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A Viral Branching Model for Predicting the Spread of Electronic Word-of-Mouth 

Abstract 

In a viral marketing campaign an organization develops a marketing message, and stimulates 

customers to forward this message to their contacts. Despite its increasing popularity, there are 

no models yet that help marketers to predict how many customers a viral marketing campaign 

will reach, and how marketers can influence this process through marketing activities. This paper 

develops such a model using the theory of branching processes. The proposed Viral Branching 

Model allows customers to participate in a viral marketing campaign by 1) opening a seeding 

email from the organization, 2) opening a viral email from a friend, and 3) responding to other 

marketing activities such as banners and offline advertising. The model parameters are estimated 

using individual-level data that become available in large quantities already in the early stages of 

viral marketing campaigns. The Viral Branching Model is applied to an actual viral marketing 

campaign in which over 200,000 customers participated during a six-week period. The results 

show that the model quickly predicts the actual reach of the campaign. In addition, the model 

proves to be a valuable tool to evaluate alternative what-if scenarios. 

Keywords: Branching Processes; Forecasting; Markov Processes; Online Marketing; Viral 
Marketing; Word of Mouth 
 

1. Introduction 

In October 2006, Unilever launched a 75-second viral video film ‘Dove Evolution’. This 

campaign generated over 2.3 million views in its first 10 days, and three times more traffic to its 

website than the 30-second commercial aired during the Super Bowl (van Wyck 2007). More 

recently, Comic Relief, a British charity organization, achieved 1.16 million participants in the 

first week after launching their viral game ‘Let it Flow’ that promoted Red Nose Day, their main 

money-raising event (New Media Age 2007). These two examples illustrate a new way of 

marketing communication in which organizations encourage customers to send emails to friends 
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containing a marketing message or a link to a commercial website. Because information spreads 

rapidly on the Internet, viral marketing campaigns have the potential to reach large numbers of 

customers in a short period of time. Not surprisingly many companies such as Microsoft, Philips, 

Sony, Ford, BMW, and Procter and Gamble have gone viral. However, not all viral marketing 

campaigns are successful, and due to competitive clutter, they need to become increasingly 

sophisticated in order to be effective and successful. It is also important that marketers are able 

to predict the returns on their expenditures and thus how many customers they will reach. As one 

marketing agency executive stated: “The move to bring a measure of predictability to the still-

unpredictable world of viral marketing is being driven by clients trying to balance the risks 

inherent in a new marketing medium with the need to prove return on investment” (Morrissey 

2007). Despite their importance, no forecasting tools for these purposes are available yet. The 

aim of this research is to develop a model that predicts how many customers a viral marketing 

campaign reaches, how this reach evolves, and how it depends on marketing activities. 

The structure of this paper is as follows. Section 2 defines viral marketing campaigns and 

describes how marketers can influence the viral process. Section 3 shows how the flow of 

communication among customers in viral marketing campaigns follows a branching process, and 

introduces our Viral Branching Model. Section 4 describes the data of a real-life viral marketing 

campaign that reached over 200,000 customers after only six weeks. The predictive performance 

of our model, analyzed using data from this campaign, is presented in Section 5. The final 

Section discusses implications of our research and suggestions for further research. 

2. Viral Marketing Campaigns 

In a viral marketing campaign an organization develops an online marketing message and 

stimulates customers to forward this message to members of their social network. These contacts 

are subsequently motivated to forward the message to their contacts, and so on. Because 
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messages from friends are likely to have more impact than advertising and information spreads 

rapidly over the internet, viral marketing is a powerful marketing communication tool that may 

reach many customers in a short period of time (De Bruyn and Lilien 2008). Furthermore, the 

nature of the Internet allows marketers to use many different forms of communication such as 

videos, games, and interactive websites in their viral campaigns. The term viral marketing may 

(incorrectly) suggest that information spreads automatically (Watts and Peretti 2007). However, 

marketers need to actively manage the viral process to facilitate the spread of information 

(Kalyanam, McIntyre, and Masonis 2007). 

2.1 Marketing activities for Managing Viral Marketing Campaigns 

In viral marketing campaigns, marketers may use two types of strategies to influence the spread 

of information. The first focuses on motivating customers to forward marketing messages to their 

contacts (Chiu, Hsieh, Kao, and Lee 2007; Godes et al. 2005; Phelps, Lewis, Mobilo, Perry, and 

Raman 2004). As suggested by Godes et al. (2005) motivations to forward messages are either 

intrinsic or extrinsic. The former can be triggered by the content of the marketing message. 

Important components of the marketing message are the subject line of the email and the text in 

the email itself (Bonfrer and Drèze 2009). Furthermore, marketers nowadays develop websites 

containing videos and games that attract customer attention and interests. These websites usually 

facilitate the viral process by providing tools to easily forward emails to friends, such as ‘Tell a 

Friend’ or ‘Share Video’ buttons. Examples of extrinsic motivations to forward marketing 

messages are prizes and other monetary incentives (Biyalogorsky, Gerstner, and Libai 2001).  

Although increasing customers’ motivation to forward messages to friends has a strong 

impact on the reach of the viral campaign, this is usually a difficult and expensive task. In 

contrast, controlling the number of initial or seeded customers is much more cost effective. In 

general, marketers can choose from three distinct categories to seed their viral marketing 
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campaign: 1) seeding emails, 2) online advertising, and 3) offline advertising. Seeding emails are 

usually sent by the company itself or by a specialized marketing agency to customers who have 

given permission to receive promotional emails (Bonfrer and Drèze 2009). Using this seeding 

tool, a marketer can target a specific group of customers that are potentially interested in the 

campaign. The design and content of the emails are crucial since customers easily categorize 

such emails as spam and quickly delete them. For this reason, seeding emails are expected to be 

less effective than viral emails that are sent by friends or acquaintances of the recipient. 

