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Abstract—Saliency detection is widely used to extract regions
of interest in images for various image processing applications.
Recently, many saliency detection models have been proposed for
video in uncompressed (pixel) domain. However, video over In-
ternet is always stored in compressed domains, such as MPEG2,
H.264, and MPEG4 Visual. In this paper, we propose a novel
video saliency detection model based on feature contrast in
compressed domain. Four types of features including luminance,
color, texture, and motion are extracted from the discrete cosine
transform coefficients and motion vectors in video bitstream.
The static saliency map of unpredicted frames (I frames) is
calculated on the basis of luminance, color, and texture features,
while the motion saliency map of predicted frames (P and B
frames) is computed by motion feature. A new fusion method
is designed to combine the static saliency and motion saliency
maps to get the final saliency map for each video frame. Due
to the directly derived features in compressed domain, the
proposed model can predict the salient regions efficiently for
video frames. Experimental results on a public database show
superior performance of the proposed video saliency detection
model in compressed domain.

Index Terms—Compressed domain, video saliency detection,
visual attention.

I. Introduction

S
ALIENCY detection models are widely used to extract

regions of interest (ROIs) in images/frames for various

image/video processing applications such as coding, classifica-

tion, watermarking, transcoding, resizing. During the past ten

years, various saliency detection models have been proposed

for salient region detection for images [3], [4], [6], [7].

Compared with image saliency detection, video saliency de-

tection algorithms have to calculate the motion saliency map
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since motion is an important factor to attract human beings’

attention. Currently, several studies have tried to detect salient

regions in video [5], [8], [9].

Existing saliency detection models mentioned above are

implemented in uncompressed (pixel) domain. However, most

video over Internet are typically stored in the compressed

domain such as MPEG2, H.264, MPEG4 Visual. The com-

pressed videos are widely used in various Internet-based

multimedia applications since they can reduce the storage

space and greatly increase the delivering speed for Internet

users. Current video saliency detection models have to de-

compress the compressed video into the spatial domain for

feature extraction. The full decompression process for video

is not only time consuming but computation consuming as

well. Therefore, the video saliency detection algorithm in

compressed domain is much desired for various Internet-based

multimedia applications.

Recently, the authors proposed a saliency detection model

in the compressed domain for image retargeting [14], [38].

The saliency map is calculated based on the features extracted

from the discrete cosine transform (DCT) coefficients of JPEG

images. However, this model is designed for JPEG images and

does not include the motion feature extraction. In addition, the

encoding standards for video and images are greatly different.

Therefore, the model in [38] cannot be used for video saliency

detection. To the best of our knowledge, there is still no

saliency detection model in the compressed domain for video.

As an extension to our work in [38], in this paper, we propose

a novel video saliency detection model in the compressed

domain.

In this paper, the MPEG4 visual [advanced simple profile

(ASP)] coded video are used for saliency detection exper-

iments. Videos of other types, such as MPEG2, can be

processed in a similar way. The YCrCb color space is used

in the MPEG4 ASP video [10], where Y represents the

luminance component, and the other two (Cr and Cb) are

used to represent the chroma components. From the MPEG4

ASP standard, video frames are divided into 16 × 16 mac-

roblocks for luminance component and 8 × 8 macroblocks

for chroma components in 4:2:0 chroma subsampling [10].

Each 4:2:0 coded unit block consists of six 8 × 8 blocks:

four 8 × 8 luminance blocks (luminance channel) and two

8 × 8 chrominance blocks (one is the Cr channel block

while the other is the Cb channel block). The data in video

bitstream are always processed by 8 × 8 blocks and, thus,

1051-8215 c© 2013 IEEE
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we perform here the saliency detection in 8 × 8 block level.

In this paper, the features of luminance, color, and texture are

extracted from the DCT coefficients of the unpredicted frames

(I frames), and these features are adopted for the static saliency

map calculation for these unpredicted frames. Meanwhile, the

motion feature is extracted from the motion vectors of the

predicted frames (P and B frames), and this motion feature

is adopted for the motion saliency map calculation of these

predicted frames. A new fusion method is proposed to combine

the static saliency and motion saliency maps to get the final

saliency map for video frames. Experimental results show that

the proposed saliency detection model in compressed domain

outperforms other existing ones on a public database.

II. Related Work

Visual attention mechanism is an important characteristic in

the human visual system (HVS). The selective attention may

be stimulus-driven or goal-driven corresponding to bottom-

up and top-down approaches in perception process [1], [27],

[28]. Existing studies have explored visual attention mecha-

nism from the various aspects such as psychology, biology,

computer vision [1]–[3], [27]–[30]. In the 1980s, Treisman

et al. [1] proposed the famous Feature Integration Theory

(FIT). According to this theory, the early selective attention

mechanism leads some image regions to be salient for their

different features (including color, intensity, orientation, mo-

tion, and so on) from their surroundings [1], [32]. Meanwhile,

Koch et al. proposed a neurophysiological model of visual

attention in [31].

