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ABSTRACT

We propose a new viewport-based multi-metric fusion (MMF)

approach for visual quality assessment of 360-degree (om-

nidirectional) videos. Our method is based on computing

multiple spatio-temporal objective quality metrics (features)

on viewports extracted from 360-degree videos, and learning

a model that combines these features into a metric that closely

matches subjective quality scores. The main motivations for

the proposed method are that: 1) quality metrics computed

on viewports better captures the user experience than metrics

computed on the projection domain; 2) no individual objec-

tive image quality metric always performs the best for all

types of visual distortions, while a learned combination of

them is able to adapt to different conditions. Experimental

results, based on the largest available 360-degree videos qual-

ity dataset, demonstrate that the proposed metric outperforms

state-of-the-art 360-degree and 2D video quality metrics.

Index Terms— visual quality assessment, omnidirec-

tional video, 360-degree video, multi-metric fusion

1. INTRODUCTION

Omnidirectional (or 360-degree) visual content are spherical

signals captured by cameras with a full 360-degree field-of-

view (FoV). In particular, when consumed via head-mounted

displays (HMDs), 360-degree content supports immersive ex-

periences. At each time instant, the portion of the sphere in

the user’s field of view, i.e., the viewport, is rendered and pre-

sented to the user. The viewports (one per eye) are seam-

lessly updated following the user’s head movements, which

provides an increased sense of presence. Similarly to tradi-

tional audiovisual multimedia content, quality assessment of

omnidirectional content plays a central role in shaping pro-

cessing algorithms and systems, as well as their implementa-

tion, optimization, and testing.

Quality assessment of processed 360-degree visual con-

tent consumed through HMDs brings its own specificities

compared to the assessment of 2D or stereoscopic 3D vi-

sual content. For instance, to reuse existing image and video

processing technologies, the 360-degree visual content is

R. Azevedo and P. Frossard are with Signal Processing Lab. (LTS4),
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generally to a 2D plane (the projection domain) and stored as

a rectangular image [1, 2]. Examples of projections include:

equirectangular (ERP), cube map (CMP), and equiangular

cube map (EAC) [3]. The coupled interaction between pro-

jection and compression of the resulting rectangular images,

however, brings new types of visual distortions [1]. Also, the

magnification of the content, the supported increased field-

of-view, the fact that the user is completely immersed, and

the new interactive dimension, all contribute to changing the

end user perceived quality of experience (QoE) [1]. Such

new features call for the development of new methods and

good practices related to the quality and QoE assessment of

360-degree visual content.

New subjective evaluation methodologies and objective

quality metrics specifically developed for 360-degree video

have been proposed recently [1, 2]. Subjective VQA methods

collect quality judgments from human viewers through psy-

chophysical experiments. They have the advantage of being

more reliable (since humans are the ultimate receiver of the

multimedia content) but they are expensive, time-consuming,

and not suitable for real-time deployment. Thus, objective

quality assessment algorithms are required to estimate quality

automatically. PSNR-based objective image quality assess-

ment (IQA) metrics that take into account the properties of

360-degree images have been recently proposed in the litera-

ture, such as S-PSNR [4] and WS-PSNR [5]. Such methods

are easy to implement and can be efficiently integrated into

video coders, but their correlation with subjective judgements

are far from satisfactory. Moreover, when used for video qual-

ity assessment they lack a proper modelling of the temporal

characteristics of the human-visual system (HVS). Therefore,

more perceptual-oriented IQA metrics are still required for

the objective evaluation of 360-degree video quality.

Differently from current proposals, this paper proposes

a viewport-based multi-metric fusion (MMF) approach for

360-VQA. The proposed approach is based on extracting

spatio-temporal quality features (i.e., computing objective

IQA metrics) from viewports, temporally pooling them tak-

ing the characteristics of the human-visual system (HVS) into

consideration, and then training a random forest regression

model to predict the 360-degree video quality. On the one

hand, working with viewports allow us to better account for

the final viewed content and naturally supports different pro-

jections [6, 7]. On the other hand, the use of multiple objec-



tive metrics computed on these viewports allow our method

to have a good performance for the complex and diversifying

nature of visual distortions appearing in 360-degree videos.