Online advertising is another important seeding tool that marketers can use to influence the 

viral process. The effectiveness of online advertising may differ depending on the customers as 

well as the websites on which the ads are placed. Interestingly, marketers can directly observe 

when a specific online ad generates a visitor to the viral campaign. Hence, the effectiveness of 

online advertising can be monitored accurately, and based on its performance marketers can 

decide to adapt their online advertising strategy. Furthermore, online advertising agencies offer 

contracts that guarantee a predetermined number of clicks to the campaign website within a 

certain time window. In such cases organizations usually pay for each click. Because online ads 

may be perceived as less obtrusive than promotional emails, this seeding tool may be very 

attractive. 

Finally, besides online seeding tools, marketers may still use ‘traditional’ offline advertising 

to seed their campaigns. Examples are magazine or TV ads that refer to the website of the viral 

marketing campaign, and package labels or coupons that try to attract visitors to the campaign 

website. However, offline seeding is less popular and expected to be less effective because 

customers cannot directly visit the campaign website by clicking a link. Another disadvantage of 

offline seeding is that it is more difficult to measure its effectiveness, as marketers cannot 

directly observe when offline advertising generates a customer to the viral campaign. Possible 
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solutions for this problem are asking customers on the website how they were informed, or to ask 

for the barcode of the product or coupon that was used to enter the website. 

As described above, the appropriate strategic decision of the marketing activities at the right 

moment strongly depends on the spread of the process and the effectiveness of each marketing 

communication tool. Therefore, marketers need to closely monitor the spread of information in 

viral marketing campaigns. 

2.2 Monitoring Viral Marketing Campaigns 

An important feature of viral marketing campaigns is that marketers are able to accurately 

measure the actions of customers, such as when they open an email (Bonfrer and Drèze 2009), 

and which pages they visit (Moe 2003). Hence, marketers may obtain large databases containing 

detailed customer behavior. Monitoring such behavior is not straightforward, and it is therefore 

important to retain only those variables that are relevant to the viral process. 

Figure 1 summarizes the five-stage process that a customer may go through during a viral 

marketing campaign. In the first stage, a customer receives an invitation at time 1t  from source b, 

i.e., through a viral email from a friend or through one of the seeding tools of a company. At the 

end of this stage, the customer decides with probability 12
bϖ  to go to the second stage and read 

the invitation at time 2t , or with probability 121 bϖ−  to exit the campaign by deleting or ignoring 

the invitation. This probability 12
bϖ  is likely to depend on the source of invitation b, as customers 

are less likely to open and read a seeding email from a company than  a viral email from a friend. 

After reading the invitation to the viral campaign, a customer decides to accept the invitation 

with probability 23
bϖ  by clicking a link to the landing page of the campaign website. After 

arriving on the landing page at time 3t  (stage 3), a customer decides to participate in the viral  
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Figure 1: Decision Tree to Participate in Viral Marketing Campaign 

1. Receiving invitation to viral 
campaign at t1

2. Reading invitation at t2

3. Visiting landing page viral
campaign at t3

4. Participating in viral campaign at t4

5. Inviting x=0,1,2,.. friends Exit

12
bϖ

23
bϖ

34
bϖ

121 bϖ−

231 bϖ−

341 bϖ−

~ arbitrary distribution with mean x μ
 

campaign (stage 4) with probability 34
bϖ  at time 4t . Participation may consist of watching a 

video, playing a game, and/or subscribing to a service. Finally, a customer decides to forward the 

message to x friends. 

Figure 1 indicates that the number of customers receiving an email is not necessarily the same 

as the number of customers who ultimately participate in the viral campaign, as this depends on 

the probabilities 12
bϖ , 23

bϖ , and 34
bϖ . As described in the previous Section, these probabilities 

depend on marketing activities such as the attractiveness of the subject line ( 12
bϖ ), the content of 

the invitation ( 23
bϖ ), and the design and content of the website ( 34

bϖ ). Although the sequence of 

stages is quite generic for most viral marketing campaigns (De Bruyn and Lilien 2008), we 

recognize that it does not necessarily hold for all viral marketing campaigns. For instance, 

participation may consist of several stages (activities) such as watching a video, subscribing to a 

newsletter, and/or playing a game. In addition, it is possible that customers forward the message 

before participation, i.e. in cases where customers can only participate when they invite a certain 
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number of friends. Therefore, marketers should adapt Figure 1 depending on the specific 

structure of their campaign. For the campaign of interest in our empirical application, Figure 1 

accurately matches its structure. However, the agency executing our campaign did not store data 

for stages 2 and 3. Hence, for each participant we observed the transition from stage 1 to 4, 

which occurred with probability 12 23 34
b b bϖ ϖ ϖ . Adapting our model (Section 3) to an alternative 

structure of a viral marketing campaign is straightforward. 

In order to manage viral marketing campaigns, marketers need to monitor the stages 

represented in Figure 1 for each individual customer. Specifically, they should register the 

following variables: 1) the source of the invitation, 2) if and when a customer arrives at each 

stage, and 3) how many friends a customer invites. This leads to a dynamic database in which 

each row represents a customer and in which corresponding variables are updated when a 

customer switches to the next stage. New rows are added when new customers are invited. Such 

a database can be automatically generated in real time during the process of a viral marketing 

campaign.  

In summary, viral marketing is an effective online marketing communication tool that may 

reach many customers in a short period of time. The reach of a viral marketing campaign is a 

function of seeding activities and the number of forwarded viral emails. While the seeding 

activities are under the direct control of marketers, they can only influence the number of 

forwarded emails through incentives. To reach the campaign’s goals, it is important for 

marketers to be able to forecast the reach of a viral marketing campaign as early as possible, and 

to determine how this reach depends on marketing activities. Because tools for supporting these 

forecasts do not yet exist, we have developed such a forecasting model in the next Section. 
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3. Modeling the Viral Marketing Process 

Insights from epidemics about the spread of viruses are useful to understand and model the 

spread of marketing messages in viral marketing campaigns. In epidemics, both aggregate and 

disaggregate level models have been developed to describe the spread of viruses (Bartlett 1960). 