Recently, researchers in the area of computer vision have

started to build computational models of visual attention for

the emerging interest in the HVS. Itti et al. [3] proposed a

saliency detection model based on the neuronal architecture

of the primates’ early visual system. The saliency map is

obtained through the calculation of multiscale center-surround

differences by using three features including intensity, color,

and orientation. Harel et al. [15] proposed a graph-based

saliency detection model based on the study in [3]. In this

model, the saliency map is calculated based on two steps:

forming activation maps on several features and the normal-

ization of these feature maps [15]. Hou et al. [4] defined

the concept of spectral residual to design a visual attention

model. The spectral residual is computed based on the Fourier

transform. Achanta et al. [6] tried to obtain more frequency

information to get a better saliency measure. The difference of

Gaussian (DoG) is used to extract the frequency information

in that model [6]. Goferman et al. [7] designed a context-

aware saliency detection model by including more context

information in the final saliency map. The center-surround

differences of patches are used for saliency detection.

Besides the saliency detection models for images, some

video saliency detection models have also been proposed in

this area. Guo et al. proposed a phase-based saliency detection

model for video in [5]. This model obtains the saliency map

through inverse Fourier transform on a constant amplitude and

the original phase spectrum of input video frames based on the

following features: intensity, color, and motion. Itti et al. [8]

Fig. 1. Proposed framework.

developed a model to detect the low-level surprising events

in video; the surprising events are defined as the important

information attracting human beings’ attention in video. Zhai

et al. [9] built a video saliency detection model by combining

the spatial and temporal saliency maps. The color histograms

of images are used for the spatial saliency detection, while

the planar motion between images (estimated by applying

RANSAC on point correspondences in the scene) is adopted

for the temporal saliency detection [9]. In [16], the authors

designed a dynamic visual attention model based on the rarity

of features. The incremental coding length (ICL) is defined

to measure the entropy gain of each feature for saliency

calculation.

All these saliency detection models mentioned above are

implemented in uncompressed domain. As to these saliency

detection models, coded videos have to be decompressed into

spatial domain to extract features for saliency detection. In this

paper, we propose a video saliency detection model in com-

pressed domain. As mentioned in the first section, we calculate

the saliency map of each video frame in 8 × 8 block level.

The DCT coefficients of 8 × 8 image blocks in unpredicted

frames (I frames) and motion vectors of 8×8 image blocks in

predicted frames (P and B frames) are extracted from the video

bitstream. The luminance, color, texture, and motion features

of video frames are calculated from the DCT coefficients

and motion vectors. Then, we calculate the static saliency

map of unpredicted frames based on luminance, color, and
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texture features. The motion saliency map of predicted frames

are computed based on motion feature extracted from the

motion vectors. Furthermore, we design a new fusion method

to combine the static saliency and motion saliency maps to

obtain the final saliency map for each video frame. Due to

the directly derived features from the compressed domain, the

proposed saliency detection model obtains promising results,

as shown in the experimental section.

III. Proposed Framework

In this section, we describe the proposed model in detail.

The proposed framework is depicted in Fig. 1. Firstly, three

features including luminance, color, and texture are extracted

from the video bitstream for unpredicted frames (I frames),

and the motion feature is extracted from the motion vectors in

video bitstream for predicted frames (P and B frames). Then,

the static saliency map is obtained based on the features of

luminance, color, and texture for unpredicted frames, while

the motion saliency map is calculated on the basis of motion

feature for predicted frames. Finally, the static saliency map

and the motion saliency map are combined to get the final

saliency map for each video frame. Here, we use MPEG4 ASP

video to extract features in compressed domain. The features

of other types of video such as MPEG2 video can be extracted

in a similar way.

A. Feature Extraction From Video Bitstream

The proposed model uses DCT coefficients of unpredicted

frames (I frames) to get luminance, color, and texture fea-

tures, while motion vectors of predicted frames (P and B

frames) are extracted to get motion feature for the motion

saliency detection. Here, we do not use DCT coefficients of

the predicted frames since these DCT coefficients represent

the interpredicted block residue information. These residue

information cannot be used to obtain the static saliency map

by the proposed method. Meanwhile, there are no motion

vectors for unpredicted frames in video bitstream. Therefore,

in this paper, the DCT coefficients of unpredicted frames are

used to calculate the static saliency map for these unpredicted

frames, while the motion vectors of predicted frames are used

to compute the motion saliency map for the predicted frames.

