs of the
key-frames representing clusters (see Subsections 3.2, 3.3 for
the selection procedures) are stored in a simple XML
document. The XML descriptions are used in the visualisation
process described in the next subsection.
4.4. User interface design
User interface design for the video browsing application
comprises two activities: visualisation of index tree layers and
visualisation of the navigation system. As described in
Subsection 3.4, we decided not to visualise entire index trees.
Instead, the user interface displays the active map layer, the
preceding layer and a preview of the subsequent layer (for the
active cluster).
The basic building block of each layer is the cluster cell. Figure
6 describes its shape and functionality. Since we are using self-
organising maps with hexagonal layout (every non-border
codebook vector has six neighbours), the cluster cell is also of
hexagonal shape. The cell is implemented by a scalable vector
graphics (SVG) document. Every layer map consists of one cell
per cluster. Hence, every map is a collection of SVGs that can
easily be displayed and manipulated in a web browser window.
The SVG cell is based on the key-frame representing a cluster.
A polygon of hexagonal shape is laid over this image. A copy
of this hexagon is used as a clip-path to cut off those parts of
the image that should not be visible in the cluster map. The
resulting image is associated with an ECMAScript event
listener for handling of mouse events. If the mouse cursor is
moved over the cell, a listener method changes the border
colour and triggers a user-defined event handler. This event
handler can, for example, be responsible for displaying the
preview of the map on the next lower level. The entire user
interface of the video browsing application is based on this
simple active SVG cell.

Media
descriptions SOM clustering Visual map

description
Cluster median

selection

Codebook map

Figure 5. Workflow in MPEG-7 description clustering process. Every layer of the time index tree and the content index tree is
clustered based on visual similarity criteria.

Figure 6. The SVG cell is the basic building block of the video
browser user interface. A clip path is used to create the
hexagonal shape. Event handling is implemented using W3C
DOM event types and JavaScript listener procedures.

Figure 7 illustrates the user interface layout. Central element is
the selected layer of the active index tree ("C" for content index
tree, "T" for time index tree). The selected cluster is shown
highlighted. Above the active layer a smaller panel shows the
next higher layer. In this window, the cluster is highlighted that
is associated with the active layer. A window below the active
layer shows a preview of the layer associated with the selected
cluster in the active layer. If the active layer points to a leaf of
the index tree (key-frames or shots, respectively), the
associated video clip can be viewed in a playback window.
Next to the three layers of the active index tree, the
corresponding layer of the second index tree (see Subsection
3.4) is rendered in a smaller panel. Finally, on the top right a
panel with navigation tools is shown (back button, history,
etc.).
This user interface allows for browsing through the video
content without having to visualise the entire three-dimensional
index trees. In earlier experiments we found that two-
dimensional user interfaces are easier to handle for non-expert
users, if sufficient context information is given. Furthermore,
this user interface can be implemented at a minimum demand
of resources. All panels are based on the SVG cell. Interaction
is exclusively based on ECMAScript and mostly executed
locally. Remote access is only required if the user switches to a
layer that has not been used before. The next section gives first
evaluation results of the proposed video browsing application.

5. EVALUATION

5.1. Test environment
The following components were used for the prototype
presented in this section. Firstly, clips with the following
content were used: advertisements clips (short shots, fast
changes, high quality images), cartoons (reduced colour
palette, few colour gradations, slow scene changes, low motion
activity), documentaries (alternating videos and animations,
slow scene changes), movie clips (average image quality,
average motion activity) and news clips (low motion activity,
sometimes bad image quality). The media clips were captured
from German satellite programs and stored in PAL format (720
by 576 pixels, 25 fps). Figure 3 shows examples.
Frames were described by seven visual MPEG-7 descriptors:

Color Layout, Color Structure, Dominant Color, Edge
Histogram, Homogeneous Texture, Region-based Shape and
Scalable Color. Descriptor extraction was performed using the
MPEG-7 eXperimentation model. After extraction,
descriptions elements were normalised to identical intervals
([0, 1]).
Indexing was performed using self-organising maps (SOM; see
Subsection 2.2). SOMs were computed with a hexagonal layout
(every non-border cluster has six neighbours), six rows and
eight columns. For learning, a Gaussian neighbourhood kernel
was used. Maps were initialised randomly. Learning was
performed in two iterations. In the first iteration 10000 learning
steps were performed with learning rate α=0,05 and radius 5
(clusters). In the second iteration (fine tuning) 100000 learning
steps were performed with learning rate α=0,02 and radius 3.
For every dataset 15 separate SOMs were computed and the
best map was chosen by the minimum quantisation error (as
suggested in [11]).
The entire video browsing prototype is based on free software.
Media access is implemented using Java and the Java Media
Framework. Descriptions are extracted by the MPEG-7
reference implementation from the eXperimentation Model.
SOMs are computed using the C-implementation provided by
the Helsinki University of Technology [11]. Visualisation of
maps is based on scalable vector graphics [21]. Visualisation of
maps is implemented in Perl scripts and the SVG output is
rendered by the Adobe SVG Viewer plug-in (tested for
Netscape Navigator and Microsoft Internet Explorer). Finally,
event-based interaction is implemented in ECMAScript scripts.
5.2. Experimental results
This subsection summarises our experiences with the video
browser prototype. So far, we have not conducted a user study.
Therefore, all presented results are preliminary based the
authors' observations. In the first part of this section we will
investigate the look-and-feel of the video browser. The second
part discusses quantitative criteria, advantages and
disadvantages as well as usage types.
Figures 8 and 9 illustrate hierarchical layer dependencies of
time index tree and content index tree. The time index tree
shows the top layer and two detail layers. Time-code values of
key-frames depicted in clusters act as an additional source of
information to the user. Since all elements are required for

Previous layer

Active layer

Preview of next
layer

C

Corresponding
layer in inactive

view

T

Navigation toolbar

Playback
window

Active element

Flag for active view

Active layer in previous

Figure 7. Navigation layout of the video browser user interface (see Subsection 4.4 for details).

browsing, no holes are allowed in the SOMs. The algorithm
describes in Subsection 4.3 solves this problem sufficiently.
Some artefacts (e.g. some non-circular clusters) are due to its
heuristic nature. Still, clustering of similar content is
semantically understandable (especially on detail levels). The
major clustering criteria seem to be colour distributions and
edge layouts. This is similarly true for the content index tree
(Figure 9). The figure illustrates the top layer for the test data
used and one detail layer. If shots have similar content, they are
clustered together. Hence, content index tree SOMs have holes
and varying numbers of detail layers. Shot-content is visualised
spatially. For example, Layer 2 organises the content of an
animation sequence in a looped path (starting from bottom
right; see time-code values). Interestingly, colour information
is not the dominating clustering criterion. For example, the
third and fourth cluster in the fifth row of Layer 1 of the
content index tree have similar structures but different colours.
In conclusion, since colour and structure are the two

dominating clustering criteria, similarity is spatially
perceivable in the two-dimensional SOMs.
Generally, the layer map size determines the capacity of the
video browser index trees. For the example, we use maps with
six rows and eight columns per row. Therefore, every map
layer has 48 elements and a time index tree with three layers
has a capacity of 483 = 110592 frames. For a frame rate of 25
frames per second (PAL, SECAM), this number equals to 73
minutes of video: Three layers are sufficient to browse through
73 minutes of content. A map size of 48 elements was chosen,
because humans are able to perceive between 50 and 100 icons
spatially by one look. Therefore, 48 is a very convenient
number of items. Additionally, smaller maps can be computed
faster and be visualised easier.
Next, we investigate major differences (in terms of practical
usage) of content index tree and time index tree. The content
index tree clusters dependencies in the content: Scenes that
have no temporal relationship. Scenes with similar colour and

Layer 1

Layer 2

Layer 3

Figure 8. Example screenshot of time index view. The figure shows maps on three layers. Layer 1 is the top layer computed from
the test videos used in the evaluation.

structure properties are clustered together. For very similar

scenes, one representative is chosen and the others are omitted.