Aggregate level or diffusion models assume an underlying infection process, and the 

corresponding model parameters are inferred from the total number of infected individuals over 

time. Based on these insights, Bass (1969) developed his famous diffusion model and assumed 

adoption to depend on two forces: one that is independent of previous adoptions and one that 

depends positively on previous adoptions. As the number of customers in viral marketing 

campaigns (i.e. adopters) is also influenced by these two forces, the Bass model should be able to 

describe the spread of information during viral marketing campaigns. However, there are two 

important reasons why the Bass model does not optimally describe the viral marketing process. 

First, it assumes a specific process, but does not include actual information on this process at the 

individual level. Such information becomes readily available in viral marketing campaigns and 

can be used to describe the process accurately at the aggregate level. Second, the Bass model 

assumes that every customer who has adopted the product increases the probability of others 

adopting in each time period after adoption. However, in viral marketing campaigns customers 

only influence each other right after participation when they invite their friends.  

Disaggregate level or branching process models (Athreya and Ney 1972; Dorman, 

Sinsheimer, and Lange 2004; Harris 1963) may alleviate these two limitations as parameters are 

estimated based on individual-level information, and they assume that customers only influence 

each other right after participation by infecting a fixed number of others. Although branching 

process models have proven to be very useful in describing the spread of viruses theoretically, 

they have so far, to our knowledge, not been applied to real empirical process data. The reason 
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for this is that, similar to the diffusion of products, the process of the actual spread of viruses is 

typically not observed. Interestingly, in viral marketing campaigns, marketers can observe the 

actual spread of information across customers, and branching processes might therefore be a 

promising tool to describe and predict the reach of these campaigns. Furthermore, since standard 

branching models and their extensions are not capable of describing viral marketing campaigns, 

another contribution of our research is to extend the standard branching model. In order to do so, 

we now first explain the standard branching process. 

3.1 Viral Marketing as a Branching Process 

Branching or Galton-Watson processes were originally developed at the end of the 19th century 

to derive the probability of extinction of families (Athreya and Ney 1972; Dorman et al. 2004; 

Harris 1963). Generalizations of these processes, of which the birth-and-death process is an 

example, have been applied to model phenomena in physics, biology, and in epidemiology to 

describe the spread of viruses in populations. Figure 2 graphically demonstrates the spread of 

information according to a standard branching process. The process represents T generations of 

customers that all invite 2x =  other customers. In the branching literature, x is crucial and has an 

arbitrary probability distribution with mean μ , which is called the infection or reproduction rate 

of the process. In Figure 2, the first generation (represented by stars) consists of an initial seed of 

n ‘infected’ customers that forward the message to a second generation of customers that  

subsequently forward the message to a third generation, etc. Therefore, the total number of 

customers ( )V t  in generation t equals 1tnx −  and the total reach of the campaign at generation T 

equals 1

1

T
t

t

n x −

=
∑ . In situations where the infection rate is greater than 1, it is sufficient for 

marketers to seed only a few initial customers to start the viral process, after which the whole 
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population will ultimately be infected. However, unlike in an epidemic, the infection rate in viral 

marketing campaigns is generally smaller than 1 (Watts and Peretti 2007), which 

means that the spread of information dies out quickly as each customer generates on average less 

than one new customer. In such situations, marketers should influence the viral process by: 1) 

increasing the campaign’s infection rate μ , or 2) increasing the number of seeded customers n.  

Although the standard branching model is useful to understand the underlying process in viral 

marketing campaigns, a more detailed model is needed to accurately describe and predict the 

actual spread of information. Therefore, we have extended this standard model as follows. First, 

while the standard branching model is a Markov process with fixed transition times, we allow 

customers to participate at any moment in time leading to a Markov process with stochastic 

transition times. Second, we incorporate two different types of marketing seeding activities; the 

first type allows seeding via sources Q such as banners and traditional advertising, while the  

Figure 2: Spread of a Message in a Viral Marketing Campaign as a Branching Process 

Seeds
Customers in
generation T

Generation

..

..

..

..

..

..
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second type allows seeding through emails. To incorporate this second type, we add the 

dimension ( )M t  to the standard branching process, which represents the number of unopened 

seeding emails at time t. Third, while branching models typically count the number of ‘infected’ 

customers ( )V t  (i.e. customers who received emails and did not participate or delete the email 

yet), we also count the cumulative number of customers who actually participate by introducing 

a third dimension ( )tN  to the branching model. Fourth, standard branching processes assume 

parameters to be constant over time. However, it is likely that new invitations become less 

effective during the course of the campaign, because invitations may be sent to customers who 

already received one or already participated in the campaign. Interestingly, invitations by seeding 

activities are less likely to be affected by this, because companies observe participants and 

invitations in real time during viral marketing campaigns. Hence, if a company carefully selects 

email addresses, seeding emails should be sent to customers that did not receive an invitation yet. 

Furthermore, as discussed in Section 2.1, online marketing agencies frequently offer banner 

contracts generating a pre-specified number of clicks. Also, these clicks are likely to come from 

new customers that did not participate yet. However, the probability that a participant invites a 

friend who already received an invitation or already participated increases as a function of the 

number of participants and sent invitations. In this research, we explicitly model this dynamic 

phenomenon, by allowing μ  to decrease as a function of ( )tN  and already invited customers. 

Next, we describe how the three processes ( )tM , ( )tV , and ( )tN  interact in our Viral 

Branching Model. 