1) DCT Coefficient and Motion Vector Extraction From

Video Bitstream: A natural video object is composed of a

sequence (at different time points) of 2-D representations,

which are referred to as video object planes (VOPs) [10], [17],

[18]. The VOPs are coded using macroblocks by exploiting

both temporal redundancies and spatial redundancies. Usually,

a VOP consists of one or several video packets (slices) and

each video packet is composed of an integer number of

consecutive macroblocks. In each macroblock, the motion

vectors and DCT coefficients are coded. The coded motion

vector data are motion vector differences (predictively coded

with respect to the neighboring motion vectors) after the

variable length coding (VLC). The coded DCT coefficients

are the 64 DCT coefficients encoded by zig-zag scanning and

run-length-encoded, and the VLC.

The differential motion vector can be extracted from the

coded motion vector data based on the VLC table. Then,

it is added to a motion vector predictor component to form

the real motion vector MV for predicted frames [10]. In a

similar way, VLC tables of DCT coefficients are used to

decode the coded DCT coefficients. The fixed length decod-

ing is used to obtain the real DCT coefficients for video

frames [10].

2) Feature Calculation Based on DCT Coefficients: In

MPEG4 ASP video, DCT coefficients in one 8 × 8 block are

composed of one DC coefficient and 63 AC coefficients. In

each block, the DC coefficient is a measure of the average

energy for the 8 × 8 block, while other 63 AC coefficients

represent detailed frequency properties of this block. As men-

tioned above, YCrCb color space is used in MEPG4 video

bitstream. In the YCrCb color space, the Y channel represents

the luminance component, while Cr and Cb represent the

chroma components. Thus, the DC coefficients in DCT blocks

from the Y, Cr, and Cb channels are used to represent one

luminance feature and two color features for 8 × 8 blocks as

follows:

L = DCY (1)

C1 = DCCr
(2)

C2 = DCCb
(3)

where L, C1, and C2 represent one luminance and two color

features in each 8 × 8 DCT block, respectively, and DCY ,

DCCr
, and DCCb

are DC coefficients from the Y, Cr, and Cb

components in each DCT block, respectively. It is noted that

four 8 × 8 luminance blocks share two 8 × 8 chrominance

blocks in the 4:2:0 chrominance format.

As mentioned above, AC coefficients include the detailed

frequency information and existing studies have shown that

AC coefficients can represent texture information for image

blocks [11], [12]. In YCrCb color space, Cr and Cb com-

ponents mainly include color information and little texture

information is included in these two channels. Thus, only

the AC coefficients in Y component are used to represent

the texture information for images. In one DCT block, most

of the energy is included in the first several low-frequency

coefficients, which are in the left-upper corner of the block.

The AC coefficients in the right-bottom corner of DCT blocks

are equal to or close to zero and they are neglected dur-

ing the quantization in coding process. In the progressive

coding, the AC coefficients in one DCT block are ordered

by zig-zag scanning. As the high-frequency AC coefficients

include little energy for each DCT block, we use the first

several AC coefficients to represent the texture feature of

the DCT block. The existing study in [12] has shown that

the first nine AC coefficients can represent most energy in

each DCT block. Therefore, here, we use the first nine AC

coefficients in each DCT block to represent the texture feature

as follows:

T = {AC01, AC10, AC20, AC11, ..., AC30}. (4)



30 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 1, JANUARY 2014

Fig. 2. Motion feature extraction.

3) Motion Feature Calculation Based on Motion Vectors:

In this paper, the extracted motion vectors from the video

bitstream are used to calculate the motion feature for predicted

frames. In MPEG4 ASP video, there are two types of predicted

frames: P frames use motion compensated prediction from

a past reference frame, while B frames are bidirectionally

predictive-coded by using motion compensated prediction

from a past and/or a future reference frame. As there is just one

prediction direction (predicted from a past reference frame) for

P frames, the original motion vector MV are used to represent

the motion feature for P frames. As B frames might include

two types of motion compensated prediction (the backward

and forward prediction), we calculate the motion vectors for B

frames as follows: assume the motion compensated prediction

values from the past reference and the future reference frames

are MVp and MVf , respectively, and the motion feature of B

frames is obtained as follows:

V = MVp + (−1) ∗ MVf . (5)

The process of the motion feature extraction is demonstrated

as Fig. 2. The motion feature of each DCT block in B frames is

obtained from (5), while the original motion vector is used to

represent the motion feature for each DCT block in P frames.

Now, we can get luminance, color, and texture features for

nonpredicted frames as L, C1, C2, and T . The motion feature

of predicted frames can be obtained as V . We will describe

how to use these features in compressed domain to calculate

the saliency map for video frames.

