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ABSTRACT 
George Santayana's statement, "Those who cannot remember the 
past are condemned to repeat it," is only half true.  The past also 
includes successful histories.  If you haven't been made aware of 
them, you're often condemned not to repeat their successes. 

In a rapidly expanding field such as software engineering, this 
happens a lot.  Extensive studies of many software projects such as 
the Standish Reports offer convincing evidence that many projects 
fail to repeat past successes. 

This paper tries to identify at least some of the major past software 
experiences that were well worth repeating, and some that were not.  
It also tries to identify underlying phenomena influencing the 
evolution of software engineering practices that have at least helped 
the author appreciate how our field has gotten to where it has been 
and where it is. 

A counterpart Santayana-like statement about the past and future 
might say, "In an era of rapid change, those who repeat the past are 
condemned to a bleak future."   (Think about the dinosaurs, and 
think carefully about software engineering maturity models that 
emphasize repeatability.)   

This paper also tries to identify some of the major sources of change 
that will affect software engineering practices in the next couple of 
decades, and identifies some strategies for assessing and adapting to 
these sources of change.  It also makes some first steps towards 
distinguishing relatively timeless software engineering principles 
that are risky not to repeat, and conditions of change under which 
aging practices will become increasingly risky to repeat.  

Categories and Subject Descriptors 
D.2.9 [Management]: Cost estimation, life cycle, productivity, 
software configuration management, software process models. 

General Terms 
Management, Economics, Human Factors. 

Keywords 
Software engineering, software history, software futures 

1. INTRODUCTION 
One has to be a bit presumptuous to try to characterize both the past 
and future of software engineering in a few pages. For one thing, 
there are many types of software engineering: large or small; 
commodity or custom; embedded or user-intensive; greenfield or 
legacy/COTS/reuse-driven; homebrew, outsourced, or both; casual-
use or mission-critical. For another thing, unlike the engineering of 
electrons, materials, or chemicals, the basic software elements we 
engineer tend to change significantly from one decade to the next. 

Fortunately, I’ve been able to work on many types and generations 
of software engineering since starting as a programmer in 1955. I’ve 
made a good many mistakes in developing, managing, and acquiring 
software, and hopefully learned from them. I’ve been able to learn 
from many insightful and experienced software engineers, and to 
interact with many thoughtful people who have analyzed trends and 
practices in software engineering. These learning experiences have 
helped me a good deal in trying to understand how software 
engineering got to where it is and where it is likely to go. They have 
also helped in my trying to distinguish between timeless principles 
and obsolete practices for developing successful software-intensive 
systems. 

In this regard, I am adapting the [147] definition of “engineering” to 
define engineering as “the application of science and mathematics 
by which the properties of software are made useful to people.” The 
phrase “useful to people” implies that the relevant sciences include 
the behavioral sciences, management sciences, and economics, as 
well as computer science. 

In this paper, I’ll begin with a simple hypothesis: software people 
don’t like to see software engineering done unsuccessfully, and try 
to make things better. I’ll try to elaborate this into a high-level 
decade-by-decade explanation of software engineering’s past. I’ll 
then identify some trends affecting future software engineering 
practices, and summarize some implications for future software 
engineering researchers, practitioners, and educators. 

2. A Hegelian View of Software Engineering’s 
Past 
The philosopher Hegel hypothesized that increased human 
understanding follows a path of thesis (this is why things happen the 
way they do); antithesis (the thesis fails in some important ways; 
here is a better explanation); and synthesis (the antithesis rejected 
too much of the original thesis; here is a hybrid that captures the 
best of both while avoiding their defects). Below I’ll try to apply this 
hypothesis to explaining the evolution of software engineering from 
the 1950’s to the present. 
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2.1 1950’s Thesis: Software Engineering Is 
Like Hardware Engineering 
When I entered the software field in 1955 at General Dynamics, the 
prevailing thesis was, “Engineer software like you engineer 
hardware.” Everyone in the GD software organization was either a 
hardware engineer or a mathematician, and the software being 
developed was supporting aircraft or rocket engineering. People 
kept engineering notebooks and practiced such hardware precepts as 
“measure twice, cut once,” before running their code on the 
computer. 
This behavior was also consistent with 1950’s computing 
economics. On my first day on the job, my supervisor showed me 
the GD ERA 1103 computer, which filled a large room. He said, 
“Now listen. We are paying $600 an hour for this computer and $2 
an hour for you, and I want you to act accordingly.” This instilled in 
me a number of good practices such as desk checking, buddy 
checking, and manually executing my programs before running 
them. But it also left me with a bias toward saving microseconds 
when the economic balance started going the other way. 
The most ambitious information processing project of the 1950’s 
was the development of the Semi-Automated Ground Environment 
(SAGE) for U.S. and Canadian air defense. It brought together 
leading radar engineers, communications engineers, computer 
engineers, and nascent software engineers to develop a system that 
would detect, track, and prevent enemy aircraft from bombing the 
U.S. and Canadian homelands. 
Figure 1 shows the software development process developed by the 
hardware engineers for use in SAGE [1]. It shows that sequential 
waterfall-type models have been used in software development for a 
long time. Further, if one arranges the steps in a V form with Coding 
at the bottom, this 1956 process is equivalent to the V-model for 
software development. SAGE also developed the Lincoln Labs 
Utility System to aid the thousands of programmers participating in 
SAGE software development. It included an assembler, a library and 
build management system, a number of utility programs, and aids to 
testing and debugging. The resulting SAGE system successfully met 
its specifications with about a one-year schedule slip. Benington’s 
bottom-line comment on the success was “It is easy for me to single 
out the one factor that led to our relative success: we were all 
engineers and had been trained to organize our efforts along 
engineering lines.” 
Another indication of the hardware engineering orientation of the 
1950’s is in the names of the leading professional societies for 
software professionals: the Association for Computing Machinery 
and the IEEE Computer Society. 

2.2 1960’s Antithesis: Software Crafting 
By the 1960’s, however, people were finding out that software 
phenomenology differed from hardware phenomenology in 
significant ways. First, software was much easier to modify than was 
hardware, and it did not require expensive production lines to make 
product copies. One changed the program once, and then reloaded 
the same bit pattern onto another computer, rather than having to 
individually change the configuration of each copy of the hardware. 
This ease of modification led many people and organizations to 
adopt a “code and fix” approach to software development, as 
compared to the exhaustive Critical Design Reviews that hardware 
engineers performed before committing to production lines and 
bending metal (measure twice, cut once). Many software 

applications became more people-intensive than hardware-intensive; 
even SAGE became more dominated by psychologists addressing 
human-computer interaction issues than by radar engineers. 