3.2 The Viral Branching Model 

In this study, we decided, without loss of generality, to count those customers who participated 

in the viral campaign as the reach metric (Stage 4 in Figure 1). Before introducing our model, we 
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present its notations. Let: 

[ ]0,..,t T∈ denote continuous time, with 0t =  the start and t T=  the end of the campaign; 

( )N t   denote the cumulative number of participants in the viral campaign at time t; 

( )V t   denote the number of customers who received a viral email from a friend and who did 

not participate or delete this email yet; 

( )M t   denote the number of customers who received a seeding email from an organization 

and who did not participate or delete this email yet; 

( )Z t  denote the vector ( ) ( ) ( ){ }, ,M t V t N t ; 

q Q∈   denote the set of seeding sources excluding seeding emails (i.e. banners, advertising); 

b denote the index over all invitation sources, i.e. { }viral mail, seeding mail, b Q∈ ; 

*μ  denote the average number of invited contacts, given participation; 

θ  denote the average proportion of invited contacts that have already been invited or 

already participated in the campaign; 

μ  denote the average number of invited contacts who have not been invited or 

participated in the campaign, given participation, hence ( )* 1μ μ θ= ⋅ − 1; 

bπ   denote the probability of participation upon receiving an invitation by source b (i.e. 

12 23 34
b b b

bπ ϖ ϖ ϖ= 2); 

1 vλ   denote the average time between receiving a viral email and participating; 

1 mλ   denote the average time between receiving a seeding email and participating; 

qβ  denote the rate with which customers are invited by seeding tool q. 

Figure 3 summarizes our Viral Branching Model and shows how ( )Z t  changes over time. It 

shows how customers are invited to participate in the viral campaign by 1) receiving a seeding 
                                                 
1 Without loss of generality, in the derivations of the viral branching model in paragraphs 3.2 and 3.3, we express 
the processes ( )Z t  as a function of μ . In Section 3.4 we show how *μ  and θ  are incorporated. 
2 To count the number of customers in another stage of Figure 1, it is sufficient to change the definition of bπ  and  

μ . For instance, to count the number of participants in stage 2, bπ becomes equal to 12
bϖ , and μ  needs to be 

multiplied by 23 34
b bϖ ϖ . 
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email from a company, 2) another seeding source q Q∈  such as a banner or traditional 

advertising, or 3) receiving a viral email from a friend. When a customer participates in the viral 

campaign at time t , the number of participants ( )N t  increases by 1 and ( )M t  or ( )V t  

decreases by 1 if this participant was invited by a seeding or viral email respectively. 

Furthermore, customers may invite y friends, of which w friends are already invited to or already 

participated in the viral campaign. Hence, the number of customers that has an invitation by viral 

email increases by x y w= − . Because each participant may decide to invite a different number 

of friends, we assume that { }0,1, 2,3,...y∈ comes from an arbitrary distribution with mean *μ . 

Furthermore, we assume that { }0,1, 2,..,w y∈  is an arbitrarily distributed proportion θ  of y. 

Hence, x comes from an arbitrary distribution with mean ( )* 1μ μ θ= − . As shown in Figure 3, 

every time t a customer decides to participate, the process variables ( )M t , ( )V t , and ( )N t  

change to new values. These process variables only depend on the parameters qβ , bπ , 

( )* 1μ μ θ= − .  Finally, to incorporate the speed at which people open viral and seeding emails, 

we assume the time between receiving an invitation and participation to be exponentially 

distributed with means 1 vλ  and 1 mλ  for viral and seeding emails respectively. Although other 

distributions may fit better, the exponential distribution for the time between receiving an email 

and participation is a reasonable approximation (Bonfrer and Drèze 2009). In addition, the 

exponential distribution is the only distribution that leads to mathematically tractable solutions 

(Dorman et al. 2004). 

Based on the flow diagram in Figure 3, Figure 4 illustrates one possible realization of the 

stochastic process that is generated by our Viral Branching Model. In this Figure, we assume for 

simplicity that only a single customer is seeded by an email from a company to customer A at  
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Figure 3: Flow Diagram of a Viral Marketing Campaign 

 
Note: Customers are invited to participate in the viral campaign by either 1) receiving a seeding email from the 
company, 2) via another seeding source q such as a banner or advertising, or 3) receiving a viral email from a friend. 
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time 0t . Therefore ( )0M t , indicating the number of unopened seeding emails at 0t  sent by a 

company, equals 1. After 1 0t t−  time units, which is assumed to have an exponential distribution 

with mean 1 mλ , customer A opens the email message and participates in the viral campaign, for 

example, by clicking a link directed to the campaign website. Consequently, ( )1M t =  

( )0 1 0M t − = , and ( )1N t , indicating the reach of the viral marketing campaign up to time 1t , 

equals ( ) ( )1 0 1 1N t N t= + = . After participation, customer A sends two emails to friends B and 
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Figure 4: Realization of the Stochastic Viral Branching Process When a Company Initially 
Seeds One Customer (t is a continuous clock time) 

3453
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Note: At 0t  customer A is invited to the viral marketing campaign, in this case through receiving a seeding email 
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A participates in the viral campaign (indicated by ) ( )( )1 1N t = , after opening the email ( )( )1 0M t = , and 

decides to forward the message to two friends B and C ( )( )1 2V t = . At 2t  customer B participates in the campaign 

( )( )2 2N t = , after opening the email from friend A and forwards it to three new friends: D, E, and F 

( ) ( )( )2 1 1 3 4V t V t= − + = . Subsequently at 3t , customer F opens the email and is not interested in the campaign 

(indicated by ), i.e. ( ) ( )3 2 1 3V t V t= − = , after which customer D opens the email ( ) ( )( )4 3 1 2V t V t= − = , and 

participates in the campaign ( ) ( )( )4 3 1 3N t N t= + =  but does not forward the message to friends. At 5t , customer 
E opens the email, starts participating in the campaign and forwards the message to four friends: G, H, I, and J, i.e. 
( )5 4N t =  and ( ) ( )5 4 1 4 5V t V t= − + = . At 6t , customer G opens the email from friend E, but is not interested 

in the campaign ( )( )6 4V t = . Then at 7t , customer C opens the email, and participates in the campaign 

( )( )7 5tN =  and forwards a message to friend K ( ) ( )( )7 7 1 1 4V t V t= − + = . Finally, at 8t  customer J opens the 

email but does not participate, hence ( )8 3V t =  and ( )
8M t  and ( )

8X t  do not change. 
 
exponentially distributed with mean 1 vλ , which may be different from the time assumed for 

customer A. In the example in Figure 4, customer B opens the email from friend A after 2 1t t−  

time units, and customer C takes 7 1t t−  time units. Finally, in this example, at time 8t , we 
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observe that ( )8 0M t = , ( )8 3V t = , and ( )8 5N t = . In the next subsection we derive the 

equations of our Viral Branching Model for ( )M t , ( )V t , and ( )N t .  