B. Saliency Detection in Compressed Domain

Based on the above description, the luminance, color, and

texture features (L, C1, C2, and T ) for unpredicted frames can

be extracted from the DCT coefficients. The motion feature

(V ) of predicted frames can be obtained from the motion

vectors. In this paper, we use these features to calculate the

saliency map for video frames in compressed domain.

1) Static and Motion Saliency Map Calculation: Existing

studies have shown that observers will be attracted by the

regions with different features from its surrounding when

looking at a natural scene [1], [2]. The features which can

be used to discriminate the image regions include intensity,

color, motion, and so on. Based on the FIT [1], the center-

surround differences of 8 × 8 DCT blocks are used to detect

salient regions for images. The features of luminance, color,

texture, and motion extracted from the DCT coefficients and

motion vectors are used to calculate the DCT block differences

for saliency detection in this paper.

It is commonly accepted that the HVS is highly space

variant since there are different densities of cone photoreceptor

cells in the retina of human eyes [13]. On the retina, the

fovea has the highest density of cone photoreceptor cells,

and thus the focus area is perceived at the highest resolution.

The visual acuity decreases with the increasing eccentricity

from the fixation areas [13]. This means that the HVS is

more sensitive to the center-surround differences from the

blocks with nearer distance compared with those from the

farther blocks. Here, we use a Gaussian model to simulate

this mechanism for weighting the center-surround differences

among image blocks for saliency detection. The feature map

of each video frame is calculated as follows:

Sk
i =

∑

j �=i

αijD
k
ij (6)

αij =
1

σ
√

2π
e
−

d2
ij

2σ2 (7)

where Sk
i indicates saliency value of the ith DCT block in

the feature map with feature k; k ∈ {L, C1, C2, T, V }; σ is a

parameter of the Gaussian distribution, dij is the Euclidean

distance between DCT blocks i and j, Dk
ij is the feature

differences between DCT blocks i and j with feature k.

As depicted in Fig. 1, the features of luminance, color,

and texture are used to calculate the static saliency map for

unpredicted frames. The luminance and color features only

include one DC coefficient value from the luminance and

color channels; thus, the feature differences of luminance and

color among DCT blocks are represented as DC coefficient

differences from the luminance and color channels. Since the

texture feature is represented as a vector including nine AC

coefficients, the Euclidean distance between the vectors is used

to compute the texture difference between DCT blocks. The

static saliency map Ss for unpredicted frames is calculated as

linear combination of four feature maps from the luminance,

color, and texture features (L, C1, C2, T ) as follows:

Ss =
∑

βθNθ (8)

where N is normalization operation; θ ∈ {Sk}; βθ is the

parameter determining the weight for each feature map. In

this paper, we set βθ = 1/4.

The motion feature V obtained from (5) is used to calculate

the motion feature differences between DCT blocks. Here,

the motion feature differences are computed as the Euclidean

distance between motion features of DCT blocks. Therefore,

the motion saliency map Sm can be obtained based on (6)–(7)

for predicted frames. The final saliency map of video frames is

calculated by combining the static saliency map Ss and motion

saliency map Sm. We will describe how to compute the final

saliency map as follows.

2) Final Saliency Map Calculation: Based on the above

description, we can obtain the static saliency map for unpre-

dicted video frames (I frames) and the motion saliency map

for predicted video frames (P and B frames). The motion

saliency map of unpredicted frames cannot be calculated

since there are no motion vectors for unpredicted frames in

video bitstream. However, there may be motion in unpredicted
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frames (generally, there may be motion in all frames except

the first I frame in video). Meanwhile, the static saliency

map of predicted frames cannot be computed since the DCT

coefficients of these predicted frames represent the DCT block

residue information and cannot be used to calculate the static

saliency map. Here, we use the static/motion saliency map of

the previous unpredicted/predicted frames to replace that of

the current predicted/unpredicted ones based on the implicit

memory theory [24], [25]. Existing studies have shown that

the focal attention and eye movements are guided by the

recently attended locations and the implicit memory traces

of context cueing [24]–[26]. These studies demonstrate that

the previous attended targets will trigger the attention traces

utilized in the following several fixations. Thus, human beings

will continue focusing on the similar locations in future frames

with these from the previous frames without much context

change. Generally, the content in the consecutive video frames

will not change greatly, and thus the saliency maps (static or

motion) of the consecutive video frames are very similar in

video. Therefore, we can use the static or motion saliency map

of the previous video frames to represent that of the current

ones.

As there is no motion saliency map for unpredicted frames,

the motion saliency map of the previous predicted frame is

adopted to represent that of the current unpredicted frame.

Thus, the final saliency map for unpredicted frames (I frames)

is calculated as follows:

S = f (Ss, Smp
) (9)

where S is the final saliency map of the current unpredicted

frame, Ss is the static saliency map of the current unpredicted

frame, Smp
is the motion saliency map of the previous pre-

dicted frame, f (S1, S2) is the fusion function to get the final

saliency map from the saliency maps of S1 and S2.