Indeed, previous work in both traditional 2D [8, 9, 10] and

360-degree [7] VQA have recognized that even with the mul-

titude of available objective IQA metrics, there is no single

one that always performs best for all distortions. The combi-

nation of multiple metrics is thus a promising approach that

can take advantages of the power of individual metrics to cor-

relate with subjective scores on different distortions [11, 10].

Experimental results, based on the largest publicly available

360-degree video quality dataset, VQA-ODV [12], show the

viability of our proposal, which outperforms state-of-the-art

methods for 360-degree quality assessment.

Section 2 presents the related work. Section 3 describes

our proposal. Section 4 presents the experimental setup used

to validate the proposed approach and the experimental re-

sults. Finally, Section 5 brings our conclusions.

2. RELATED WORK

The use of standard 2D image/video objective metrics for

quality assessment in the projection domain is straightfor-

ward, but it does not properly model the perceived quality

of the 360-degree visual content. The main issues with such

an approach are that: (1) it gives the same importance to the

different parts of the spherical signal, which besides being

sampled very differently from classical images, also have dif-

ferent viewing probabilities; (2) even for traditional images,

these metrics are known to have limitations for different vi-

sual distortion types; hence, none is universally satisfactory.

To cope with the sampling issue of the projection do-

main, recent proposals have been developed to tackle the

specific geometry of 360-degree images: S-PSNR [4], CPP-

PSNR [13], and WS-PSNR [5]. In S-PSNR (Spherical

PSNR), sampling points uniformly distributed on a spher-

ical surface are re-projected to the original and distorted im-

ages respectively to find the corresponding pixels, followed

by the PSNR calculation. In CPP-PSNR (Craster Parabolic

Projection PSNR), PSNR is computed between samples in

the Craster Parabolic Projection (CPP) domain, in which

pixel distribution is close to a uniform one in the spherical

domain. In WS-PSNR (Weighted-to-Spherical PSNR), the

PSNR computation at each sample is performed directly in

the planar domain, but its value is weighted by the area cov-

ered by that sample on the sphere. The use of viewports [6, 7]

and voronoi patches [14] for computing individual IQA met-

rics have also been discussed, which we acknowledge as

more perceptually-correct ways of assessing 360 visual qual-

ity. These methods, however, simply compute the quality of

the 360 image as the average of the viewports (or patches).

Recent works have also proposed deep learning architec-

tures to estimate 360-degree video quality [12, 15, 16]. One

of the main issues with such approaches is that the current

360-VQA datasets are not big enough to satisfactorily train

deep learning methods. Thus, they need to perform data aug-

mentation, such as splitting the original image into patches or

rotating the original 360-degree images. In both cases, how-

ever, it is not clear if the new generated patches or rotated

images share the same quality scores of the original content.

Finally, all the metrics proposed for 360-VQA mentioned

above do not explicitly model the temporal dimension of 360-

degree videos. They usually compute the overall quality sim-

ply as the average of the quality of each individual frame. Dif-

ferent from IQA, however, VQA metrics shall ideally take the

temporal dimension into consideration and properly integrate

the temporal properties of the HVS. VQM [17], MOVIE [18],

and Vis3 [19] are examples of metrics developed for 2D VQA

that take the temporal dimension into consideration. How-

ever, these methods does not consider 360 videos specifically.