3.3 Derivation of the Viral Branching Process Equations 

Branching processes are an important class of Markov processes (Ross 1997). The memoryless 

property of the exponential distribution of the time between state transitions leads to a 

continuous time Markov process. Hence, the vector ( ) ( ) ( ) ( )( )'
, ,Z t M t V t N t=  follows a three-

dimensional continuous time Markov process since 

( ) ( ) ( )( )' ' , ,0 'j i kP Z t t Z t Z r r t+ = = = ≤ <  equals ( ) ( )( )' 'P Z t t Z t+ = =j i . Where 

( )', ,m v ni i i=i , ( )', ,m v nj j j=j , and ( )', ,m v nk k k=k  are nonnegative integers counting 

respectively the number of unopened seeding emails (indicated by subscript m), unopened viral 

emails (indicated by subscript v), and number of participants (indicated by subscript n) for 

different time periods: 't , 't t+ , and r  respectively. In the viral marketing process without a 

company’s interfering, the variable ( )M t  strictly decreases and switches to state 1mi −  every 

time a customer opens a seeding email, given that ( )M t  was in state mi . An important tool for a 

marketer to increase the value of ( )M t  with a value K is by sending K seeding emails to a list of 

customers. The transitions of ( )V t  in the viral process are more complex, as these depend on the 

process ( )M t , and may both decrease as well as increase over time. When a customer opens a 

viral email, ( )V t  may decrease by one if the customer does not forward the message to friends. 

However, ( )V t  increases if 1) a customer opens a seeding email and forwards it to one or more 

friends, 2) a customer opens a viral email and forwards it to two or more friends, and 3) a 
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customer participates via another source ( q Q∈ ) in the campaign and forwards it to one or more 

friends. The third possibility, i.e. that customers randomly enter the viral marketing campaign 

from ‘outside’, is an important extension of traditional branching processes and is called 

immigration (Kendall 1949; Sevast'yanov 1957). We assume that the immigration rate equals 

q qπ β  for source { }1, 2,..,q Q∈ , hence the average time between two customers that participate in 

the viral campaign due to immigration is exponentially distributed with rate 
1

1
Q

q q
q
π β

=
∑ . Finally, 

the variable ( )N t , which depends on both processes ( )M t  and ( )V t , strictly increases and does 

so every time a customer participates in the viral campaign. This may be due to opening an email 

from a friend, or due to seeding by a company. 

Differential equations play a crucial role in determining the values of the interrelated state 

variables ( )Z t  over time in a continuous time Markov process. Kolmogorov’s backward and 

forward equations are convenient to derive the differential equations that the state transition 

probabilities should satisfy (Ross 1997). This research uses the forward equations to derive these 

differential equations, as these are more convenient to solve compared to the backward equations 

and also lead to unique solutions for all generalizations of branching processes (Harris 1963). 

Because the Viral Branching Model is new to the literature, we derive and solve these 

differential equations in the Web Appendix A. Next, we provide the solutions of the expectations 

of ( )M t , ( )V t , and ( )N t . 

3.3.1 The Conditional Expected Number of Unopened Seeding Emails ( )M t  

As derived in Web Appendix A, the conditional expected number of unopened seeding emails at 

time t , given that at time 't , with 0 't t≤ ≤ , there are mi  unopened seeding emails, equals: 
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( ) ( )( ) ( )'| ' m t t
m mE M t M t i i e λ− −= = .     (1) 

Clearly, as mλ  is always positive, ( )M t  decreases exponentially over time and reaches zero as 

time passes. A marketer, however, may increase ( )M t  by sending an additional set of seeding 

emails to a list of customers, i.e. marketers control the value mi  directly. 

3.3.2 The Conditional Expected Number of Unopened Viral Emails ( )V t  

The conditional expected number of unopened viral emails at time t, given vi  unopened viral 

emails at time 't , equals (see Web Appendix A): 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )1 ' 1 ' 1 ''
1 2| ' 1v v v v v vmt t t t t tt t

v vE V t V t i i e K e e K eλ π μ λ π μ λ π μλ− − − − − −− −= = + − + − ,  (2) 

with, 
( )1 1

m m m

v v m

iK λ π μ
λ π μ λ

=
− +

, and
( )
1

2 1

Q

q q
q

v v

K
π β μ

λ π μ
==

−

∑
. In (2), vπ μ  represents the infection rate of 

the viral marketing campaign, which is smaller than μ  because not every customer who receives 

an email decides to participate. Note that if 1vπ μ > , ( )V t  grows exponentially and reaches 

infinity when t becomes very large.  

3.3.3 The Conditional Expected Number of Participants in the Viral Campaign ( )N t  

Web Appendix A shows that the conditional expected number of participants ( )N t , given ni  

participants at time 't , equals: 

( ) ( )( ) ( )( )( ) ( )( ) ( )1 ' '
3 4 5| ' 1 1 'v v mt t t t

n nE N t N t i i K e K e K t tλ π μ λ− − − −= = + − + − + − ,     (3) 

with: 
( ) ( )3 1 21

v
v

v

K K K iπ
π μ

= + +
−

, ( )
( )4 1

m m v m

m v v

i
K

π λ λ
λ λ π μ

−
=

+ −
, and 1

5 1

Q

q q
q

v

K
π β

π μ
== −

−

∑
. Equation (3) 

represents highly non-linear effects of the model parameters on the reach of the campaign ( )N t . 

Fortunately, the model parameters are estimated on the disaggregate level, and hence equation (3) 
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is not used in the estimation procedure. In fact, it is relatively straightforward to code this 

equation in a spreadsheet program, which calculates the expected reach of the campaign based on 

the individual-level parameter estimates μ , bπ , mλ , vλ , and qβ . 