The content index tree shows the 'assets' of a video stream: it

successfully selects prototypes of all appearing types of content

and presents them to the user. Furthermore, the content index tree

guarantees (on the top level) that the entire content is visualised in

one view. In contrast, the time index tree clusters temporal

transitions. To a certain extent it preserves the story and gives

'suggestions' for more detailed analysis in temporal order.
Technically, content index tree and time index tree are not that

different: the frames selected as representatives for clusters are

often located in close proximity in the video stream (of course,

depending on the shot structure). If shots are short (as, for

example, in advertisement clips) content-index tree and time

index tree use mostly similar selections of key-frames.

Additionally, since SOM clustering destroys the order in the set of

selected key-frames anyway, content index tree and time index

tree may appear highly similar (especially, on the top levels).
Usage experience shows that the content index tree is the main
browsing tool. It is employed to identify interesting areas in the

video content and analyse them in greater detail. The time
index tree is mainly used in the starting phase to get a first
impression of the video data, for orientation during a browsing
session and as a tool for associative browsing. Since it
preserves the temporal order (the story) of the video, it allows
for semantic browsing through the content.
From our experiments, we draw the conclusion that the
proposed video browsing approach is reasonable. Its major
advantages are: Firstly, the video browser makes use of content
analysis techniques and similarity-based clustering. This
supports human visual perception and allows fast and effective
browsing. Secondly, it summarises the assets of a video stream
in an easy to overlook structure. The video browser allows real
content-based random access of video data. Spatially, the video
browser user interface makes use of human spatial memory.
Since information overload is avoided by using small maps, the
user can browse through the data quickly. Furthermore, the
implemented navigation style is easy to understand. It does not
implement revolutionary new interaction paradigms but is
based on simple click operations. Finally, the spatial layout

Layer 1

Layer 2

Figure 9. Example screenshot of content index view. The top layer visualises shots by representative frames. Layer 2 shows an
animation shot in detail. Clustered spatially by similarity, the frames of the animation shot follow a loop.

used in the layer maps fits to the users spatial expectations. In
the video browser, video content is presented in a natural way.
One major disadvantage of the proposed video browser is that
temporal organisation of video is destroyed. The 'video feeling'
is lost when analysing the content by the index trees. Even
though illustrating the time-code together with cluster
representatives allows the user to comprehend temporal
organisation intellectually, the obvious visual temporal flow is
lost (especially in the content index tree).

6. CONCLUSIONS

The paper describes a novel video browsing application that is
based on two index structures. A time index tree visualises the
temporal structure and a content index tree visualises the video
stream content. The application is interactive: The user can
browse through the trees and switch between the trees.
Browsing is easy, because several additional panels visualise
navigation-relevant context information. Furthermore, the
index trees integrate visual information retrieval know-how as
media objects used on index layers are clustered content-based.
Media objects are described by visual MPEG-7 descriptions.
Similarity-based clustering is performed using self-organising
maps. From the implementation point of view, the video browser
is novel as it is exclusively based on free software. Scalable
vector graphics are used for index visualisation and the entire
browsing application can be accessed through a web browser.
The major contribution of the video browsing application is
allowing time and content-based access simultaneously.
Moreover, it integrates ideas from information visualisation,
information browsing and content-based information retrieval.
The result is a powerful application that makes video content
transparently accessible.

7. ACKNOWLEDGEMENTS

The author would like to thank Christian Breiteneder for his
valuable comments and suggestions for improvement. The
work presented in this paper is part of the VizIR project [3].
VizIR is funded by the Austrian Scientific Research Fund
(FWF) under grant number P16111-N05.

8. REFERENCES

[1] M. Bober, "MPEG-7 Visual Shape Descriptors," IEEE
Trans. on Circuits and Systems for Video Technology,
Vol. 11, No. 6, pp. 716-719, 2001.

[2] A. Del Bimbo, Visual Information Retrieval, San
Francisco, CA: Morgan Kaufmann, 1999.