We address the above mentioned issues by computing

IQA-based objective metrics in the viewport domain, tem-

porally pooling them taking into account the HVS, and em-

ploying a multi-metric fusion approach that closely match

subjective scores. Being a multi-metric fusion approach, our

proposal shares some of the principles of such approaches,

e.g., VMAF [9], one of the most successful metrics for tra-

ditional videos, but it takes into account the specific features

of 360-degree videos. Moreover, compared to VMAF, our

method uses a different set of individual spatial and temporal

features and a temporal pooling method which support a bet-

ter correlation to subjective tests. Finally, our proposal uses a

random forest regression model whereas VMAF uses support

vector regression, since our preliminary tests indicated that

the random forest regression provide more robust results.

3. VIEWPORTS-BASED MMF FOR 360-VQA

Fig. 1 shows our proposed 360-VQA approach. The possible

space of visible viewports is represented by using N view-

ports from different viewing directions. Both the original and

the distorted content are rendered for each viewport and 2D

objective metrics are computed individually within the view-

port and then temporally pooled using an HVS-based method

that considers the temporal quality variation. Finally, based

on the per-viewport pooled scores, we train a random forest

model that is able to learn a combination of the individual

objective metrics into a new objective metric that closely re-

lates to subjective scores. In what follows, let R = {Rf , f =
0, 1, ..., F − 1} and D = {Df , f = 0, 1, ..., F − 1} respec-

tively be the reference and distorted sequences of the same

360-degree video content in the projection domain. Rf and

Df denote the f ’th frame of R and D, respectively, and F the

total number of frames in both R and D.

3.1. Viewports sampling

First, for each frame f , we compute a set of viewports VR

f =

{V R,0
f , ..., V

R,N−1

f } and VD

f = {VD,0
f , ..., V

D,N−1

f }, for the

respective reference and distorted frames. A viewport (Fig. 2)

is the gnomonic projection [20] of the omnidirectional signal
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Fig. 1: Overview of the proposed 360-VQA multi-metrics fusion approach.

to a plane tangent to the sphere. It is defined by: the viewing

direction (elo, azo), which specifies the center O′ where the

viewport is tangent to the sphere; its resolution [vpw, vph];
and its horizontal and vertical field-of-view, FoVh and FoVv ,

respectively. When considering a viewport-based metric for

360-degree videos, we need to define a process that given an

omnidirectional image, I , and the viewports parameters vpw,

vph, FoVw and FoVh, generates N viewports from different

viewing directions (i.e., different O′s).

Fig. 2: Viewport parameters [21].

Fig. 3 shows three examples of the viewport sampling pro-

cess: uniform, tropical, and equatorial [6], which sample re-

spectively 9, 16, and 25 viewports. For a specific sampling

procedure, larger FoVs might result in both larger overlapped

regions between the viewports and larger geometry distor-

tions. On the one hand, duplicated content can increase the

relative importance of such duplicated areas when computing

objective metrics on the viewports. On the other hand, smaller

FoVs might more viewports to completely cover the sphere

area, whichalso results in higher computational costs. Based

on preliminary experiments, we have found that the uniform

sampling with a FoV of 40-degree provides a good trade-off

between the number of viewports and the overlapped regions,

which is used in the experiments of Section 4. The viewport

resolution [vpw, vph] should also ideally be the same as the

HMD resolution used to visualize the content.

3.2. Features

Based on the previously computed viewports, we compute for

each pair of reference and distorted viewports, V
r,n
f and V

d,n
f ,

Fig. 3: Uniform (left), tropical (center), and equatorial (right)

viewports sampling for computing viewport-based objective

metrics.

0 ≤ n < N , a set of M objective metrics, denotated as: Qn
f =

{Q0(V
r,n
f , V

d,n
f ), ..., Qm−1(V

r,n
f , V

d,n
f )}. In particular, the

following metrics are computed for each viewport pair:

Spatial Activity. (SA) of a pair of frames is defined as the

root mean square (RMS) difference between the Sobel maps

of each of the frames [22]. The Sobel operator, S, is defined

as:
S(z) =

√

(G1 ∗ z)2 + (GT
1
∗ z)2, (1)

where z is the frame picture and ∗ denotes the 2-dimensional

convolution operation, G1 is the vertical Sobel filter:

G1 =





1 0 −1
2 0 −2
1 0 −1



 (2)

and GT
1

is the transpose of G1 (horizontal Sobel filter).