3.4 Estimating the Model Parameters 

The strength of the Viral Branching Model is that its parameters can be estimated using the 

individual-level data obtained from viral marketing campaigns as described in Section 2.2. 

Hence, in contrast to most models in marketing, we do not estimate the model parameters using 

the functional form as represented by equations (1) to (3), and data on the actual process 

variables ( )Z t . Instead, we use the dynamically generated database (see Section 2.2) containing 

the individual-level data of the process from which we infer the model parameters. The estimates 

based on these individual-level data are subsequently inserted into the model to predict the 

number of participants over time. This approach is similar to pretest market models (Hauser and 

Wisniewski 1982; Shocker and Hall 1986), including: SPRINTER (Urban 1970), PERCEPTOR 

(Urban 1975), ASSESSOR (Silk and Urban 1978), TRACKER (Blattberg and Golanty 1978), 

and MOVIEMOD (Eliashberg, Jonker, Sawhney, and Wierenga 2000) that predict market shares 

or diffusion curves based on customers’ trial and adoption processes. For these models, the 

process parameters are estimated before the start of the diffusion process using data from surveys 

and experiments. For our Viral Branching Model, we estimate the parameter values directly from 

the individual-level data that become available from the viral process of interest and that are 

stored in a dynamic database. The model parameters can be quickly estimated reliably because 

this database contains many customers already in the campaign’s early stages. 

We now describe how the basic parameters of the Viral Branching Model can be estimated for 

a given time period. In order to do so, we first discretize the time period [ ]0,..,T  into 1,..,d D=  
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time periods, with period [ ]1,..,d dd t t−= , 0 0t =  and Dt T= . Note that we still account for a 

continuous time viral branching process, but allow the model parameters to vary across time 

periods d. Hence, we estimate dμ , bdπ , qdβ  mdλ , and vdλ  for each time period d. In the 

empirical application, each time period d corresponds to one day that the viral campaign is 

online. For each period d, we observe 1,.., dc n=  customers that participate in the viral campaign.  

3.4.1 Estimating the average number of forwarded emails ( ( )* 1μ μ θ= − ): 

Each customer c in period d forwards cdy  emails to friends. We introduce variable cdju , which 

equals one if email { }1,.., cdj y∈  forwarded by customer c in period d reaches a customer who 

already participated or already received an invitation, zero otherwise. Hence, the effective 

number of forwarded emails equals 
1

cdy

cd cd cdj
j

x y u
=

= −∑ . These cdx  emails are automatically stored 

in the dynamically updated database by adding cdx  rows, i.e. rows 1, 1c dR − +  to 1,c d cdR x− +  (see 

Section 2.2). 1,c dR −  represents the number of rows in the database up to customer c-1 in period d, 

which corresponds to the cumulative number of customers who already participated or were 

already invited up to customer c-1 in period d-1. Given variables cdy  and cdju , it is relatively 

easy to estimate both parameters, *μ  and dθ , as follows: 

1 1

1*
dnD

cd
d cd

y
n

μ
= =

= ∑∑ , and         (4) 

1

1

1

cd

d

y

cdjn
j

d
cd cd

u

n y
θ =

=

=
∑

∑ .             (5) 

As described above, for prediction we expect the probability that an email is ineffective, i.e. 

( )1cdjP u = , to increase as a function of 
1, 1dn dR
− − . We use a binary logit specification to estimate  
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this increase:  

( ) ( )
( )

1 2 1,

1 2 1,

exp
1

1 exp
c d

cdj
c d

R
P u

R
α α
α α

−

−

+
= =

+ +
.    (6) 

For prediction of  
' , 'dn dR  in period 'd D> after the observation period [ ]1,.., D , we use the 

following equation: 

( )
' , ' ' ' ' ' ' ' 1 '

1
d

Q

n d d d qd qd d d d
q

R n t t Kμ π β −
=

= + ⋅ − +∑ ,    (7) 

where ( ) ( )( )' ' ' ' 1 'd d d d dn N t N tμ μ−= −  represents the expected number of forwarded emails in 

period 'd , ( )' ' ' ' 1
1

Q

qd qd d d
q

t tπ β −
=

⋅ −∑  the expected number of customers who join the campaign due 

to seeding activities q Q∈ , and 'dK  represents the number of seeding emails that a company 

sends in period 'd . Given the predicted value of 
' , 'dn dR , we use (6) to predict ' 1dθ +  as 

( )' , ' 1
dn d jP u = , which in combination with (4) leads to the predicted value of 

( )' 1 ' 1* 1d dμ μ θ+ += − . We use this procedure iteratively to forecast the viral process for all future 

periods of interest. 

3.4.2 Estimating the probabilities ( mπ , vπ ) and the distribution parameters ( mλ , vλ ) of the time 

to participate: 

In general, we do not observe when an invited customer opens an email and decides to delete it, 

and hence, to exit the campaign (see Figure 2). Therefore, we need to infer mdπ  and mdλ , and 

vdπ  and vdλ 3 simultaneously from the observed number of participants in the viral marketing 

campaign for each period d. Because the time between receiving a seeding email and 

                                                 
3In the empirical application, we assume both mdλ  and vdλ  to be equal across days during the week, and across 

days during weekends. However, both mdλ  and vdλ  are allowed to be different during weekends and weekdays. 
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participation is assumed to be exponentially distributed, the probability that customers open an 

email in period d, given they receive a seeding email before this period, equals:  

1

1

d
d

m md d md d

d

t
t t t

md
t

e t e eλ λ λλ −

−

− − −= −∫ . Hence, the probability of participating in period d, after 

receiving a seeding email equals: ( )1md d md dt t
d md e eλ λψ π −− −= − . Given that dK  customers receive a 

seeding email in period d , we observe in each time period , 1,..,d d D+  how many of these 

customers dh  participate, which has a multinomial distribution4 

[ ] ( )1 1, ,.., ~ ; , ,..,d d D d d d Dh h h MN K ψ ψ ψ+ + . Because of the many observations available after only 

short time periods, the parameters mdπ  and mdλ  can be estimated using maximum likelihood. vdπ  

and vdλ  are estimated in a similar fashion. 