Similarly, the static saliency map of the previous unpre-

dicted frame is used to represent that of the current predicted

frame, and thus the final saliency map of the predicted frames

(P and B frames) is computed as follows:

S = f (Ssp
, Sm) (10)

where S is the final saliency map of the current predicted

frame, Ssp
is the static saliency map of the previous unpre-

dicted frame, Sm is the motion saliency map of the current

predicted frame, f (S1, S2) is the fusion function to get the

final saliency map from the saliency maps of S1 and S2.

According to (9) and (10), we can calculate the final saliency

map for video frames based on the static saliency and motion

saliency maps. We will describe the fusion method f [in (9)

and (10)] for the static and motion saliency maps in the next

section.

3) Saliency Map Fusion: Currently, there are many fusion

methods for combining the static saliency and motion saliency

maps into the final saliency map [33]. In this paper, we have

tried several common fusion methods in [33] for combing the

static saliency and motion saliency maps as follows.

1) Normalized and sum (NS): the most simple fusion

method that normalizes the static saliency and motion

saliency maps to the same dynamic range, and then

sums these two maps to obtain the final saliency map as

follows [33]:

S =
∑

i

N(Si) (11)

where S is the final saliency map, N is the normalization

operator, Si is the static or motion saliency map, and

i ∈ {1, 2}.
2) Normalization and maximum (NM): the fusion method

that normalizes the static saliency map and motion

saliency map to the same dynamic range, and then uses

the maximum value as the final saliency value at each

location

S = max
i

N(Si) (12)

where max is the maximum operator.

3) Normalization and product (NP): the fusion method that

normalizes the static saliency map and motion saliency

map to the same dynamic range, and then products the

static saliency and motion saliency maps for the final

saliency map

S =
∏

i

N(Si). (13)

These three methods are the common fusion methods of

the research area. However, there is no spatial competition

between the static saliency map and the motion saliency map

with the above fusion methods. In these fusion methods,

the static saliency and motion saliency maps are considered

with the same weighting whatever the differences between

these two maps. To address the drawbacks with these fusion

methods, we propose a new fusion method of parameterized

normalization, sum and product (PNSP) based on the char-

acteristics of the static saliency map and the motion saliency

map. The final saliency map from the proposed fusion method

PNSP for video frames is calculated as follows:

S = γ1Ss + γ2Sm + γ3SsSm (14)

where S is the final saliency map for video frames, Ss is the

static saliency map, Sm is the motion saliency map, γ1, γ2,

and γ3 are the parameters to determine the weighting of each

component.

The weighting parameters in (14) are determined by the

characteristic of the static saliency and motion saliency maps.

A good saliency map should include the small compact salient

regions rather than the spread salient points. If the salient

regions in the motion saliency map are small and compact,

the motion contrast of this frame can be considered strong.

In this case, we can use a large weighting parameter γ2 to

weight the motion saliency map. Thus, the motion saliency

map contributes much to the final saliency map. Similarly, a

large weighting parameter γ1 should be used to weight the

static saliency map if the feature contrast is also strong in the

static saliency map. As we can see, the weighting parameter

γ3 is used to measure the importance of these regions which

both static saliency and motion saliency maps detect as salient.

Here, we set γ3 = (γ1 + γ2)/2.
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Fig. 3. Saliency distributions at human saccade locations (narrow blue bars) and random locations (wide green bars) from different algorithms. The x- and
y-axis represent the predicted saliency values from different models, and the number of locations with the corresponding salient values, respectively.

The spatial variance is adopted to measure the feature con-

trast in the static saliency map or motion saliency map. Given a

static saliency map or motion saliency map Sk (Sk ∈ {Ss, Sm}),
the Otsu’s thresholding method [34] is used to binarize it and

the spatial variance can be calculated as follows:

νk =

∑

(i,j)

√

(i − Si,e)2 + (j − Sj,e)2 ∗ Sk(i, j)
∑

(i,j)Sk(i,j)

(15)

Si,e =

∑

(i,j) i ∗ Sk(i, j)
∑

(i,j) Sk(i, j)
(16)

Sj,e =

∑

(i,j) j ∗ Sk(i, j)
∑

(i,j) Sk(i, j)
(17)

where νk is the spatial variance of the saliency map Sk, Sk(i, j)

is the saliency value at the location (i, j) in the saliency map

Sk, Si,e and Sj,e represent the spatial expectation values of

the salient regions in the horizontal and vertical directions,

respectively.