OPERATIONAL PLAN

MACHINE 
SPECIFICATIONS

OPERATIONAL 
SPECIFICATIONS

PROGRAM 
SPECIFICATIONS

CODING 
SPECIFICATIONS

CODING

PARAMETER TESTING 
(SPECIFICATIONS)

ASSEMBLY TESTING 
(SPECIFICATIONS)

SHAKEDOWN

SYSTEM EVALUATION
 

Figure 1. The SAGE Software Development Process (1956) 
Another software difference was that software did not wear out. 
Thus, software reliability could only imperfectly be estimated by 
hardware reliability models, and “software maintenance” was a 
much different activity than hardware maintenance. Software was 
invisible, it didn’t weigh anything, but it cost a lot. It was hard to tell 
whether it was on schedule or not, and if you added more people to 
bring it back on schedule, it just got later, as Fred Brooks explained 
in the Mythical Man-Month [42]. Software generally had many 
more states, modes, and paths to test, making its specifications much 
more difficult. Winston Royce, in his classic 1970 paper, said, “In 
order to procure a $5 million hardware device, I would expect a 30-
page specification would provide adequate detail to control the 
procurement. In order to procure $5 million worth of software, a 
1500 page specification is about right in order to achieve 
comparable control.”[132].  
Another problem with the hardware engineering approach was that 
the rapid expansion of demand for software outstripped the supply 
of engineers and mathematicians. The SAGE program began hiring 
and training humanities, social sciences, foreign language, and fine 
arts majors to develop software. Similar non-engineering people 
flooded into software development positions for business, 
government, and services data processing. 
These people were much more comfortable with the code-and-fix 
approach. They were often very creative, but their fixes often led to 
heavily patched spaghetti code. Many of them were heavily 
influenced by 1960’s “question authority” attitudes and tended to 
march to their own drummers rather than those of the organization 
employing them. A significant subculture in this regard was the 
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“hacker culture” of very bright free spirits clustering around major 
university computer science departments [83]. Frequent role models 
were the “cowboy programmers” who could pull all-nighters to 
hastily patch faulty code to meet deadlines, and would then be 
rewarded as heroes. 
Not all of the 1960’s succumbed to the code-and-fix approach, 
IBM’s OS-360 family of programs, although expensive, late, and 
initially awkward to use, provided more reliable and comprehensive 
services than its predecessors and most contemporaries, leading to a 
dominant marketplace position. NASA’s Mercury, Gemini, and 
Apollo manned spacecraft and ground control software kept pace 
with the ambitious “man on the moon by the end of the decade” 
schedule at a high level of reliability. 
Other trends in the 1960’s were: 

• Much better infrastructure. Powerful mainframe operating 
systems, utilities, and mature higher-order languages such 
as Fortran and COBOL made it easier for non-
mathematicians to enter the field. 

• Generally manageable small applications, although those 
often resulted in hard-to-maintain spaghetti code. 

• The establishment of computer science and informatics 
departments of universities, with increasing emphasis on 
software. 

• The beginning of for-profit software development and 
product companies. 

• More and more large, mission-oriented applications. 
Some were successful as with OS/360 and Apollo above, 
but many more were unsuccessful, requiring near-
complete rework to get an adequate system. 

• Larger gaps between the needs of these systems and the 
capabilities for realizing them. 

This situation led the NATO Science Committee to convene two 
landmark “Software Engineering” conferences in 1968 and 1969, 
attended by many of the leading researcher and practitioners in the 
field [107][44]. These conferences provided a strong baseline of 
understanding of the software engineering state of the practice that 
industry and government organizations could use as a basis for 
determining and developing improvements. It was clear that better 
organized methods and more disciplined practices were needed to 
scale up to the increasingly large projects and products that were 
being commissioned. 

2.3 1970’s Synthesis and Antithesis: Formality 
and Waterfall Processes 
The main reaction to the 1960’s code-and-fix approach involved 
processes in which coding was more carefully organized and was 
preceded by design, and design was preceded by requirements 
engineering. Figure 2 summarizes the major 1970’s initiatives to 
synthesize the best of 1950’s hardware engineering techniques with 
improved software-oriented techniques. 
More careful organization of code was exemplified by Dijkstra’s 
famous letter to ACM Communications, “Go To Statement 
Considered Harmful” [56]. The Bohm-Jacopini result [40] showing 
that sequential programs could always be constructed without go-
to’s led to the Structured Programming movement. 

This movement had two primary branches. One was a “formal 
methods” branch that focused on program correctness, either by 
mathematical proof [72][70], or by construction via a “programming 
calculus” [56]. The other branch was a less formal mix of technical 
and management methods, “top-down structured programming with 
chief programmer teams,” pioneered by Mills and highlighted by the 
successful New York Times application led by Baker [7]. 
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Figure2. Software Engineering Trends Through the 1970’s 

The success of structured programming led to many other 
“structured” approaches applied to software design. Principles of 
modularity were strengthened by Constantine’s concepts of coupling 
(to be minimized between modules) and cohesion (to be maximized 
within modules) [48], by Parnas’s increasingly strong techniques of 
information hiding [116][117][118], and by abstract data types 
[92][75][151]. A number of tools and methods employing 
structured concepts were developed, such as structured design 
[106][55][154]; Jackson’s structured design and programming [82], 
emphasizing data considerations; and Structured Program Design 
Language [45]. 
Requirements-driven processes were well established in the 1956 
SAGE process model in Figure 1, but a stronger synthesis of the 
1950’s paradigm and the 1960’s crafting paradigm was provided by 
Royce’s version of the “waterfall” model shown in Figure 3 [132]. 
It added the concepts of confining iterations to successive phases, 
and a “build it twice” prototyping activity before committing to full-
scale development. A subsequent version emphasized verification 
and validation of the artifacts in each phase before proceeding to the 
next phase in order to contain defect finding and fixing within the 
same phase whenever possible.  This was based on the data from 
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TRW, IBM, GTE, and safeguard on the relative cost of finding 
defects early vs. late [24]. 
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Figure 3. The Royce Waterfall Model (1970) 
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Figure 4. Increase in Software Cost-to-fix vs. Phase (1976) 

Unfortunately, partly due to convenience in contracting for software 
acquisition, the waterfall model was most frequently interpreted as a 
purely sequential process, in which design did not start until there 
was a complete set of requirements, and coding did not start until 
completion of an exhaustive critical design review.  These 
misinterpretations were reinforced by government process standards 
emphasizing a pure sequential interpretation of the waterfall model. 

Quantitative Approaches 
One good effect of stronger process models was the stimulation of 
stronger quantitative approaches to software engineering.  Some 
good work had been done in the 1960’s such as System 
Development Corp’s software productivity data [110] and 
experimental data showing 26:1 productivity differences among 
programmers [66]; IBM’s data presented in the 1960 NATO report 
[5]; and early data on distributions of software defects by phase and 
type. Partly stimulated by the 1973 Datamation article, “Software 
and its Impact: A Quantitative Assessment” [22], and the Air Force 
CCIP-85 study on which it was based, more management attention 
and support was given to quantitative software analysis. 
Considerable progress was made in the 1970’s on complexity 
metrics that helped identify defect-prone modules [95][76]; software 
reliability estimation models [135][94]; quantitative approaches to 
software quality [23][101]; software cost and schedule estimation 
models [121][73][26]; and sustained quantitative laboratories such 

as the NASA/UMaryland/CSC Software Engineering Laboratory 
[11]. 
Some other significant contributions in the 1970’s were the in-depth 
analysis of people factors in Weinberg’s Psychology of Computer 
Programming [144]; Brooks’ Mythical Man Month [42], which 
captured many lessons learned on incompressibility of software 
schedules, the 9:1 cost difference between a piece of demonstration 
software and a software system product, and many others; Wirth’s 
Pascal [149] and Modula-2 [150] programming languages; Fagan’s 
inspection techniques [61]; Toshiba’s reusable product line of 
industrial process control software [96]; and Lehman and Belady’s 
studies of software evolution dynamics [12]. Others will be covered 
below as precursors to 1980’s contributions. 
However, by the end of the 1970’s, problems were cropping up with 
formality and sequential waterfall processes. Formal methods had 
difficulties with scalability and usability by the majority of less-
expert programmers (a 1975 survey found that the average coder in 
14 large organizations had two years of college education and two 
years of software experience; was familiar with two programming 
languages and software products; and was generally sloppy, 
inflexible, “in over his head”, and undermanaged [50]. The 
sequential waterfall model was heavily document-intensive, slow-
paced, and expensive to use. 
Since much of this documentation preceded coding, many impatient 
managers would rush their teams into coding with only minimal 
effort in requirements and design. Many used variants of the self-
fulfilling prophecy, “We’d better hurry up and start coding, because 
we’ll have a lot of debugging to do.” A 1979 survey indicated that 
about 50% of the respondents were not using good software 
requirements and design practices [80] resulting from 1950’s SAGE 
experience [25]. Many organizations were finding that their 
software costs were exceeding their hardware costs, tracking the 
1973 prediction in Figure 5 [22], and were concerned about 
significantly improving software productivity and use of well-
known best practices, leading to the 1980’s trends to be discussed 
next. 
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Figure 5. Large-Organization Hardware-Software Cost Trends 

