
A View Integration Approach to
Dynamic Composition of Web Services

Snehal Thakkar, Craig A. Knoblock, and José Luis Ambite

University of Southern California/ Information Sciences Institute
4676 Admiralty Way,

Marina Del Rey, California 90292
{thakkar, knoblock, ambite}@isi.edu

Abstract
Web services enable the user to integrate and manipulate
data from distributed data sources without worrying about
the underlying syntactical details. We describe
extensions to the view integration approach to support
dynamic integration of data from web services and
support dynamic composition of web services from
existing web services. In particular, we describe
techniques to extend the “inverse rules” query
reformulation algorithm to generate a universal
integration plan to answer user queries. To demonstrate
the effectiveness of these techniques we describe a
mediator-based system that dynamically integrates
various web services in response to a user query and
provides a integrated web service that can handle a range
of user queries.

1. Introduction
The introduction of web services to the Internet has
opened the doors for new exciting applications on the
web that integrate information from different web
services and web sources. Several vendors have
provided different tools to easily build and deploy web
services. The XML-based standards for information
interchange and web-based exchange protocols such as
SOAP, address syntactical issues involved in integrating
information from different web services. The true
potential of web services can only be achieved if web
services are used to dynamically compose new web
services that provide more functionality compared to
existing web services.

In the context of dynamically composing new web
services from existing web services, the existing web
services can be viewed as data sources. In recent years
various mediator systems, such as the Information
Manifold [1] InfoMaster [2], InfoSleuth [3], and Ariadne
[4] have been used to provide a unified query interface
to various data sources. At the same time the theoretical
fundamentals of data integration have been investigated
and are now well understood [5, 6]. The traditional
mediator systems accept a specific user query and
reformulate this query into a combination of source
queries that can answer such query.

In this paper we describe an extension to the mediator
approach to support the dynamic composition of web
services. In particular, we propose an extension to the
Inverse Rules query reformulation algorithm [7] that

produces a generalized service composition in response
to a user request. Instead of generating a plan limited to
the specific user request, our system produces an
integrated web service that can answer a range of
requests. In a sense, our system produces a universal
integration plan [8].

The remainder of this paper is organized as follows.
Section 2 describes an example scenario that will be
used throughout the paper to convey different concepts
more clearly. Section 3 discusses relevant previous
work in information integration. Section 4 describes a
naïve way to extend the information integration
framework described in Section 3 to handle web services
as data sources. Section 5 describes a novel approach to
dynamically compose web services from existing web
services, by extending the information integration
framework described in Section 3. Section 6 concludes
the paper by discussing the contribution of the paper and
future work.

2. Motivating Example
Consider a real state scenario in which the user wants to
find out the value of the properties that a given company
owns in a given city. Assume that the available web
services for this domain are:

CitytoCounty(cityb, stateb, countyf)
LAProperty(addressb, cityf, valuef)
NYProperty(addressb, cityb, countyf, valuef)
YellowPages(nameb, cityb, statef, addressf, phonef)

We have described each web service as a predicate
with binding patterns, as it is common in describing web
sources. The superscript b indicates that the attribute is a
required input of the service. The superscript f indicates
that there is no restriction on the attribute. The
CitytoCounty web service requires a city as an input and
outputs the county in which the city is located. The
LAProperty service accepts an address in Los Angeles
County and provides the value of the property located at
the given address. Similarly, the NYProperty web
service accepts an address and city in the state of New
York and provides the property value and county
information for such address. Finally, the YellowPages
web service accepts a business name and a city and

provides the addresses for all the locations of the given
business in the given city.

The user can send different queries to the mediator
system. As a running example, we will use the query
“find the property values for all ‘Burger King’ locations
in the city of ‘Torrance’ in the state of ‘CA’”. When the
mediator system receives such a query from the user, it
generates a query plan that invokes the relevant web
services, combines their outputs, and composes the
answer. The next section describes an information
integration system that we have developed in the
previous work to answer the user queries similar to the
query above.