3.4.3 Estimating the immigration rate q qπ β  due to seeding tool q: 

Parameters qdβ  and qdπ , representing the number of customers who visit the campaign website 

due to seeding tool q in time period d, and qdπ  representing the fraction of these customers who 

also start participating, are directly observed and stored in the dynamically updated database. For 

specific seeding tools such as banners, a marketer frequently has the opportunity to buy a 

specific amount of clicks on the banner to the website. In this case, qdβ  does not need to be 

estimated and can be directly determined (i.e. set) by the marketing manager.  

4. Empirical Study: A Real Life Viral Campaign 

4.1 Description of the Campaign 

From Friday April 1, 2005 to Friday May 6, 2005, a large financial services provider ran a viral 

marketing campaign. The goal of this campaign was to promote financial services to highly 

                                                 
4 In the empirical application we assume that the number of emails sent in period d is uniform over time, hence the 
expected probability that a customer opens a seeding email in period d, given that it was received at time τ  in 

period d equals ( )( )1

1 0

11 1
d d

md d dmd

d

t t
t tt

md
mdt

e dtd e
τ

λλλ τ
λ

−

−

−
− −− = − −∫ ∫ .  
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educated potential customers aged between 20 and 29. The structure of the campaign is as shown 

in Figure 1. Customers participated in the campaign while playing a game during which they 

answered questions which led to a career profile. Then, in return for a guaranteed prize, 

participants could fill out an online form requesting personal information. After filling out this 

information, participants were informed that they could win bigger prizes if they invited one or 

more of their friends to the campaign by sending emails via the ‘send to a friend’ button. 

Software connected to the campaign website checked in real-time whether the email addresses of 

these friends were valid (i.e. each email address was filled out only once, emails were not sent to 

the participants themselves, and the viral email did not bounce within a pre-specified time 

period). 

The viral campaign was online on April 1, but the organization started seeding on April 4. 

However, because of the novelty of the campaign, employees of the organization already started 

participating and inviting their contacts before the campaign was formally seeded. This resulted 

in 846 participants at the end of Day 3. To seed the campaign, the organization bought 6,400 

banner clicks to the campaign website between April 4 and April 14 by placing a banner on a 

popular website. Of the 6,400 visitors, 2,200 people decided to participate in the viral campaign. 

Furthermore, on April 4 and 7, the marketing agency sent 4,500 and 24,258 seeding mails, 

respectively, to customers who agreed to receive promotional emails. These marketing activities 

and the resulting viral process resulted in a total of 228,351 participants by Day 36 since the viral 

campaign was online. Figure 5 summarizes the marketing activities around the viral campaign 

and the resulting number of participants by day over time. This Figure shows that the daily 

number of participants grew rapidly during the first 11 days, after which it slowly decreased over 

time. Note that during weekends the number of participants is lower, which is due to the fact that 

during these days customers read their email less frequently compared to weekdays, as is also  
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Figure 5: Events and Number of Participants by Day during the Viral Campaign 

Bannering

Weekend

Number of seeding emails

Number of participants in viral campaign 
by day (i.e. dN(t))  

 

Note: The viral campaign started on a Friday and was online for 36 days. On Day 4, the number of participants grew 
rapidly due to marketing activities. On this day, the company sent 4,500 seeding emails and placed banners on 
websites that generated 200 participants by day for 11 consecutive days. On Day 7, the company sent an additional 
set of 24,258 seeding emails to further promote the viral campaign. 
 
shown in the following section. 

4.2 Data Description 

All 228,351 participants in the viral campaign registered on the campaign website by providing 

their email addresses. Hence, we know the email address of each participant and the time they 

participated in the viral campaign. Furthermore, we also obtained the email addresses of over 1 

million friends who were invited (some of which are also among the 228,351 because they 

actually participated), and the 28,758 seeding email addresses that the marketing agency used to 

seed the campaign. Given these data, we coded, for each participant, how many viral emails were 

sent by counting the number of viral emails that were sent to new customers who had not 

participated yet or had not received an invitation at the moment the emails were sent. 

Next to the number of emails a participant sent, we also coded how and when a participant 

was invited. Unfortunately, the marketing agency did not retain the source by which a participant 



 25

was invited in their database. Therefore, we were only able to identify the source through which 

participants were invited by matching sent seeding and viral email addresses with the registered 

email addresses of participants. Using this procedure we were able to determine the source of 

invitation to the campaign website for 73 percent of the participants. Most of the remaining 27 

percent of the customers registered under a different email address through which they were 

invited, most likely because of privacy concerns. This percentage closely corresponds to findings 

of a recent survey that showed that 42 percent of internet users have more than one email 

account, and that 33 percent of them provide email addresses that would not identify them 

personally (Wireless News 2006). From this 27 percent, we know that between April 4 and 14, 

2,200 participated due to bannering. Hence, we randomly assigned 2,200 of these participants, 

equally distributed over the 11 days, to the banner as source of invitation. Subsequently, we 

computed for each day the proportions of participants for which we knew whether they were 

invited by a viral or seeding email. For example, on Sunday April 10, 9,245 participants (98.5 %) 

participated due to a viral email and 145 participants (1.5 %) participated after being invited by a 

seeding email. On this day, after excluding 200 participants due to banners, there were 2,406 

participants for which we did not observe the source of invitation. Hence, we randomly selected 

98.5% of these 2,406 participants, and we assumed that they started participating due to a viral 

email. For the remaining 1.5% of the participants, we assumed they were invited by a seeding 

email. Sensitivity analyses showed that our results are not sensitive to different choices of 

proportions to allocate these customers to seeding email or viral email invitation sources5. We 

repeated this procedure for all days during the campaign, so that all participants were assigned a 

source through which they were invited. 