(1973) 
 

2.4 1980’s Synthesis: Productivity and 
Scalability 
Along with some early best practices developed in the 1970’s, the 
1980’s led to a number of initiatives to address the 1970’s problems, 
and to improve software engineering productivity and scalability. 
Figure 6 shows the extension of the timeline in Figure 2 through the 
rest of the decades through the 2010’s addressed in the paper. 
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Figure 6. A Full Range of Software Engineering Trends 
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The rise in quantitative methods in the late 1970’s helped identify 
the major leverage points for improving software productivity. 
Distributions of effort and defects by phase and activity enabled 
better prioritization of improvement areas. For example, 
organizations spending 60% of their effort in the test phase found 
that 70% of the “test” activity was actually rework that could be 
done much less expensively if avoided or done earlier, as indicated 
by Figure 4. The cost drivers in estimation models identified 
management controllables that could reduce costs through 
investments in better staffing training, processes, methods, tools, 
and asset reuse.  
The problems with process noncompliance were dealt with initially 
by more thorough contractual standards, such as the 1985 U.S. 
Department of Defense (DoD) Standards DoD-STD-2167 and MIL-
STD-1521B, which strongly reinforced the waterfall model by tying 
its milestones to management reviews, progress payments, and 
award fees. When these often failed to discriminate between capable 
software developers and persuasive proposal developers, the DoD 
commissioned the newly-formed (1984) CMU Software 
Engineering Institute to develop a software capability maturity 
model (SW-CMM) and associated methods for assessing an 
organization’s software process maturity. Based extensively on 
IBM’s highly disciplined software practices and Deming-Juran-
Crosby quality practices and maturity levels, the resulting SW-
CMM provided a highly effective framework for both capability 
assessment and improvement [81] The SW-CMM content was 
largely method-independent, although some strong sequential 
waterfall-model reinforcement remained. For example, the first 
Ability to Perform in the first Key Process Area, Requirements 
Management, states, “Analysis and allocation of the system 
requirements is not the responsibility of the software engineering 
group but is a prerequisite for their work.” [114]. A similar 
International Standards Organization ISO-9001 standard for quality 
practices applicable to software was concurrently developed, largely 
under European leadership.  
The threat of being disqualified from bids caused most software 
contractors to invest in SW-CMM and ISO-9001 compliance. Most 
reported good returns on investment due to reduced software 
rework. These results spread the use of the maturity models to 
internal software organizations, and led to a new round of refining 
and developing new standards and maturity models, to be discussed 
under the 1990’s. 

Software Tools 
In the software tools area, besides the requirements and design tools 
discussed under the 1970’s, significant tool progress had been mode 
in the 1970’s in such areas as test tools (path and test coverage 
analyzers, automated test case generators, unit test tools, test 
traceability tools, test data analysis tools, test simulator-stimulators 
and operational test aids) and configuration management tools. An 
excellent record of progress in the configuration management (CM) 
area has been developed by the NSF ACM/IEE(UK)–sponsored 
IMPACT project [62]. It traces the mutual impact that academic 
research and industrial research and practice have had in evolving 
CM from a manual bookkeeping practice to powerful automated 
aids for version and release management, asynchronous 
checkin/checkout, change tracking, and integration and test support. 
A counterpart IMPACT paper has been published on modern 
programming languages [134]; other are underway on 

Requirements, Design, Resource Estimation, Middleware, Reviews 
and Walkthroughs, and Analysis and Testing [113]. 
The major emphasis in the 1980’s was on integrating tools into 
support environments. There were initially overfocused on 
Integrated Programming Support Environments (IPSE’s), but 
eventually broadened their scope to Computer-Aided Software 
Engineering (CASE) or Software Factories. These were pursued 
extensively in the U.S. and Europe, but employed most effectively 
in Japan [50]. 
A significant effort to improve the productivity of formal software 
development was the RAISE environment [21]. A major effort to 
develop a standard tool interoperability framework was the 
HP/NIST/ECMA Toaster Model [107]. Research on advanced 
software development environments included knowledge-based 
support, integrated project databases [119], advanced tools 
interoperability architecture, and tool/environment configuration 
and execution languages such as Odin [46]. 

Software Processes 
Such languages led to the vision of process-supported software 
environments and Osterweil’s influential “Software Processes are 
Software Too” keynote address and paper at ICSE 9 [111]. Besides 
reorienting the focus of software environments, this concept 
exposed a rich duality between practices that are good for 
developing products and practices that are good for developing 
processes. Initially, this focus was primarily on process 
programming languages and tools, but the concept was broadened to 
yield highly useful insights on software process requirements, 
process architectures, process change management, process families, 
and process asset libraries with reusable and composable process 
components, enabling more cost-effective realization of higher 
software process maturity levels. 
Improved software processes contributed to significant increases in 
productivity by reducing rework, but prospects of even greater 
productivity improvement were envisioned via work avoidance. In 
the early 1980’s, both revolutionary and evolutionary approaches to 
work avoidance were addressed in the U.S. DoD STARS program 
[57]. The revolutionary approach emphasized formal specifications 
and automated transformational approaches to generating code from 
specifications, going back to early–1970’s “automatic 
programming” research [9][10], and was pursued via the 
Knowledge-Based Software Assistant (KBSA) program The 
evolutionary approach emphasized a mixed strategy of staffing, 
reuse, process, tools, and management, supported by integrated 
environments [27]. The DoD software program also emphasized 
accelerating technology transition, based on the [128] study 
indicating that an average of 18 years was needed to transition 
software engineering technology from concept to practice. This led 
to the technology-transition focus of the DoD-sponsored CMU 
Software Engineering Institute (SEI) in 1984. Similar initiatives 
were pursued in the European Community and Japan, eventually 
leading to SEI-like organizations in Europe and Japan. 

2.4.1 No Silver Bullet 
The 1980’s saw other potential productivity improvement 
approaches such as expert systems, very high level languages, object 
orientation, powerful workstations, and visual programming. All of 
these were put into perspective by Brooks’ famous “No Silver 
Bullet” paper presented at IFIP 1986 [43]. It distinguished the 
“accidental” repetitive tasks that could be avoided or streamlined via 
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automation, from the “essential” tasks unavoidably requiring 
syntheses of human expertise, judgment, and collaboration. The 
essential tasks involve four major challenges for productivity 
solutions: high levels of software complexity, conformity, 
changeability, and invisibility. Addressing these challenges raised 
the bar significantly for techniques claiming to be “silver bullet” 
software solutions. Brooks’ primary candidates for addressing the 
essential challenges included great designers, rapid prototyping, 
evolutionary development (growing vs. building software systems) 
and work avoidance via reuse. 