3. Previous Work
Recently, we have combined a state-of-the-art query
reformulation algorithm, the Inverse Rules [7] algorithm,
with a streaming, dataflow-style execution engine,
Theseus [9], to generate a new mediator system [10].
The key advantages of the new mediator system are the
ability to provide maximally complete answers to the
user queries, support for recursion and binding patterns,
and a streaming dataflow style execution system. In this
section, we briefly describe this mediator system.
Section 3.1 describes the Inverse Rules Algorithm that
reformulates a user query into a datalog program
representing a set of queries on various sources.
Section 3.2 describes how such datalog programs are
mapped into Theseus plans and executed.

3.1 Inverse Rules Algorithm
The Inverse Rules algorithm was utilized by the
InfoMaster information integration system [2, 7]. The
key advantages of the Inverse Rules algorithm are the
ability to handle recursive user queries, functional
dependencies, and access pattern limitations. The
mediator systems that use the Inverse Rules algorithm
utilize the Local-as-view model [11], i.e. they define the
source relations as a view over the global relations. We
will assume that the mediator system has access to the
data sources described in Section 2 and the mediator has
the following domain predicates:

Location(locid, address, city, county, state)
Value(locid, value)
Business(name, locid, phone)

The mediator system describes the data sources as

views over the domain predicates as follows:

R1: LAProperty(address, city, value):-

Location(locid, address, city, county,
state) ^ Value(locid, value) ^
county = ‘LA’^
state = ‘CA’

R2: NYProperty(address, city, county, value):-

Location(locid, address, city, county,
state) ^ Value(locid, value) ^
state = ‘NY’

R3: YellowPages(name, address, city, state, phone) :-
Business(name, locid, phone)^
Location(locid, address, city, county,
state)

R4: CitytoCounty(city, state, county):-

Locations(locid, address, city, county,
state)

The first step of the Inverse Rules is to invert the

view definitions to obtain definitions for all global
relations as views over the source relations. In order to
generate the inverse view definition, the Inverse Rules
algorithm analyzes all view definitions. For every view
definition, V(X) :- S1(X1),…,Sn(Xn), where X and Xi
refer to set of attributes in the corresponding view or
relation, the Inverse Rules algorithm generates n inverse
rules, for i = 1,..,n, Si(X’i) :- V(X), where if Xi ∈ X, X’ i
is the same as Xi else Xi is replaced by a function symbol
[7]. For the given example, the Inverse Rules algorithm
analyzes the view definitions and generates the
following rules.

IR1: Location(f1locid(a, ci, v), a , ci, ‘LA’, ‘CA’) :-

LAProperty(a, ci, v)^
dom1(a)

IR2: Value(f1val(a, ci, v), v) :-

LAProperty(a, ci, v)^
dom1(a)

IR3: Location(f2locid(a, ci, co, v), a , ci, co, ‘NY’) :-

NYProperty(a, ci, co, v)^
dom1(a)

IR4: Value(f2val(a, ci, co, v), v) :-

NYProperty(a, ci, co, v)^
dom1(a)

IR5: Business(n, f1bus(n, a, ci, s, p), p) :-

YellowPages(n, ,a, ci, s, p)^
dom2(n)^
dom3(ci)^
dom4(s)

IR6: Location(f3locid(n, a, ci, s, p), a , ci, f4co(n, a, ci, s,

p), s) :-
YellowPages(n, a, ci, s, p)^
dom2(n)^
dom3(ci)^
dom4(s)

IR7: Location(f5locid(ci, s, co), f6locid(ci, s, co) , ci, co, s)

:-
CitytoCounty(ci, s, co)^
dom3(ci)^
dom4(s)

The rules IR1 and IR2 are the result of inverting the
rule R1. The location id attribute is replaced with a
function of different values provided by the sources.
The domi predicates are inserted to handle the binding

pattern limitations of the sources. Recall that we model
the input and outputs of web services as binding
patterns. For simplicity we have omitted additional rules
that fully define the dom predicates. Similarly, the rules
IR3 and IR4 are the result of inverting rule R2. IR5 and
IR6 are obtained by inverting the rule R3. Finally, IR7
is obtained by inverting the definition of the
CitytoCounty source given by rule R4. More details on
eliminating functions, handling binding patterns, and
inverting view definitions are described in [7]. When a
user sends a query to the system, the Inverse Rules
algorithm unions the inverse rules with the user query to
produce a datalog program that can answer the user
query. The datalog rules and the schema information are
passed to the query execution engine to execute the
query plan. In our example, the system generates the
following datalog program1 to answer the user query:

Rules:
IR1: Location(f1locid(a, ci, v), a , ci, ‘LA’, ‘CA’) :-

LAProperty(a, ci, v)^
dom1(a)

IR2: Value(f1val(a, ci, v), v) :-

LAProperty(a, ci, v)^
dom1(a)

IR5: Business(n, f1bus(n, a, ci, s, p), p) :-

YellowPages(n, ,a, ci, s, p)^
dom2(n)^
dom3(ci)^
om4(s)

IR6: Location(f3locid(n, a, ci, s, p), a , ci, f4co(n, a, ci, s,

p), s) :-
YellowPages(n, a, ci, s, p)^
dom2(n)^
dom3(ci)^
dom4(s)

QR: Query1(n, ci, s, a, v) :-

Business(n, l, p)^
location(l, a, ci, co, s)^
value(l, v)^
n = ‘Burger King’^
ci = ‘Torrance’^
s = ‘CA’

Intuitively, the user query can be answered by just

accessing a YellowPages web service and LAProperty
tax web services. The datalog program generated by the
Inverse Rules Algorithm confirms this by utilizing the
rules IR1, IR2, and IR5 in the resulting datalog program.
The rule IR7 is not used in the program as the
CitytoCounty source is not directly relevant to answer
the user query. Also, the rules IR3 and IR4 are not used

as the NYProperty tax web service is not relevant as
well. The rule QR is query rule that has been added to
the datalog program to answer the user query. Next, we
describe how the datalog program generated by the
Inverse Rules algorithm is executed.

3.2 Query Execution
Any datalog execution engine can execute the datalog
program generated by the Inverse Rules algorithm.
However, datalog execution engines do not have ability
to execute multiple operations in parallel and cannot
stream data between the operations. We have developed
a technique [10] to map datalog programs to integration
plans that can be executed by a streaming, highly parallel
execution engine called Theseus [9].

The Theseus execution engine has a wide variety of
operators to perform various data management tasks,
access data sources, and communication operators such
as e-mail. Among the streaming, highly parallel
execution engines, Theseus is unique in its support for
recursion. Theseus can execute the integration plans
more efficiently compared to the traditional datalog
execution engines. Figure 1 shows the graphical
representation of the Theseus plan corresponding to the
example datalog program in Section 3.1

All the boxes in Figure 1 refer to different Theseus
operations that have to be performed to answer the user
query. Each operation in Theseus accepts one or more
relations as argument and produces zero or more
relations as output. A relation in Thesues is similar to
tables in relational databases. A relation in Theseus can
have zero of more tuples and one or more attributes.

Figure 1 Example Theseus Plan

1 The full Inverse Rules Algorithm eliminates the
function symbols to generate a program that is stricly
datalog. Since the resulting rule are more complicated,
we present the rules with function symbols for clarity.

While the approach to turn the mediator into a web
service that accepts user queries and returns query results
works fine, there are two issues. First, the mediator must
regenerate the query plan for every user query. If the
user queries may be same queries with the different
constant parameters, then the mediator may be able to
reuse some of the plans. For example, in our example
system if several use queries are of the form find
property values of the given business in the given city,
the mediator may be able to reuse the plans it has
generated. Second, the mediator web service does not fit
well in the web service model. In the web service model
each web service provides syntactical description of the
web service through Web Service Description Language
(WSDL). As a part of the WSDL description, the web
service must describe the arguments accepted by the web
service as input and the resulting output of the web
service. The mediator web service accepts a user query
and the structure of the resulting output can be different
depending on the user query. Therefore, the arguments
accepted by the mediator web service and the output of
the mediator web service can not be accurately described
to fit the web services model. To address these two
issues, we describe a different approach in next section.

In our example, the Theseus plan receives a relation
containing the business name, city, and state attributes as
an input, which is termed inrel in the Figure 1. The first
step of the plan is to use the input relation to retrieve the
business locations from the YellowPages web service.
We can perform this retrieval operation first as the
binding patterns for the YellowPages web service can be
satisfied using just the input relation. This step
corresponds to the rules IR5 in the datalog program. The
rule IR6 does not produce any tuples as the function
f4co(n, a, ci, s, p) can not be evaluated. The output
relation from the YellowPages web service contains a set
of locations for each business in the city of ‘Torrance’.
The locations obtained from the YellowPages web
service are used to query property values for the
locations from the LAProperty tax web service. The
retrieval operation that access the data from the
LAProperty tax web service is the result of translating
the datalog rules IR1 and IR2 to Theseus plans. More
details on translating datalog programs to Theseus plans
can be found in [10].