Let u and v be same frame from SRC and PVS, respec-

tively. Then, we define the difference between the Sobel maps

of both frames as: s = S(u)− S(v) and compute SA as:

SA(v, u) =

√

1

MN

∑

i,j

|sij |2, (3)

where i, j are the horizontal and vertical indices of s, and M

and N are the height and width of the frames, respectively.

PSNRHVS and PSNRHVSM. PSNR-HVS and PSNR-

HVS-M [23] are two models that have been designed to

improve the performance of PSNR taking into considera-

tion the HVS properties. PSNRHVS divides the image into

8x8 pixels non-overlapping blocks. Then the difference be-

tween the original and the distorted blocks is weighted for



every 8x8 block by the coefficients of the Contrast Sensitiv-

ity Function (CSF). PSNR-HVS-M [23] is defined similarly,

but the difference between the DCT coefficients is further

multiplied by a contrast masking metric for every 8x8 block.

MS-SSIM. MultiScale-SSIM [24] is an extension of SSIM [25]

for multiple scales. At every scale, from 1 to M , MS-SSIM

iteratively applies a low pass filter to the reference and dis-

torted images and downsample the filtered images by a factor

of two. At the mth scale, contrast and structural comparisons

are computed, respectively, cm(x, y) and sm(x, y). The lumi-

nance comparison is performed only at scale M and denoted

as lM (x, y). The overall, MS-SSIM is then computed as:

MS−SSIM(x,y) =

[lM (x,y)]αM ·

M
∏

m=1

[cm(x,y)]βm · [sm(x,y)]γm

(4)

where αM , βm, and γm adjust the relative importance of the

different components.

GMSD. Gradient Magnitude Similarity Deviation (GMSD) [26]

is based on the standard deviation of the gradient magnitude

similarity map, GMS, which is computed as:

GMS(u, v) =
2 ·m(u) ·m(v) + c

m(u)2 +m(v)2 + c
, (5)

where u and v are respectively the SRC and PVS frame; c is

a positive constant that guarantees stability; and m(z) is:

m(z) =
√

(z ∗G2)2 + (z ∗GT
2
)2, (6)

where ∗ denotes the convolution operator, G2 represents the

vertical Prewitt filter:

G2 =





1

3
0 − 1

3
1

3
0 − 1

3
1

3
0 − 1

3



 . (7)

GT
2

is the transpose of G2, i.e, the horizontal Prewitt filter.

The GMSD index is then computed as:

GMSD(u, v) =

√

1

NM

∑

i,j

(GMS(u, v)−GMS(u, v))2

(8)
where

GMS(u, v) =
1

MN

∑

i,j

GMS(u, v) (9)

Relative change in temporal information. Temporal infor-

mation (TI) characterizes the amount of motion in a video and

is defined as the standard deviation of the difference between

two frames: TI[Fn] = std(∆Fn), where ∆Fn = Fn−Fn−1.

Here, we define the relative change in TI as:

TIrel[Fn] =
|TIref [Fn]− TIdist[Fn]|

TIref [Fn]
(10)

where TIref [Fn] and TIdist[Fn] are respectively the TA for

the frame Fn in the reference and distorted videos.