Software Reuse 
The biggest productivity payoffs during the 1980’s turned out to 
involve work avoidance and streamlining through various forms of 
reuse. Commercial infrastructure software reuse (more powerful 
operating systems, database management systems, GUI builders, 
distributed middleware, and office automation on interactive 
personal workstations) both avoided much programming and long 
turnaround times. Engelbart’s 1968 vision and demonstration was 
reduced to scalable practice via a remarkable desktop-metaphor, 
mouse and windows interactive GUI, what you see is what you get 
(WYSIWYG) editing, and networking/middleware support system 
developed at Xerox PARC in the 1970’s reduced to affordable use 
by Apple’s Lisa(1983) and Macintosh(1984), and implemented 
eventually on the IBM PC family by Microsoft’s Windows 3.1 
(198x ). 
Better domain architecting and engineering enabled much more 
effective reuse of application components, supported both by reuse 
frameworks such as Draco [109] and by domain-specific business 
fourth-generation-language (4GL’s) such as FOCUS and NOMAD 
[102]. Object-oriented methods tracing back to Simula-67 [53] 
enabled even stronger software reuse and evolvability via structures 
and relations (classes, objects, methods, inheritance) that provided 
more natural support for domain applications. They also provided 
better abstract data type modularization support for high-cohesion 
modules and low inter-module coupling. This was particularly 
valuable for improving the productivity of software maintenance, 
which by the 1980’s was consuming about 50-75% of most 
organizations’ software effort [91][26]. Object-oriented 
programming languages and environments such as Smalltalk, Eiffel 
[102], C++ [140], and Java [69] stimulated the rapid growth of 
object-oriented development, as did a proliferation of object-
oriented design and development methods eventually converging via 
the Unified Modeling Language (UML) in the 1990’s [41]. 

2.5 1990’s Antithesis: Concurrent vs. 
Sequential Processes 
The strong momentum of object-oriented methods continued into 
the 1990’s. Object-oriented methods were strengthened through 
such advances as design patterns [67]; software architectures and 
architecture description languages [121][137][12]; and the 
development of UML. The continued expansion of the Internet and 
emergence of the World Wide Web [17] strengthened both OO 
methods and the criticality of software in the competitive 
marketplace.  
Emphasis on Time-To-Market 
The increased importance of software as a competitive discriminator 
and the need to reduce software time-to-market caused a major shift 
away from the sequential waterfall model to models emphasizing 
concurrent engineering of requirements, design, and code; of 

product and process; and of software and systems. For example, in 
the late 1980’s Hewlett Packard found that several of its market 
sectors had product lifetimes of about 2.75 years, while its waterfall 
process was taking 4 years for software development. As seen in 
Figure 7, its investment in a product line architecture and reusable 
components increased development time for the first three products 
in 1986-87, but had reduced development time to one year by 1991-
92 [92]. The late 1990’s saw the publication of several influential 

books on software reuse [83][128][125][146]. 
 

 
Figure 7. HP Product Line Reuse Investment and Payoff 

 
Besides time-to market, another factor causing organizations to 
depart from waterfall processes was the shift to user-interactive 
products with emergent rather than prespecifiable requirements. 
Most users asked for their GUI requirements would answer, “I’m 
not sure, but I’ll know it when I see it” (IKIWISI). Also, reuse-
intensive and COTS-intensive software development tended to 
follow a bottom-up capabilities-to-requirements process rather than 
a top-down requirements-to capabilities process. 

Controlling Concurrency 
The risk-driven spiral model [28] was intended as a process to 
support concurrent engineering, with the project’s primary risks 
used to determine how much concurrent requirements engineering, 
architecting, prototyping, and critical-component development was 
enough. However, the original model contained insufficient 
guidance on how to keep all of these concurrent activities 
synchronized and stabilized. Some guidance was provided by the 
elaboration of software risk management activities [28][46] and the 
use of the stakeholder win-win Theory W [31] as milestone criteria. 
But the most significant addition was a set of common industry-
coordinated stakeholder commitment milestones that serve as a basis 
for synchronizing and stabilizing concurrent spiral (or other) 
processes. 
These anchor point milestones-- Life Cycle Objectives (LCO), Life 
Cycle Architecture(LCA), and Initial Operational Capability (IOC) 
– have pass-fail criteria based on the compatibility and feasibility of 
the concurrently-engineered requirements, prototypes, architecture, 
plans, and business case [33]. They turned out to be compatible with 
major government acquisition milestones and the AT&T 
Architecture Review Board milestones [19][97]. They were also 
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adopted by Rational/IBM as the phase gates in the Rational Unified 
Process [87][133][84], and as such have been used on many 
successful projects. They are similar to the process milestones used 
by Microsoft to synchronize and stabilize its concurrent software 
processes [53]. Other notable forms of concurrent, incremental and 
evolutionary development include the Scandinavian Participatory 
Design approach [62], various forms of Rapid Application 
Development [103][98], and agile methods, to be discussed under 
the 2000’s below.  [87] is an excellent source for iterative and 
evolutionary development methods. 

Open Source Development 
Another significant form of concurrent engineering making strong 
contribution in the 1990’s was open source software development. 
From its roots in the hacker culture of the 1960’s, it established an 
institutional presence in 1985 with Stallman’s establishment of the 
Free Software Foundation and the GNU General Public License 
[140]. This established the conditions of free use and evolution of a 
number of highly useful software packages such as the GCC C-
Language compiler and the emacs editor.  Major 1990’s milestones 
in the open source movement were Torvalds’ Linux (1991), 
Berners-Lee’s World Wide Web consortium (1994), Raymond’s 
“The Cathedral and the Bazaar” book [128], and the O’Reilly Open 
Source Summit (1998), including leaders of such products as Linux 

, Apache, TCL, Python, Perl, and Mozilla [144]. 
Usability and Human-Computer Interaction 
As mentioned above, another major 1990’s emphasis was on 
increased usability of software products by non-programmers. This 
required reinterpreting an almost universal principle, the Golden 
Rule, “Do unto others as you would have others do unto you”, To 
literal-minded programmers and computer science students, this 
meant developing programmer-friendly user interfaces. These are 
often not acceptable to doctors, pilots, or the general public, leading 
to preferable alternatives such as the Platinum Rule, “Do unto others 
as they would be done unto.”  
Serious research in human-computer interaction (HCI) was going on 
as early as the second phase of the SAGE project at Rand Corp in 
the 1950’s, whose research team included Turing Award winner 
Allen Newell. Subsequent significant advances have included 
experimental artifacts such as Sketchpad and the Engelbert and 
Xerox PARC interactive environments discussed above. They have 
also included the rapid prototyping and Scandinavian Participatory 
Design work discussed above, and sets of HCI guidelines such as 
[138] and [13]. The late 1980’s and 1990’s also saw the HCI field 
expand its focus from computer support of individual performance 
to include group support systems [96][111]. 
 

2.6 2000’s Antithesis and Partial Synthesis: 
Agility and Value 
So far, the 2000’s have seen a continuation of the trend toward rapid 
application development, and an acceleration of the pace of change 
in information technology (Google, Web-based collaboration 
support), in organizations (mergers, acquisitions, startups), in 
competitive countermeasures (corporate judo, national security), and 
in the environment (globalization, consumer demand patterns).  This 
rapid pace of change has caused increasing frustration with the 
heavyweight plans, specifications, and other documentation 
imposed by contractual inertia and maturity model compliance 

criteria.  One organization recently presented a picture of its CMM 
Level 4 Memorial Library: 99 thick spiral binders of documentation 
used only to pass a CMM assessment. 