The key advantage of utilizing the Theseus execution
engine over traditional datalog execution engine is the
fact, that Theseus can perform several operations in
parallel and stream data between operations. For
example, all the property tax web services are queried in
parallel. Next, we describe how this mediator system can
be modified to support web services.

5. Mediator as a Web Service Generator
Instead of encapsulating the mediator as a web service,
we can use the mediator as a generator of web services.
In fact, for each user query the mediator generates a
composition of web services that answers the query, so
the system could save this integration plan and provide it
as a new web service. However, such approach would
produce overly specific web services. In this section we
describe how to use a mediator to generate web services
that are reusable, efficient, and well typed.

4. Mediator as a Web Service
A naïve way to extend the mediator system describe in
Section 3 to support web service is to view the mediator
as a web service that can accept a user query and return
the results of the user query by integrating and
manipulating data from various web services.

We utilize two techniques to enhance the mediator
system described in Section 3 to fit the web services
model. First, we change the mediator to generalize the
user queries, so that it produces reusable web services.
Second, we adapt a tuple-level filtering technique,
originally introduced in [12], to reduce the number
requests to each web service and produce a more
efficient composite web service.

As shown in Figure 2, the user can send query to the
mediator web service. The mediator web service utilizes
the Inverse Rules Algorithm to reformulate the user
query into a datalog program representing a set of source
queries. Next, the mediator maps the datalog program to
an integration plan, which can be executed in streaming,
highly parallel manner by the Theseus execution engine.
The query results are returned to the user in form of a
XML document via SOAP. Thus, the mediator is a web
service that can accept a query and depending on the
query provide different query results.

Our mediator system accepts a user query and
generates a new web service that can answer not just the
particular user query, but also a class of queries similar
to the user query. In order to do so, the mediator
generalizes the user query before producing the
composite service. The user query can typically be
generalized in many different ways. For example, the
query in our example can be generalized over the city,
the state, the business name, or any combination of the
three parameters. In this paper we only consider the
complete generalization of the query, i.e. generalize the
query across all the parameters. The resulting web
service provides answer not just for a particular set of
values of the parameters for the query, but all valid sets
of values of the parameters of the query. Therefore, in
our example the mediator will generate a web service
that can answer the following query: “find property
value of all properties of a given business in the given

Repository of
Web Service
Descriptions

Inverse Rules
Algorithm

Example
Query

Datalog to
Theseus

TheseusQuery
Results

Theseus
Integration Plan

Datalog Program

Mediator

Figure 2 Mediator As a Web Service

city and state”. This is similar to the notion of
generating the universal plan [8] to answer the queries.

One of the problems with generating a universal plan
to answer the user queries is that the plan may send a lot
of queries to different data sources. In our example, the
plan may send a lot of queries to different property tax
services. We solve this problem by using a tuple-level
filtering technique [12]. The idea behind the tuple-level
filtering technique is to ensure that each data source is
only queried for the information present in that data
source. The mediator introduces a filter operation before
querying any data source to ensure that the input
arguments to the data sources are acceptable to the data
source based on the description of the source.

In order to fit with the web services model, the
mediator web service must be able to clearly describe the
input arguments to the web service and the outputs of the
web service. The mediator system described in this
section accepts a user query and returns a URL of a new
dynamically composed web service that can answer a
class of user queries similar to the user query.
Furthermore, both the mediator web service and all
dynamically composed web services can be described
clearly as they all of them accept certain input arguments
and return output with the same structure for all requests.

Figure 3 shows the architecture of the extended
mediator system. The key difference between the new
mediator system compared to the mediator system in
Section 4, is the fact that the mediator system
dynamically composes a new web service to answer a
class of user queries.

Section 5.1 describes how the Inverse Rules
algorithm is modified to generate an integration plan to
answer template queries. Section 5.2 describes how the
generated datalog program is mapped to Theseus
integration plan.