[3] H. Eidenberger, and C. Breiteneder, "VizIR – A
Framework for Visual Information Retrieval," Journal of
Visual Languages and Computing, Vol. 14, No. 5, pp.
443-469, 2003.

[4] B. Furht, S.W. Smoliar, and H. Zhang, Video and Image

Processing in Multimedia Systems, Boston MA: Kluwer

1996.
[5] M. Höynck, C. Mayer, and J.R. Ohm, "Application of

MPEG-7 Descriptors for Temporal Video Segmentation,"
SPIE Proceedings, Vol. 4676, pp. 347-358, 2002.

[6] A. Hampapur, R. Jain, and T. Weymouth, "Production
Model-based Digital Video Segmentation," Multimedia
Tools and Applications, Vol. 1, No. 1, pp. 9-46, 1995.

[7] A.K. Jain, M.N. Murty, and P.J. Flynn, "Data Clustering:
a Review," ACM Computing Surveys, Vol. 31, No. 3, pp.
264-323, 1999.

[8] S. Jeannin, and A. Divakaran, "MPEG-7 Motion
Descriptors," IEEE Trans. on Circuits and Systems for
Video Technology, Vol. 11, No. 6, pp. 720-724, 2001.

[9] T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas,

"Engineering Applications of the Self-Organising Map,"

Proceedings of IEEE, Vol. 84 , No. 10, pp. 1358-1384, 1996.
[10] T. Kohonen, "The Self-Organising Map," Proceedings of

the IEEE, Vol. 78, No. 9, pp. 1464-1480, 1990.
[11] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen,

"SOM-PAK: The Self-Organizing Map Program Package,"

Helsinki University of Technology, Tech. Rep., 1995.
[12] P. Koikkalainen, and E. Oja, "Self-Organising

Hierarchical Feature Maps," Proc. Neural Networks
Conference, pp. 279-284, 1990.

[13] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja,
"PicSOM – Content-based Image Retrieval with Self-
Organising Maps," Pattern Recognition Letters, Vol. 21,
No. 13-14, pp. 1199-1207, 2001.

[14] M.S. Lew (ed.), Principles of Visual Information
Retrieval, Heidelberg, Germany: Springer, 2001.

[15] B.S. Manjunath, J.R. Ohm, V.V. Vasudevan, and A.
Yamada, "Color and Texture Descriptors," IEEE Trans.
on Circuits and Systems for Video Technology, Vol. 11,
No. 6, pp. 703-715, 2001.

[16] B.S. Manjunath, P. Salembier, and T. Sikora, Introduction
to MPEG-7, San Francisco CA: Wiley, 2002.

[17] O. Marques, and B. Furht, Content-Based Image and
Video Retrieval, Boston MA: Kluwer, 2002.

[18] Y. Rui, and T.S. Huang, "Relevance Feedback Techniques
in Image Retrieval," in M.S. Lew (ed.), Principles of
Visual Information Retrieval, Heidelberg, Germany:
Springer, 2003).

[19] J.W. Sammon, "A nonlinear mapping for data structure
analysis," IEEE Trans. on Computers, Vol. 18, No. 5,
pp. 401-409, 1969.

[20] J.R. Vacca, VRML (second edition), Boston MA:
Academic Press, 1998.

[21] World Wide Web Consortium, Scalable Vector Graphics
standard website, http://www.w3c.org/Graphics/SVG/,
last visited 2004-08-12.

[22] M. Yeung, B.L. Yeo, and B. Liu, "Extracting Story Units
from long Programs for Video Browsing and Navigation,"
Proc. IEEE Multimedia Computing and Systems
Conference, pp. 296-305, 1996.

[23] H.J. Zhang, A. Kankanhalli, and S. Smoliar, "Automatic
Partitioning of Video," ACM Springer Multimedia
Systems, Vol. 1, No. 1, pp. 10-28, 1993.

[24] H.J. Zhang, C.Y. Low, and S. Smoliar, "Video Parsing
and Browsing using compressed Data," Multimedia Tools
and Applications, Vol. 1, No. 1, pp. 89-111, 1995.