Agile Methods 
The late 1990’s saw the emergence of a number of agile methods 
such as Adaptive Software Development, Crystal, Dynamic Systems 
Development, eXtreme Programming (XP), Feature Driven 
Development, and Scrum.  Its major method proprietors met in 2001 
and issued the Agile Manifesto, putting forth four main value 
preferences: 
• Individuals and interactions over processes and tools. 
• Working software over comprehensive documentation. 
• Customer collaboration over contract negotiation 
• Responding to change over following a plan. 
The most widely adopted agile method has been XP, whose major 
technical premise in [14] was that its combination of customer 
collocation, short development increments, simple design, pair 
programming, refactoring, and continuous integration would flatten 
the cost-of change-vs.-time curve in Figure 4.  However, data 
reported so far indicate that this flattening does not take place for 
larger projects.  A good example was provided by a large Thought 
Works Lease Management system presented at ICSE 2002 [62].  
When the size of the project reached over 1000 stories, 500,000 
lines of code, and 50 people, with some changes touching over 100 
objects, the cost of change inevitably increased. This required the 
project to add some more explicit plans, controls, and high-level 
architecture representations. 
Analysis of the relative “home grounds” of agile and plan-driven 
methods found that agile methods were most workable on small 
projects with relatively low at-risk outcomes, highly capable 
personnel, rapidly changing requirements, and a culture of thriving 
on chaos vs. order.  As shown in Figure 8 [36], the agile home 
ground is at the center of the diagram, the plan-driven home ground 
is at the periphery, and projects in the middle such as the lease 
management project needed to add some plan-driven practices to 
XP to stay successful. 

Value-Based Software Engineering 
Agile methods’ emphasis on usability improvement via short 
increments and value-prioritized increment content are also 
responsive to trends in software customer preferences. A recent 
Computerworld panel on “The Future of Information Technology 
(IT)” indicated that usability and total ownership cost-benefits, 
including user inefficiency and ineffectiveness costs, are becoming 
IT user organizations’ top priorities [5]. A representative quote from 
panelist W. Brian Arthur was “Computers are working about as fast 
as we need. The bottleneck is making it all usable.” A recurring 
user-organization desire is to have technology that adapts to people 
rather than vice versa. This is increasingly reflected in users’ product 
selection activities, with evaluation criteria increasingly emphasizing 
product usability and value added vs. a previous heavy emphasis on 
product features and purchase costs. Such trends ultimately will 
affect producers’ product and process priorities, marketing 
strategies, and competitive survival. 
Some technology trends strongly affecting software engineering for 
usability and cost-effectiveness are increasingly powerful enterprise 
support packages, data access and mining tools, and Personal Digital 
Assistant (PDA) capabilities. Such products have tremendous 
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potential for user value, but determining how they will be best 
configured will involve a lot of product experimentation, shakeout, 
and emergence of superior combinations of system capabilities. 
In terms of future software process implications, the fact that the 
capability requirements for these products are emergent rather than 
prespecifiable has become the primary challenge. Not only do the 
users exhibit the IKIWISI (I’ll know it when I see it) syndrome, but 
their priorities change with time. These changes often follow a 
Maslow need hierarchy, in which unsatisfied lower-level needs are 
top priority, but become lower priorities once the needs are satisfied 
[96]. Thus, users will initially be motivated by survival in terms of 
capabilities to process new work-loads, followed by security once 
the workload-processing needs are satisfied, followed by self-
actualization in terms of capabilities for analyzing the workload 
content for self-improvement and market trend insights once the 
security needs are satisfied. 
It is clear that requirements emergence is incompatible with past 
process practices such as requirements-driven sequential waterfall 
process models and formal programming calculi; and with process 
maturity models emphasizing repeatability and optimization [114]. 
In their place, more adaptive [74] and risk-driven [32] models are 
needed. More fundamentally, the theory underlying software process 
models needs to evolve from purely reductionist “modern” world 
views (universal, general, timeless, written) to a synthesis of these 
and situational “postmodern” world views (particular, local, timely, 
oral) as discussed in [144]. A recent theory of value-based software 
engineering (VBSE) and its associated software processes [37] 
provide a starting point for addressing these challenges, and for 
extending them to systems engineering processes. The associated 
VBSE book [17] contains further insights and emerging directions 
for VBSE processes. 
The value-based approach also provides a framework for 
determining which low-risk, dynamic parts of a project are better 
addressed by more lightweight agile methods and which high-risk, 
more stabilized parts are better addressed by plan-driven methods. 
Such syntheses are becoming more important as software becomes 
more product-critical or mission-critical while software 
organizations continue to optimize on time-to-market. 

Software Criticality and Dependability 
Although people’s, systems’, and organizations’ dependency on 
software is becoming increasingly critical, de-pendability is 
generally not the top priority for software producers. In the words of 
the 1999 PITAC Report, “The IT industry spends the bulk of its 
resources, both financial and human, on rapidly bringing products to 
market.” [123]. 
Recognition of the problem is increasing. ACM President David 
Patterson has called for the formation of a top-priority 
Security/Privacy, Usability, and Reliability (SPUR) initiative [119]. 
Several of the Computerworld “Future of IT” panelists in [5] 
indicated increasing customer pressure for higher quality and vendor 
warranties, but others did not yet see significant changes happening 
among software product vendors. 
This situation will likely continue until a major software-induced 
systems catastrophe similar in impact on world consciousness to the 
9/11 World Trade Center catastrophe stimulates action toward 
establishing account-ability for software dependability. Given the 
high and increasing software vulnerabilities of the world’s current 
financial, transportation, communications, energy distribution, 

medical, and emergency services infrastructures, it is highly likely 
that such a software-induced catastrophe will occur between now 
and 2025. 
Some good progress in high-assurance software technology 
continues to be made, including Hoare and others’ scalable use of 
assertions in Microsoft products [71], Scherlis’ tools for detecting 
Java concurrency problems, Holtzmann and others’ model-checking 
capabilities [78] Poore and others’ model-based testing capabilities 
[124] and Leveson and others’ contributions to software and system 
safety. 

COTS, Open Source, and Legacy Software 
A source of both significant benefits and challenges to 
simultaneously adopting to change and achieving high dependability 
is the increasing availability of commercial-off-the-shelf (COTS) 
systems and components. These enable rapid development of 
products with significant capabilities in a short time. They are also 
continually evolved by the COTS vendors to fix defects found by 
many users and to competitively keep pace with changes in 
technology. However this continuing change is a source of new 
streams of defects; the lack of access to COTS source code inhibits 
users’ ability to improve their applications’ dependability; and 
vendor-controlled evolution adds risks and constraints to users’ 
evolution planning. 
Overall, though, the availability and wide distribution of mass-
produced COTS products makes software productivity curves look 
about as good as hardware productivity curves showing exponential 
growth in numbers of transistors produced and Internet packets 
shipped per year. Instead of counting the number of new source 
lines of code (SLOC) produced per year and getting a relatively flat 
software productivity curve, a curve more comparable to the 
hardware curve should count the number of executable machine 
instructions or lines of code in service (LOCS) on the computers 
owned by an organization. 