The spatial variance of the static saliency map or motion

saliency map can be calculated from (15) to (17). The spatial

variance values of the saliency maps containing small and

compact salient regions are smaller than those of the saliency

maps containing spread salient points. Therefore, we set γk =

1/νk (we use the normalized γk as the weighting parameter

determining the weighting of the static saliency map or motion

saliency map (γk ∈ {γ1, γ2})). Thus, the final saliency map for

each video frame can be calculated based on (14)–(17). We

will present the performance of this fusion method compared

with the existing ones (11)–(13) in the experiment section

below.

Fig. 4. ROC curves for the static saliency map, the motion saliency map,
and the final saliency maps from different fusion methods.

IV. Experiments

In this section, we evaluate the performance of the proposed

model based on a public video database [8]. This database

includes 50 videoclips totaling over 25 min and their saccade

data from the eight observers. It includes various types of

video such as outdoor video in daytime and nighttime, sports

video, news television broadcast, video games, etc. The human

saccade data was recorded by a 240-Hz infrared-video-based

eye tracker. In this paper, we have performed two experiments

to evaluate the performance of the proposed model: the first

one is conducted to demonstrate why we have to combine the

static saliency and motion saliency maps to obtain the final

saliency map for each video frame; the other one is performed
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TABLE I

AUC Results From the Static Saliency Map

The motion saliency map and the final saliency maps from different fusion
methods.

to compare the performance of the proposed video saliency

detection model with other existing ones.

A. Evaluation Method

We use the similar measurement method as the study [8],

[19] to evaluate the performance of the proposed model. The

performance of the video saliency detection models is mea-

sured by comparing the response values at saccade locations

and random locations in the saliency map. Here, we calculate

the salient value at a human saccade location as the maximum

value over a circular aperture around the saccade location in

the saliency map. A high salient value at the human saccade

location means that the saliency detection model can predict

the salient locations exactly. Similarly, the salient value at a

randomly chosen location is calculated as the maximum value

over a circular aperture around the randomly chosen location.

Generally, an efficient video saliency detection model would

have high response values at saccade locations and have no

response at most randomly chosen locations. Here, we first

calculate the saliency distributions at human saccade locations

and random locations with ten bins for saliency values over the

saliency map. Figs. 3 and 6 show the saliency distributions at

human saccade locations and random locations in the saliency

map from different algorithms. The x-axis represents the

saliency value bins from 0 to 1 with 0.1 interval, while y-axis

represents the number of human saccade locations or random

locations with different saliency value bins. To evaluate the

performance of saliency detection models, Kullback–Leibler

(KL) distance [20], [21] is used to measure the similarity

between these two distributions as follows [19]:

KL(H, R) =
1

2
(
∑

n

hnlog
hn

rn

+
∑

n

rnlog
rn

hn

) (18)

where H and R are saliency distributions at human saccade

locations and random locations with probability density func-

tions hn and rn, respectively, and n is the saliency value bins

(n ∈ {1, 2, 3, ..., 10}).
As mentioned above, a good video saliency detection model

can get high salient values at human saccade locations and low

salient values (even zero) at most randomly chosen locations

in the saliency map. In this case, the saliency distributions

at human saccade locations and random locations are greatly

different, and thus the KL distance between these saliency

distributions is large. Therefore, the video saliency detection

model with a higher KL distance can more easily discriminate

human saccade locations from the random locations in video

frames, and thus a better performance in saliency detection for

video [8].

In addition, we use receiver operating characteristic (ROC)

curve [22], [23] to evaluate the performance of the proposed

model. The ROC curve is a graphical plot of the true positive

rate (TPR) versus the false positive rate (FPR) for a binary

classifier system with varied discrimination thresholds [22],

[23], as shown in Figs. 4 and 7. Here, we first normalize

the saliency values in the range [0, 1], and then use the

thresholds from 0 to 1 with the interval 0.1 to get the ROC

curves for saliency detection models. The saliency distribution

at human saccade locations and random locations are used

as the test set and discrimination set, respectively. For each

threshold, the TPR is calculated as the percentage of the

number of human saccade locations with salient values larger

than this threshold over the total number of human saccade

locations; the FPR is computed as the percentage of the

number of random locations with salient values larger than

this threshold over the total number of random locations. The

overall quantitative evaluation with the ROC curve is the area

under ROC curve (AUC). The larger the AUC is, the better

the saliency predication for the saliency detection model is for

video frames.

B. Experiment 1

In this subsection, we compare the performance of the static

saliency map, the motion saliency map and the combined

saliency maps to demonstrate the importance of the com-

bination of these two saliency maps for the final saliency

map calculation for video frames. In addition, we compare

the performance of the final saliency map from the proposed

fusion method with those from the other existing ones to

demonstrate the advantages of the proposed fusion method.