3.3. HVS-based temporal pooling

The per-viewports metrics Qn
f for each frame, f ∈ {1, ..., F}

and viewport n ∈ 1, ..., N , are integrated to yield the over-

all quality of each viewport: Qn
pool. This integration is per-

formed by the temporal pooling method [27] considering the

characteristics of the HVS, in particular: (i) the smooth ef-

fect, i.e., the subjective ratings of the whole video sequence

typically demonstrate far less variation than the frame-level

quality scores; (ii) the assymetric effect, i.e., HVS is more

sensitive to frame-level quality degradations than to improve-

ment; and (iii) recency effect, i.e, subjects tend to put a higher

weight on what they have seen most recently. More precisely,

for each viewport n, we compute:

Qn
LP (f) =

{

Qn
LP (f − 1) + α ·∆Q(f), if ∆Qn ≤ 0

Qn
LP (f − 1) + β ·∆Q(f), if ∆Qn > 0

(11)

Qn
pool =

1

F

F
∑

f=1

(Qn
LP (f) · ln(γ · f + 1)) (12)

where ∆Qn = Qn
frame(f) − Qn

LP (f − 1) and Qn
LP =

Qn
frame(1), α and β controls the asymetric weights, and γ

is a positive constant for adjusting the time-related weight.

Similar to [27], in our experiments we use α = 0.03, β = 0.2,

and γ = 1000.

3.4. Random forest regression

After the temporal pooling, we end up with M features for

each viewport, which are then concatenated as a feature vec-

tor, Q = [Q0

0
, ..., Q0

m−1
, Q1

0
, ..., Q1

m−1
, Qn−1

0
, ..., Qn−1

m−1
].

Such vector is used for learning a non-linear mapping be-

tween the computed per-viewport features and the subjective

DMOS scores of 360-degree videos. In our framework, we

have tested both Support Vector Regression (SVR) [28] and

Random forest regression (RFR) [29], from which we have

chosen RFR because it significantly outperformed SVR in

our preliminary tests. Next we detail the hyper-parameter

tuning, training, and test processes of our experiments.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We validate our proposal based on the VQA-ODV dataset [12],

the largest available at this date. It is composed of 3 types

of projections and 3 levels of H.265 distortions, quantization

parameters (QP) = 27, 37, and 42. In total, there are 60

reference sequences (12 in raw format and others download

from YouTube VR channel) and 180 distorted sequences that

were rated by 221 participants. Both MOS (Mean Opinion

Scores) and DMOS (Differential Mean Opinion Scores) are

available. Without lack of generality, we focus only on the

ERP sequences of the dataset in the following experiments.

We compare our method to PSNR, S-PSNR, WS-PSNR

MS-SSIM, and VMAF, using common criteria for the eval-

uation of objective quality metrics: Pearson Linear Cor-

relation Coefficient (PLCC) Spearman Rank Order Corre-



lation Coefficient (SROCC), and Root Mean Squared Er-

ror (RMSE). SROCC measures the prediction monotonicity

while PLCC and RMSE measure the prediction accuracy.

Higher SROCC, PLCC and lower RMSE indicate good cor-

relation with subjective scores. Moreover, we compare the

performance of our method and the one of the other objective

metrics when the features are computed in: i) the projec-

tion domain (“Proj.”); ii) all viewports merged in a collage

frame (“VP-Collage”) (see Fig. 4); and iii) the viewports con-

sidered individually (“VP”), i.e., the metrics are computed

independently for each viewports (as discussed in Section 3).

Computing the objective metrics in the viewport collage

frame is similar to averaging the quality of all the viewports.

Based on the above 3 different modes, we performed two

experiments: 1) using the same fixed train/test subset of the

VQA-ODV dataset used in [12, 16]; and 2) a cross-validation

approach on the whole VQA-ODV dataset. In both exper-

iments, we use a uniform sampling with a 40-deg field of

view for the viewports, which resolution matches the HMD

resolution used in the dataset (an HTC Vive).

Fig. 4: Example of a collage frame used to compute the “VP-

collage” mode of the objective metrics.