 
Figure 8. U.S. DoD Lines of Code in Service and Cost/LOCS 

Figure 8 shows the results of roughly counting the LOCS owned by 
the U.S. Department of Defense (DoD) and the DoD cost in dollars 
per LOCS between 1950 and 2000 [28]. It conservatively estimated 
the figures for 2000 by multiplying 2 million DoD computers by 
100 million executable machine instructions per computer, which 
gives 200 trillion LOCS. Based on a conservative $40 billion-per-
year DoD software cost, the cost per LOCS is $0.0002. These cost 
improvements come largely from software reuse. One might object 
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that not all these LOCS add value for their customers. But one could 
raise the same objections for all transistors being added to chips 
each year and all the data packets transmitted across the internet. All 
three commodities pass similar market tests. 
COTS components are also reprioritizing the skills needed by 
software engineers. Although a 2001 ACM Communications 
editorial stated, “In the end – and at the beginning –  it’s all about 
programming.” [49], future trends are making this decreasingly true. 
Although infrastructure software developers will continue to spend 
most of their time programming, most application software 
developers are spending more and more of their time assessing, 
tailoring, and integrating COTS products. COTS hardware products 
are also becoming more pervasive, but they are generally easier to 
assess and integrate. 
Figure 9 illustrates these trends for a longitudinal sample of small e-
services applications, going from 28% COTS-intensive in 1996-97 
to 70% COTS-intensive in 2001-2002, plus an additional industry-
wide 54% COTS-based applications (CBAs) in the 2000 Standish 
Group survey [140][152]. COTS software products are particularly 
challenging to integrate. They are opaque and hard to debug. They 
are often incompatible with each other due to the need for 
competitive differentiation. They are uncontrollably evolving, 
averaging about to 10 months between new releases, and generally 
unsupported by their vendors after 3 subsequent releases. These 
latter statistics are a caution to organizations outsourcing 
applications with long gestation periods. In one case, an out-sourced 
application included 120 COTS products, 46% of which were 

delivered in a vendor-unsupported state [153]. 
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Figure 9. CBA Growth in USC E-Service Projects ⎯  *Standish 

Group, Extreme Chaos (2000) 
Open source software, or an organization’s reused or legacy 
software, is less opaque and less likely to go unsupported. But these 
can also have problems with interoperability and continuing 
evolution. In addition, they often place constraints on a new 
application’s incremental development, as the existing software 
needs to be decomposable to fit the new increments’ content and 
interfaces. Across the maintenance life cycle, synchronized refresh 
of a large number of continually evolving COTS, open source, 
reused, and legacy software and hardware components becomes a 
major additional challenge. 
In terms of the trends discussed above, COTS, open source, reused, 
and legacy software and hardware will often have shortfalls in 
usability, dependability, interoperability, and localizability to 
different countries and cultures. As discussed above, increasing 

customer pressures for COTS usability, dependability, and 
interoperability, along with enterprise architecture initiatives, will 
reduce these shortfalls to some extent. 

Model-Driven Development 
Although COTS vendors’ needs to competitively differentiate their 
products will increase future COTS integration challenges, the 
emergence of enterprise architectures and model-driven 
development (MDD) offer prospects of improving compatibility. 
When large global organizations such as WalMart  and General 
Motors develop enterprise architectures defining supply chain 
protocols and interfaces [66], and similar initiatives such as the U.S. 
Federal Enterprise Architecture Framework are pursued by 
government organizations, there is significant pressure for COTS 
vendors to align with them and participate in their evolution. 
MDD capitalizes on the prospect of developing domain models (of 
banks, automobiles, supply chains, etc.) whose domain structure 
leads to architectures with high module cohesion and low inter-
module coupling, enabling rapid and dependable application 
development and evolvability within the domain. Successful MDD 
approaches were being developed as early as the 1950’s, in which 
engineers would use domain models of rocket vehicles, civil 
engineering structures, or electrical circuits and Fortran 
infrastructure to enable user engineers to develop and execute 
domain applications [29]. This thread continues through business 
4GL’s and product line reuse to MDD in the lower part of Figure 6. 
The additional challenge for current and future MDD approaches is 
to cope with the continuing changes in software infrastructure 
(massive distribution, mobile computing, evolving Web objects) and 
domain restructuring that are going on. Object–oriented models and 
meta-models, and service-oriented architectures using event-based 
publish-subscribe concepts of operation provide attractive 
approaches for dealing with these, although it is easy to inflate 
expectations on how rapidly capabilities will mature. Figure 10 
shows the Gartner Associates assessment of MDA technology 
maturity as of 2003, using their “history of a silver bullet” 
rollercoaster curve. But substantive progress is being made on many 
fronts, such as Fowler’s Patterns of Enterprise Applications 
Architecture book and the articles in two excellent MDD special 
issues in Software [102] and Computer [136].   

 
Figure 10. MDA Adoption Thermometer – Gartner Associates, 

2003 

 * 
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Interacting software and Systems Engineering 
The push to integrate application-domain models and software-
domain models in MDD reflects the trend in the 2000’s toward 
integration of software and systems engineering. Another driver in 
recognition from surveys such as [140] that the majority of software 
project failures stem from systems engineering shortfalls (65% due 
to lack of user input, incomplete and changing requirements, 
unrealistic expectations and schedules, unclear objectives, and lack 
of executive support). Further, systems engineers are belatedly 
discovering that they need access to more software skills as their 
systems become more software-intensive. In the U.S., this has 
caused many software institutions and artifacts to expand their scope 
to include systems, such as the Air Force Systems and Software 
Technology Center, the Practical Systems and Software 
Measurement Program and the Integrated (Systems and Software) 
Capability Maturity Model. 
The importance of integrating systems and software engineering has 
also been highlighted in the experience reports of large 
organizations trying to scale up agile methods by using teams of 
teams [35]. They find that without up-front systems engineering and 
teambuilding, two common failure modes occur. One is that agile 
teams are used to making their own team’s architecture or 
refactoring decisions, and there is a scarcity of team leaders that can 
satisfice both the team’s preferences and the constraints desired or 
imposed by the other teams. The other is that agile teams tend to 
focus on easiest-first low hanging fruit in the early increments, to 
treat system-level quality requirements (scalability, security) as 
features to be incorporated in later increments, and to become 
unpleasantly surprised when no amount of refactoring will 
compensate for the early choice of an unscalable or unsecurable off-
the-shelf component. 

3. A View of the 2010’s and Beyond 
A related paper on the future of systems and software engineering 
process [38] identified eight surprise-tree trends and two ‘wild-card’ 
trends that would strongly influence future software and systems 
engineering directions. Five of the eight surprise-tree trends were 
just discussed under the 2000’s: rapid change and the need for 
agility; increased emphasis on usability and value; software 
criticality and the need for dependability; increasing needs for 
COTS, reuse, and legacy software integration; and the increasing 
integration of software and systems engineering. Two of the eight 
surprise-tree trends will be covered next under the 2010’s: global 
connectivity and massive systems of systems. Surprise-free 
computational plenty and the two wild-card trends (increasing 
software autonomy and combinations of biology and computing) 
will be covered under “2020 and beyond”. 