Fig. 3 shows the saliency distributions of the human saccade

locations and random locations for the static saliency map,

the motion saliency map, and the final saliency maps from

different fusion methods. From the first graph (motion) in

Fig. 3, the amount of lower saliency values (0–0.2) at random

locations is large. Thus, the saliency values at most random

locations are low. Although the saliency values at most human

saccade locations are higher than those at random locations,

the amount of the low saliency values (0–0.5) at human

saccade locations is still large. From the second graph (Static)

in Fig. 3, the saliency values at most human saccade locations

and random locations in the static saliency map are larger

than the corresponding ones from the motion saliency map. In

addition, compared with the motion saliency map, the saliency

distribution at human saccade locations is more different from

that at random saccade locations in the static saliency map,

as shown in Fig. 4 and Table I. From Fig. 4 and Table I, we

can see that the KL distance and AUC values from the static

saliency map are larger than those from the motion saliency

map. Thus, the performance of the static saliency map is better

than that of the motion saliency map.

Figs. 3 and 4, and Table I also present the experimental

results of the final saliency maps from different fusion methods

for the static saliency and motion saliency maps. Based on

the statistic results in Table I, the fusion methods of NS,

NM, and PNSP can obviously obtain better performance than

the static saliency and motion saliency maps, while the NP
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Fig. 5. Comparison for different saliency maps: first column: the original images with human saccade locations marked with 64-radius circles, second column:
the motion saliency map, third column: the static saliency map, final column: the final saliency map from the proposed fusion method.

Fig. 6. Saliency distributions at human saccade locations (narrow blue bars) and random locations (wide green bars) from different models. x-axis and y-axis
represent the predicted saliency values from different models, and the number of locations with the corresponding salient values, respectively.

fusion method cannot get good performance. The disadvantage

of NP fusion method can be demonstrated by experimental

results in Fig. 3. From this figure, we can see that the

saliency distributions at human saccade locations and random

saccade locations are more similar, compared with other fusion

methods (NS, NM, and PNSP). From Table I, although the

KL distance and AUC values from the fusion methods of NS,

NM, and the proposed one (PNSP) are all larger than those

from the static and motion saliency map, the KL distance

and AUC values from the proposed fusion method (PNSP)

are larger than those from the NS and NM fusion methods.

This demonstrates the proposed fusion algorithm PNSP can

obtain better performance than other ones (NS, NP, and NM).

In Table I, we can see that the KL distance and AUC values

of the final saliency map from the proposed fusion method are

much larger than the static saliency and motion saliency maps.

The good performance of the proposed method demonstrates

the importance of the fusion method in (14). Additionally,

we present some comparison samples for the static saliency

map, the motion saliency map and the final saliency map from

the proposed fusion method in Fig. 5. In Fig. 5, the human

saccade locations in original images and saliency maps are

Fig. 7. ROC curves for different video saliency detection models in com-
parison.

marked with circles. The saliency values at human saccade

locations are calculated as the maximum value within a circle

in the saliency map [8], [19]. From Fig. 5, we can see that

the saliency value at the human saccade location is largest in

each final saliency map from the proposed fusion method. On

the contrary, in the motion saliency map and static saliency
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Fig. 8. Comparison of saliency maps from different models. First column: original images with fixation data. Second to the last column: saliency maps from
CIOFM [3], Surprise [8], MRS [5], and the proposed model.

TABLE II

Comparison Results From Different Video

Saliency Detection Models

map, the saliency value at human saccade locations may not

be the largest value or there may be the largest values at other

locations except the human saccade locations.

C. Experiment 2

In this paper, three existing video saliency detection models

are used to do the comparison: CIOFM [3], Surprise [8], and

MRS [5].

The experimental results from different existing models are

shown in Figs. 6–8 and Table II. In Fig. 7 and Table II,

we present the video saliency results from an image saliency

detection model [7] since there are various image saliency

detection models proposed in this area and the model [7]

is proposed recently. However, we do not show the results

with [7] in Figs. 6 and 8 for the consideration of the paper

length. Fig. 6 shows the saliency distributions at the human

saccade locations and random locations from different saliency

detection models. Fig. 7 and Table II show the AUC and

KL distance values for different saliency detection models.

From Table II, we can see that the KL distance and AUC

values of CA [7], MRS [5], and Surprise [8] are larger than

those of CIOFM [3]. This demonstrates that the performance

of these three models is better than the one [3]. From this

table, the KL distance and AUC values of the proposed model

is the largest, and thus the performance of the proposed

model is the best among these compared models. Among

these models, the CA [7] only considers the static saliency

detection. The MRS [5] is a phase-based saliency detection

model. In this model, the Fourier transform is first used

to obtain the amplitude and phase. Then, the final saliency

map for the image/frame is obtained by the inverse Fourier

transform based on the user-defined constant amplitude and the

original phase. It obtains the saliency map for images/frames

mainly by considering the global contrast. CIOFM [3] and

Surprise [8] mainly calculate the local contrast for computing

the saliency map for images/frames. On the contrast, in the

proposed model, the saliency value of each DCT block is

calculated from the center-surround differences between this

DCT block and all other DCT blocks in the image/frame. Thus,

the proposed model considers both local and global contrast



36 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 24, NO. 1, JANUARY 2014

TABLE III

Comparison Results of the Computational Complexity From

Different Video Saliency Detection Models

for saliency calculation and it achieves better performance than

others.