5.1 Modified Inverse Rules Algorithm
The modified Inverse Rules algorithm differs from the
original algorithm in two ways. First, constants in the
query are treated as the variables. In our example, the
query “find property values for all ‘Burger King’
locations in the city of ‘Torrance’ in the state of ‘CA’”,
has three constants ‘Burger King’, ‘Torrance’ and ‘CA’.
Both constants are replaced with name and city input
parameters. One direct impact of this change is the fact

that the modified Inverse Rules algorithm now generates
a universal integration plan [8] that obtains the
maximally complete answers to the template user query
given the set of sources.

As the value of the input parameters is not known in
advance the resulting datalog program queries both
LAProperty tax web service and the NYProperty tax
web service for property values. Our second
modification ensures that both web services are only
queried with input arguments that are valid for them, i.e.
the LAProperty tax web service is queried with only the
locations in ‘Los Angeles’ county and the NYProperty
tax web service is queried for the addresses in the state
of ‘New York’. Second, the constraints from the source
definitions are used to filter the inputs to the sources.
For all the source definitions, attributes involved in the
constant constraint are changed to binding attributes and
a filter is added to make sure that the attribute satisfies
the constraint. For example, the model of the
LAProperty tax web service has a constraint that the web
service can only find property values for the properties
located in ‘Los Angeles’ county. Therefore, before
querying a property value for any address from
LAProperty tax web service, the algorithm needs to
verify that the address is in Los Angeles County. The
algorithm changes the county attribute to a bound
variable and adds a filter to ensure that the county
variable is ‘Los Angeles’.

One of the key problems with the universal
integration plan is the fact that generated plan may send
a large number of queries to the available web services.
The second modification allows us to make sure that the
generated plan does not send a large number of queries
to any web services with incorrect parameter values.
This technique is similar to the technique described in
[13] to query some external data sources to reduce the
number of queries to a given web service. The modified
data model and modified queries are then passed to the
Inverse Rules algorithm to generate a datalog program
that can answer the modified query using the modified
data model.

Another key research issue here is how to handle
scenarios when the modified Inverse Rules algorithm
fails to answer the user query because the value for the
bound variable can not be generated by any source. For
example, if in our example, we did not have the
CitytoCounty source, the modified Inverse Rules
algorithm would not be able to answer the user query.
We are looking at extending the plan generalization
techniques described in [14, 15] to support web services
framework. Next, the modified datalog program is
passed to the query execution engine.

Datalog to
Theseus

Query
Results

Query
Generalization

Theseus
Integration Plan

Datalog Program

Template Query

Example
Query

Internet

Mediator

Repository of
Web Service
Descriptions

Inverse Rules
Algorithm

Composite
Web Service

Theseus

Composite
Web Service

Theseus

Figure 3 Mediator As a Web Service Generator

5.2 Query Execution
The mediator system maps the generated datalog
program to an integration plan that can be executed by
Theseus execution engine. The datalog program
generated in Section 4.1 is translated to a Theseus plan
shown in Figure 4. The first operations in the Theseus
plan are to query YellowPages and CitytoCounty web
services using the input parameters. Note that the

binding constraints given by the dom predicates are
satisfied for both sources as the input arguments provide
a city, a state, and a business name. Theseus execution
engine queries both web services in parallel and streams
the data between the two services to the join operator
that joins the information from both web services. In
parallel, Theseus selects the tuples with the state = ‘NY’
from the results of the YellowPages web service. The
selected records are then used to query the NYProperty
tax web service.

Figure 4 Modified Theseus Plan

Next, tuples with the county = ‘LA’ are selected from
the results of the join operation. The selected tuples are
used to query the LAProperty web service. The filters
specified by the select operations in Theseus plan ensure
that the web services are not queried with invalid input
arguments. Finally, the union operator is used to
combine the results of both property tax web services.
One major difference between this plan and the plan
shown in Section 3.2 is the fact that only one of the
property tax web services is queried for a given specific
query. Moreover, which property tax service to query
for a given specific query is based on the information
queried from the CitytoCounty web service. This idea is
very similar to the idea of interleaving plan execution
and plan generation. However, the key difference here is
the fact that the plan is generated before the execution
begins and the conditions to decide which property tax
web service to query is encoded in the plan based on the
model of difference property tax web services.

The mediator system utilizes the generated
integration plan to host a new web service that can
answer a class of user queries. For our example, the
mediator generates a new web service that accepts a city,
a state, and a name of business as input and returns the
property values of the all locations of the business in a
given city. The mediator returns URL of the new web
service to the user.