3.1 2010’s Antitheses and Partial Syntheses: 
Globalization and Systems of Systems 
 
The global connectivity provided by the Internet  and low-cost, 
high-bandwidth global communications provides major economies 
of scale and network economies [7] that drive both an organization’s 
product and process strategies. Location-independent distribution 
and mobility services create both rich new bases for synergetic 
collaboration and challenges in synchronizing activities. Differential 
salaries provide opportunities for cost savings through global 
outsourcing, although lack of careful preparation can easily turn the 
savings into overruns. The ability to develop across multiple time 

zones creates the prospect of very rapid development via three-shift 
operations, although again there are significant challenges in 
management visibility and control, communication semantics, and 
building shared values and trust. 
On balance, though, the Computerworld “Future of IT” panelists felt 
that global collaboration would be commonplace in the future. An 
even stronger view is taken by the bestselling [66] book, The World 
is Flat: A Brief History of the 21st Century. It is based on extensive 
Friedman interviews and site visits with manufacturers and service 
organizations in the U.S., Europe, Japan, China and Taiwan; call 
centers in India; data entry shops in several developing nations; and 
software houses in India, China, Russia and other developing 
nations. It paints a picture of the future world that has been 
“flattened” by global communications and overnight delivery 
services that enable pieces of work to be cost-effectively outsourced 
anywhere in the world. 
The competitive victors in this flattened world are these who focus 
on their core competencies; proactively innovative within and at the 
emerging extensions of their core competencies; and efficiently 
deconstruct their operations to enable outsourcing of non-core tasks 
to lowest-cost acceptable suppliers. Descriptions in the book of how 
this works at Wal-Mart and Dell provide convincing cases that this 
strategy is likely to prevail in the future. The book makes it clear that 
software and its engineering will be essential to success, but that 
new skills integrating software engineering with systems 
engineering, marketing, finance, and core domain skills will be 
critical. 
This competition will be increasingly multinational, with 
outsourcees trying to master the skills necessary to become 
outsourcers, as their internal competition for talent drives salaries 
upward, as is happening in India, China, and Russia, for example. 
One thing that is unclear, though is the degree to which this dynamic 
will create a homogeneous global culture. There are also strong 
pressures for countries to preserve their national cultures and values. 
Thus, it is likely that the nature of products and processes would 
also evolve toward the complementarity of skills in such areas as 
culture-matching and localization [49]. Some key culture-matching 
dimensions are provided in [77]: power distance, 
individualism/collectivism, masculinity/femininity, uncertainty 
avoidance, and long-term time orientation. These often explain low 
software product and process adoption rates across cultures. One 
example is the low adoption rate (17 out of 380 experimental users) 
of the more individual/masculine/short-term U.S. culture’s Software 
CMM by organizations in the more collective/feminine/long-term 
Thai culture [121]. Another example was a much higher Chinese 
acceptance level of a workstation desktop organized around people, 
relations, and knowledge as compared to Western desktop organized 
around tools, folders, and documents [proprietary communication]. 
As with railroads and telecommunications, a standards-based 
infrastructure is essential for effective global collaboration. The 
Computerworld panelists envision that standards-based 
infrastructure will become increasingly commoditized and move 
further up the protocol stack toward applications. 
A lot of work needs to be done to establish robust success patterns 
for global collaborative processes. Key challenges as discussed 
above include cross-cultural bridging; establishment of common 
shared vision and trust; contracting mechanisms and incentives; 
handovers and change synchronization in multi-timezone 
development; and culture-sensitive collaboration-oriented 
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groupware. Most software packages are oriented around individual 
use; just determining how best to support groups will take a good 
deal of research and experimentation. 

Software-Intensive Systems of Systems 
Concurrently between now and into the 2010’s, the ability of 
organizations and their products, systems, and services to compete, 
adapt, and survive will depend increasingly on software and on the 
ability to integrate related software-intensive systems into systems of 
systems (SOS). Historically (and even recently for some forms of 
agile methods), systems and software development processes and 
maturity models have been recipes for developing standalone 
“stovepipe” systems with high risks of inadequate interoperability 
with other stovepipe systems. Experience has shown that such 
collections of stovepipe systems cause unacceptable delays in 
service, uncoordinated and conflicting plans, ineffective or 
dangerous decisions, and an inability to cope with rapid change. 
During the 1990’s and early 2000’s, standards such as the 
International Organization for Standarization (ISO)/International 
Electrotechnical Commission (IEC) 12207 [1] and ISO/IEC 15288 
[2] began to emerge that situated systems and software project 
processes within an enterprise framework. Concurrently, enterprise 
architectures such as the International Business Machines (IBM) 
Zachman Framework [155], Reference Model for Open Distributed 
Processing (RM-ODP) [127] and the U.S. Federal Enterprise 
Architecture Framework [3], have been developing and evolving, 
along with a number of commercial Enterprise Resource Planning 
(ERP) packages. 
These frameworks and support packages are making it possible for 
organizations to reinvent themselves around transformational, 
network-centric systems of systems. As discussed in [77], these are 
necessarily software-intensive systems of systems (SISOS), and 
have tremendous opportunities for success and equally tremendous 
risks of failure. There are many definitions of “systems of systems” 
[83].  For this paper, the distinguishing features of a SOS are not 
only that it integrates multiple independently-developed systems, 
but also that it is very large, dynamically evolving, and 
unprecedented, with emergent requirements and behaviors and 
complex socio-technical issues to address.  Table 1 provides some 
additional characteristics of SISOSs.   

Table 1.  Complexity of SISOS Solution Spaces. 

There is often a Lead System Integrator that is responsible for the 
development of the SOS architecture, identifying the suppliers and 
vendors to provide the various SOS components, adapting the 
architecture to meet evolving requirements and selected vendor 
limitations or constraints, then overseeing the implementation 
efforts and planning and executing the SOS level integration and 

test activities.  Key to successful SOS development is the ability to 
achieve timely decisions with a potentially diverse set of 
stakeholders, quickly resolve conflicting needs, and coordinate the 
activities of multiple vendors who are currently working together to 
provided capabilities for the SOS, but are often competitors on other 
system development efforts (sometimes referred to as “coopetitive 
relationships”). 
In trying to help some early SISOS programs apply the risk-sriven 
spiral model, I’ve found that that spiral model and other process, 
product, cost, and schedule models need considerable rethinking, 
particularly when rapid change needs to be coordinated among as 
many stakeholders as are shown in Table 1. Space limitations make 
it infeasible to discuss these in detail, but the best approach evolved 
so far involves, in Rational Unified Process terms: 
1. Longer-than-usual Inception and Elaboration phases, to 

concurrently engineer and validate the consistency and 
feasibility of the operation, requirements, architecture, 
prototypes, and plans; to select and harmonize the suppliers; 
and to develop validated baseline specifications and plans for 
each validated increment. 

2. Short, highly stabilized Construction-phase increments 
developed by a dedicated team of people who are good at 
efficiently and effectively building software to a given set of 
specifications and plans. 

3. A dedicated, continuous verification and validation (V&V) 
effort during the Construction phase by people who are good at 
V&V, providing rapid defect feedback to the developers. 

4. A concurrent agile-rebaselining effort by people who are good 
at rapidly adapting to change and renegotiating the 
specifications and plans for the next Construction increment. 

Further elaboration of the top SISOS risks and the process above are 
in [35] and [39]. Other good SISOS references are [95], [135], and 
[50]. 

3.2 2020 and Beyond 
Computational Plenty Trends 
Assuming that Moore’s Law holds, another 20 years of doubling 
computing element performance every 18 months will lead to a 
performance improvement factor of 220/1.5 = 213.33 = 10,000 by 
2025. Similar factors will apply to the size and power consumption 
of the competing elements. 
This computational plenty will spawn new types of platforms (smart 
dust, smart paint, smart materials, nanotechnology, micro electrical-
mechanical systems: MEMS), and new types of applications (sensor 
networks, conformable or adaptive materials, human prosthetics). 
These will present software engineering challenges for specifying 
their configurations and behavior; generating the resulting 
applications; verifying and validating their capabilities, 
performance, and dependability; and integrating them into even 
more complex systems of systems. 
Besides new challenges, though, computational plenty will enable 
new and more powerful software engineering approaches. It will 
enable new and more powerful self-monitoring software and 
computing via on-chip co-processors for assertion checking, trend 
analysis, intrusion detection, or verifying proof-carrying code. It will 
enable higher levels of abstraction, such as pattern-oriented 
programming, multi-aspect oriented programming, domain-oriented 
visual component assembly, and programming by example with 

Characteristic Range of Values 

Size 10-100 million lines of code 

Number of External 
Interfaces 

30-300 

Number of “Coopetitive” 
Suppliers 

20-200 

Depth of Supplier Hierarchy 6-12 levels 

Number of Coordination 
Groups 

20-200 
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expert feedback on missing portions. It will enable simpler brute-
force solutions such as exhaustive case evaluation vs. complex logic. 
It will also enable more powerful software and systems engineering 
tools that provide feedback to developers based on domain 
knowledge, programming knowledge, systems engineering 
knowledge, or management knowledge. It will enable the equivalent 
of seat belts and air bags for user-programmers. It will support 
show-and-tell documentation and much more powerful system 
query and data mining techniques. It will support realistic virtual 
game-oriented systems and software engineering education and 
training. On balance, the added benefits of computational plenty 
should significantly outweigh the added challenges. 