Fixed train/test sets. Table 1 shows the results of our method

using the same (fixed) train/test data separation of VQA-ODV

as in [12, 16]. Such a test/train sets are composed of a pre-

defined subset of 80% of the sequences for training and 20%

for testing. Given such a pre-defined subsets, we first run

a group shuffle cross-validation only on the training set to

find the best random forest hyper-parameters. Based on the

found hyper-parameters, we then train the model with the

training set and test it with the test set. For the individual

objective metrics, the training phase is composed of fitting a

4-parameter logistic function with the train set and then com-

puting its performance with the test set. As an example of

the trained models for the different modes, Fig. 5 shows the

average viewports features importance of our method (“VP”).

Fig. 5: Average features importance over viewports of our

“VP” model.

Cross-validation. To avoid bias on the specific train/test set

used above, we also performed a full cross-validation on the

VQA-ODV dataset. In the cross-validation experiments, we

performed a 1000x randomly group selection of 80%/20%

train/test splitting of the dataset, and then computed the aver-

age LCC, SROCC, and RMSE of the models. To avoid bias,

the group selection ensures that there is no overlap between

content in the training and test sets. Table 2 shows the average

PLCC, SROCC, and RMSE results for the cross-validation

experiments, and Fig. 6 depicts the distribution of the corre-

lation scores through a violin plot.

Discussion. In both fixed train/test set and group cross-

validation results, the best correlation is achieved by our

method using features computed separated for each view-

port (“VP”). Besides having a better average, Fig. 6 also

highlights the density of the group cross-validation dataset,

showing a better performance for such a method. The above

results can be explained by both viewports being closer to

what the users see and that the model can learn the most

important viewports, which is not the case when using the

“VP-Collage” mode. It is also interesting to note that our

method (on both “Proj.” and “VP-Collage”) also outperforms

VMAF, which can be explained by the choice of objective

metrics, the temporal pooling, and regression methods we are

using. Finally, our results also show that the use of viewports

(even when using the “VP-collage mode) improve the results

when compared to the projection domain.
Table 1: Fixed train/test set results.

Metric PLCC SROCC RMSE

PSNR 0.72495 0.73797 8.17600

PSNR (VP-Collage) 0.76222 0.76345 7.58240

S-PSNR 0.75138 0.77040 7.75570

WS-PSNR 0.74328 0.56056 7.95010

MS-SSIM (Proj.) 0.76005 0.78867 7.87410

MS-SSIM (VP-Collage) 0.81719 0.84144 7.00240

VMAF (Proj.) 0.79657 0.79382 7.24810

VMAF (VP-Collage) 0.84483 0.85637 6.27100

Ours (Proj.) 0.85629 0.86873 6.35880

Ours (VP-Collage) 0.89867 0.87439 5.72560

Ours (VP) 0.92575 0.91712 4.99540

Table 2: Average of GroupShuffle cross valida-

tion (80%/20%) performance on VQA-ODV.
Metric PLCC SROCC RMSE

PSNR (Proj.) 0.57156 0.61873 9.8249

PSNR (VP-Collage) 0.64746 0.68579 9.1224

S-PSNR 0.62460 0.66731 9.3461

WS-PSNR 0.59803 0.64501 9.5983

MS-SSIM (Proj.) 0.75004 0.77535 7.9351

MS-SSIM (VP-Collage) 0.76405 0.79113 7.758

VMAF 0.74692 0.76673 7.9631

VMAF (VP-Collage) 0.78085 0.79802 7.5147

Ours (Proj.) 0.81728 0.82901 6.8716

Ours (VP-Collage) 0.82676 0.82647 6.7376

Ours (VP) 0.86778 0.86769 5.9367

5. CONCLUSION

We propose the use of viewport-based multi-metrics fusion

for 360-degree VQA. Computation of features in viewports

implies that our metric can be applied on a variety of projec-



Fig. 6: Violin plots for the GroupShuffle (80%x20%) cross-

validation PLCC performance on VQA-ODV dataset.

tions, and our experiments demonstrate that the multi-metrics

fusion is capable of achieving state-of-the-art results while re-

quiring much less training data than deep learning techniques.

As future work, we plan to consider color and visual attention

and test our method on different datasets.
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