6. Discussion & Future Work
In this paper, we described techniques to extend the
Inverse Rules [7] Algorithm to generate a composite web
service that can answer a class of user queries, similar to
universal integration plans [8]. We described a mediator
web service that utilizes the extended Inverse Rules
Algorithm to dynamically integrate data from various
web services and to dynamically compose new web
services from the existing web services. The mediator
web service accepts user queries and returns a URL of
dynamically composed web service that can answer not
only the specific user query, but also the all user queries
that fit the same template query.

In addition to working on strategies to efficiently
determine how to determine which constraints should be
used to generalize the query, we plan to extend our
mediator framework to automatically model the newly
generated web service as a data source in the mediator’s
domain model. This can be done very easily as the
template query can be used to describe the new web
service. We are also planning to extend the operations
supported by the mediator to facilitate intelligent
integration of data from different web services. For

example, one of the key issues when integrating data
from various web services is to consolidate information
extracted from various data sources. We plan to
incorporate object consolidation techniques from [16] as
an intelligent join operator in the mediator. The object
consolidation techniques allow “soft-matching” the
records extracted from various web services.

References
1. Levy, A.Y., A. Rajaraman, and J.J. Ordille, Query-

Answering Algorithms for Information Agents, in
Proceedings of the Thirteenth National Conference
on Artificial Intelligence. 1996: Portland, OR. p. 40-
-47.

2. Genesereth, M.R., A.M. Keller, and O.M. Duschka.
InfoMaster: An information integration system. in In
Proceedings of ACM SIGMOD-97. 1997.

3. Bayardo Jr., R.J., et al. Infosleuth: Agent-based
semantic integration of information in open and
dynamic environments. in In Proceedings of ACM
SIGMOD-97. 1997.

4. Knoblock, C., et al., The ARIADNE Approach to Web-
Based Information Integration. International Journal
on Intelligent Cooperative Information Systems
(IJCIS), 2001. 10(1-2): p. 145-169.

5. Levy, A.Y., Logic-Based Techniques in Data
Integration, in Logic-Based Artificial Intelligence, J.
Minker, Editor. 2000, Kluwer Publishers.

6. Levy, A.Y., et al., Answering Queries Using Views, in
Proceedings of the 14th ACM Symposium on
Principles of Database Systems. 1995: San Jose,
California. p. 95--104.

7. Duschka, O.M., Query Planning and Optimization in
Information Integration, in Computer Science. 1997,
Stanford University. p. 92.

8. Schoppers, M. Universal plans for reactive robots in
unpredictable environments. in Proceedings of the
InternationalConference on Artificial Intelligence,
IJCAI-87. 1987.

9. Barish, G., et al. A dataflow approach to agent-based
information management. in Proceedings of the
2000 International Conference of on Artificial
Intelligence. 2000. Las Vegas, NV.

10. Thakkar, S. and C.A. Knoblock. Efficient Execution
of Recursive Integration Plans. in To Appear In
Proceeding of 2003 IJCAI Workshop on Information
Integration on the Web. 2003. Acapulco, Mexico.

11. Levy, A., Logic-Based Techniques in Data
Integration, in Logic Based Artificial Intelligence, J.
Minker, Editor. 2000, Kluwer Publishers.

12. Thakkar, S., et al. Dynamically Composing Web
Services from On-line Sources. in In Proceeding of
2002 AAAI Workshop on Intelligent Service
Integration. 2002. Edmonton, Alberta, Canada.

13. Ashish, N., C.A. Knoblock, and A. Levy.
Information Gathering Plans with Sensing Actions.
in European Conference on Planning, ECP-97.
1997. Toulouse, France.

14. Kambhampati, S. and S. Kedar, A Unified
framework for Explanation Based Generalization of
Partially ordered and partially instantiated plans.
Artificial Intelligence, 1994. 67(1).

15. Kambhampati, S. Formalizing a spectrum of Plan
Generalization based on Modal Truth Criteria. in
Canadian Conference on Artificial Intelligence.
1994.

16. Tejada, S., C.A. Knoblock, and S. Minton, Learning
Object Identification Rules for Information
Integration. Information Systems, 2001. 26(8).