Wild Cards: Autonomy and Bio-Computing 
“Autonomy” covers technology advancements that use 
computational plenty to enable computers and software to 
autonomously evaluate situations and determine best-possible 
courses of action. Examples include: 
• Cooperative intelligent agents that assess situations, analyze 

trends, and cooperatively negotiate to determine best available 
courses of action. 

• Autonomic software, that uses adaptive control techniques to 
reconfigure itself to cope with changing situations. 

• Machine learning techniques, that construct and test alternative 
situation models and converge on versions of models that will 
best guide system behavior. 

• Extensions of robots at conventional-to-nanotechnology scales 
empowered with autonomy capabilities such as the above. 

Combinations of biology and computing include: 
• Biology-based computing, that uses biological or molecular 

phenomena to solve computational problems beyond the reach 
of silicon-based technology. 

• Computing-based enhancement of human physical or mental 
capabilities, perhaps embedded in or attached to human bodies 
or serving as alternate robotic hosts for (portions of) human 
bodies. 

Examples of books describing these capabilities are Kurzweil’s The 
Age of Spiritual Machines [86] and Drexler’s books Engines of 
Creation and Unbounding the Future: The Nanotechnology 
Revolution [57][58]. They identify major benefits that can 
potentially be derived from such capabilities, such as artificial labor, 
human shortfall compensation (the five senses, healing, life span, 
and new capabilities for enjoyment or self-actualization), adaptive 
control of the environment, or redesigning the world to avoid 
current problems and create new opportunities. 
On the other hand, these books and other sources such as Dyson’s 
Darwin Among the Machines: The Evolution of Global Intelligence 
[61] and Joy’s article, “Why the Future Doesn’t Need Us” [83], 
identify major failure modes that can result from attempts to 
redesign the world, such as loss of human primacy over computers, 
over-empowerment of humans, and irreversible effects such as 
plagues or biological dominance of artificial species. From a 
software process standpoint, processes will be needed to cope with 
autonomy software failure modes such as undebuggable self-
modified software, adaptive control instability, interacting agent 
commitments with unintended consequences, and commonsense 
reasoning failures. 

As discussed in Dreyfus and Dreyfus’ Mind Over Machine [59], the 
track record of artificial intelligence predictions shows that it is easy 
to overestimate the rate of AI progress. But a good deal of AI 
technology is usefully at work today and, as we have seen with the 
Internet and World Wide Web, it is also easy to underestimate rates 
of IT progress as well. It is likely that the more ambitious 
predictions above will not take place by 2020, but it is more 
important to keep both the positive and negative potentials in mind 
in risk-driven experimentation with emerging capabilities in these 
wild-card areas between now and 2020. 

4. Conclusions 
4.1 Timeless Principles and Aging Practices 
For each decade, I’ve tried to identify two timeless principles 
headed by plus signs; and one aging practice, headed by a minus 
sign. 

From the 1950’s 
+ Don’t neglect the sciences. This is the first part of the 

definition of “engineering”.  It should not include just 
mathematics and computer science, but also behavioral 
sciences, economics, and management science. It should also 
include using the scientific method to learn through experience. 

+ Look before you leap. Premature commitments can be 
disastrous (Marry in haste; repent at leisure – when any leisure 
is available). 

− Avoid using a rigorous sequential process. The world is getting 
too tangeable and unpredictable for this, and it’s usually 
slower. 

From the 1960’s 
+ Think outside the box. Repetitive engineering would never 

have created the Arpanet or Engelbart’s mouse-and-windows 
GUI. Have some fun prototyping; it’s generally low-risk and 
frequently high reward. 

+ Respect software’s differences. You can’t speed up its 
development indefinitely. Since it’s invisible, you need to find 
good ways to make it visible and meaningful to different 
stakeholders. 

− Avoid cowboy programming. The last-minute all-nighter 
frequently doesn’t work, and the patches get ugly fast. 

From the 1970’s 
+ Eliminate errors early. Even better, prevent them in the future 

via root cause analysis. 
+ Determine the system’s purpose. Without a clear shared vision, 

you’re likely to get chaos and disappointment. Goal-question-
metric is another version of this. 

− Avoid Top-down development and reductionism. COTS, reuse, 
IKIWISI, rapid changes and emergent requirements make this 
increasingly unrealistic for most applications. 

From the 1980’s 
+ These are many roads to increased productivity, including 

staffing, training, tools, reuse, process improvement, 
prototyping, and others. 

+ What’s good for products is good for process, including 
architecture, reusability, composability, and adaptability. 
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− Be skeptical about silver bullets, and one-size-fits-all solutions. 

From the 1990’s 
+ Time is money. People generally invest in software to get a 

positive return. The sooner the software is fielded, the sooner 
the returns come – if it has satisfactory quality. 

+ Make software useful to people. This is the other part of the 
definition of “engineering.” 

− Be quick, but don’t hurry. Overambitious early milestones 
usually result in incomplete and incompatible specifications 
and lots of rework. 

From the 2000s 
+ If change is rapid, adaptability trumps repeatability. 
+ Consider and satisfice all of the stakeholders’ value 

propositions. If success-critical stakeholders are neglected or 
exploited, they will generally counterattack or refuse to 
participate, making everyone a loser. 

− Avoid falling in love with your slogans. YAGNI (you aren’t 
going to need it) is not always true. 

 

For the 2010’s 
+ Keep your reach within your grasp. Some systems of systems 

may just be too big and complex. 
+ Have an exit strategy. Manage expectations, so that if things go 

wrong, there’s an acceptable fallback. 

− Don’t believe everything you read. Take a look at the 
downslope of the Gartner rollercoaster in Figure 10. 

4.2 Some Conclusions for Software 
Engineering Education 
The students learning software engineering over the next two 
decades will be participating their profession well into the 2040’s, 
2050’s, and probably 2060’s. The increased pace of change 
continues to accelerate, as does the complexity of the software-
intensive systems or systems of systems that need to be perceptively 
engineered. This presents many serious but exciting challenges to 
software engineering education, including: 

• Keeping courses and courseware continually refreshed 
and up-to-date; 

• Anticipating future trends and preparing students to deal 
with them; 

• Monitoring current principles and practices and 
separating timeless principles from out-of-date practices; 

• Packaging smaller-scale educational experiences in ways 
that apply to large-scale projects; 

• Participating in leading-edge software engineering 
research and practice, and incorporating the results into 
the curriculum; 

• Helping students learn how to learn, through state-of-the-
art analyses, future-oriented educational games and 
exercises, and participation in research; and 

• Offering lifelong learning opportunities as software 
engineers continue to practice their profession. 
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