Fig. 8 provides some comparison samples of saliency maps

from different saliency detection models. In the first column of

Fig. 8, the human saccade locations are indicated by circles.

As mentioned previously, the saliency value of the saccade

location is calculated by the maximum value within this circle

in the saliency map from the saliency detection model. From

this figure, we can see that the saliency values at human

saccade locations from the model CIOFM [3] are very low,

some of them even approaching zero (the second column in

Fig. 8). From the third column of Fig. 8, we can see that

the saliency values at human saccade locations are not the

largest ones in the saliency map from the model Surprise [8].

The saliency values at many other locations are larger than

those at the human saccade locations from the results of the

model Surprise [8]. Similarly, the saliency values at human

saccade locations from the model [5] are low, as shown from

the fourth column in Fig. 8. On the contrary, the saliency

values at fixation points from the proposed model are almost

the largest values in the saliency map. This demonstrates

that the saliency map from the proposed model can predict

more accurate human saccade locations compared with other

existing ones.

Furthermore, we have done the experiments for video

saliency detection with different compression ratios from

different quantization parameter (QP) values and lengths of

group of pictures (GOP). The comparison results are shown

in Figs. 9 and 10. In these figures, GOP8, GOP16, and GOP32

represent saliency results from the video sequences with GOP

values as 8, 16, and 32 (with QP value as 8); QP2, QP8,

QP16, QP32, QP48, and QP64 represent the saliency results

from the video sequences with QP values as 2, 8, 16, 32,

48, and 64, respectively (with GOP value as 12). From these

figures, we can see that the saliency performance does not

change greatly with different QP and GOP values. Thus, the

video compression will not greatly change the video saliency

results. A recent research study has also shown that video

coding impairments would not disturb the visual attention

regions from the observers [35]. Therefore, the normal video

compression will not change the saliency results from the

proposed model and observers.

For the computational complexity, we have conducted the

experiment on a subset of the database among these com-

parison models. With the same computer environment (CPU:

Intel(R) Xeon 3.2 GHz, memory: 6.00 GB), the average

computational time for each video frame is shown in Table III.

From Table III, we can see that the computational time of CA

[7] is the highest among these models, while the time cost

of MRS [5] is the lowest. MRS [5] calculates the saliency

Fig. 9. ROC curves from different QP values in comparison.

Fig. 10. ROC curves from different GOP values in comparison.

map mainly when FT and FT operation is fast. Thus, its

computational complexity is low. Compared with other mod-

els, the computational time of the proposed model is modest.

Of course, we can still further improve the computational

complexity of the proposed model by optimizing the code

(such as implementation by C/C++). In the proposed method,

we only need to extract motion vectors for predicted frames

(P and B frames) and DCT coefficients for unpredicted frames

(I frames), respectively, in entropy decoding as features for

saliency analysis, instead of completely decoding the whole

frame. As reported in [36] and [37], the time cost of the

operations after entropy decoding for MPEG4 decoder is up to

90% of the decoding time for a GOP. Therefore, by skipping

unnecessary operations, the overall decoding time cost for

MPEG4 applications we could save is up to 90%. Additionally,

the performance of the proposed model is much better than

other existing models in uncompressed domain, as shown in

the experiments.

V. Conclusion

In this paper, we have proposed a video saliency detec-

tion model in compressed domain based on four types of

features: luminance, color, texture, and motion. These four

types of features are extracted from the DCT coefficients

and motion vectors in video bitstream. The static saliency

map is calculated from the features of luminance, color, and
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texture, while the motion saliency map is computed from

the motion feature. A new fusion method has been designed

to combine the static saliency and motion saliency maps

to get the final saliency map for video frames. Experimen-

tal results based on a public database show that the pro-

posed video saliency detection model outperforms the relevant

existing ones.

It it noted that existing video saliency detection models are

implemented in uncompressed domain. Compared with the

video saliency detection in uncompressed domain, the pro-

posed video saliency detection model in compressed domain

can be used more conveniently in the Internet-based multi-

media applications such as video retargeting, video quality

assessment. Therefore, the proposed saliency detection model

in compressed domain is significant in this research area. As

the next step of the paper, we will explore various multimedia

applications of the proposed video saliency detection model

in compressed domain.
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