                                                 
5 In the sensitivity analyses we varied the proportions to allocate consumers to seeding emails from zero to twice as 
many customers as expected from the observed proportions. 
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In summary, after these computations, our data set consists of 228,351 lines corresponding to 

participants. Each line contains the identity of the participant, the date of participation, the source 

of invitation, the date that the participant received the invitation, the number of emails that are 

sent to friends, and how many of these friends already participated or were already invited. 

5. Results 

5.1 Performance of the Viral Branching Model 

Using the procedures as described in 3.4.1 to 3.4.3 we were able to estimate the model 

parameters, which were subsequently plugged in equations (1) to (3) to predict the number of 

participants by day. To capture the effect that customers read their email less frequently during 

weekends, we estimated different distribution parameters of the time to participate for the 

weekdays and for the weekends. Using our parameter estimates, we assessed the Viral Branching 

Model’s fit and its predictive performance. In addition to using all data during the 36 days that 

the campaign was online, we also estimated the parameters using only the first part of our data-

set and then developed forecasts for the remaining days of the 36-day period. Because we were 

interested in how early in the process we would be able to accurately predict the spread of the 

campaign, we estimated the parameters using the data obtained in four different time periods and 

then developed forecasts for the remaining days of the 36-day period (i.e. hold-out periods). 

Because marketing activities only started on Day 4, we choose the first calibration period to be 

Day 1 to 7, just after the company seeded the campaign. This led to the following five scenarios: 

1. Calibration Period: Day 1–7 Forecasting (Hold-out) Period: Day 8-36 

2. Calibration Period: Day 1-14 Forecasting (Hold-out) Period: Day 15-36 

3. Calibration Period: Day 1-21 Forecasting (Hold-out) Period: Day 22-36 

4. Calibration Period: Day 1-28 Forecasting (Hold-out) Period: Day 29-36 

5. Calibration Period: Day 1-36. 

Furthermore, we examined whether it is worthwhile to treat viral emails separately from 



 27

seeding emails in our model. In order to test this, we also estimated a restricted version of our 

model by setting m vπ π=  and m vλ λ= , which we call the nested Viral Branching Model. Finally, 

we also compared the predictive accuracy of the nested and the non-nested VBM with the 

simplest form of the Bass model (Bass 1969), and with an extended version of the Bass model 

which served as benchmarks. For the extended Bass model, we followed Kamakura and 

Balasubramanian (1988) and Parker (1992) and allow the market potential dN 6 to be a function 

of marketing activities and the innovation parameter da  to be different for weekdays and days of 

the weekend, leading to the following extended Bass model: 

( ) ( ) ( ) ( )( )1
1 1d d

d

N d
N d N d a b N N d

N
⎛ ⎞−

− − = + − −⎜ ⎟
⎝ ⎠

.   (8) 

In (8), b represents the imitation parameter, ( )0 1d a aa weekend dγ γ= + ⋅ , where ( )weekend d  

represents a dummy which equals one if Day d is during the weekend, zero otherwise, and 

0 1 2
1 1

d d

d i iN N N
i i

N Kγ γ γ β
= =

= + ⋅ + ⋅∑ ∑ , with iK  the number of seeding emails sent on Day i, and iβ  

the number of customers who start participating due to bannering on Day i. The parameters of 

the Bass model are estimated so that they optimally fit the process ( )N t , while the Viral 

Branching Model approach estimates parameters at the disaggregate level and, does not choose 

parameter values to optimize the fit of ( )N t . The Bass model and its extended version, 

therefore, serve as a strong benchmark for our Viral Branching Model. This is particularly true 

when we compare the in-sample fit over the calibration period7. 

                                                 
6 To avoid confusion with the parameters of the Viral Branching Model, we slightly deviated from conventional 
notation of the Bass model. 
7 We tried several alternative specifications to incorporate marketing activities and weekend effects by incorporating 
these  in functions for the innovation parameter a, imitation parameter b, and the market potential N . We selected 
the best performing model as the extended Bass model. 
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In Table 1 and Table 2 we present the results of the five scenarios for the different models. Table 

1 shows the in-sample fit statistics (RMSE and MAPE) and the forecasting accuracy (MAPE) for 

the cumulative number of participants (i.e. the reach ( )N t ) of the viral marketing campaign. 

Table 2 presents these statistics for the fit and prediction of the models for the increase (i.e. 

( )dN t ) in the number of participants by day. 

Overall, when analyzing the fit of the models, the results in Table 1 and Table 2 (see also Figure 

6) indicate that our Viral Branching Model (VBM) does very well in fitting the spread of the 

viral marketing campaign. The fit of the nested VBM, where the effectiveness of seeding emails 

is assumed to be equal to that of viral emails, is extremely low. This confirms the importance of 

incorporating different parameters for viral and seeding emails. Furthermore, although the 

standard Bass model does not seem to fit the process well, the extended Bass model fits the 

process ( )N t  better than our Viral Branching Model based on RMSE (1.83 vs. 6.98 for the total 

estimation period). Interestingly however, compared to the extended Bass model, the Viral 

Branching Model fits the cumulative process better based on MAPE (.05 vs. .22), and the 

differenced process, ( )dN t  based on both measures (RMSE: 1.23 vs. 1.30; MAPE: .18 vs. .31). 

This result is due to the fact that the parameters of the extended Bass model are chosen so that 

they optimize RMSE of the cumulative number of participants, and suggests that the Viral 

Branching Model better captures the actual process, which becomes apparent in the forecasting 

performance. As indicated by the results in Tables 1 and 2, and in contrast to all three competing 

models, the Viral Branching Model is able to accurately predict the spread of the campaign 

already on Day 7, when the campaign was still not fully seeded. The nested version of the model 

is not able to predict the number of participants accurately in the early stages of the campaign, 

and only starts doing better at the end of the campaign when the viral process has almost died out 
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Table 1: Model Performance – Cumulative Number of Participants in a Time Period 
 
Estimation 
Period 

 In sample fit Out of sample forecast (MAPE) for days 
Model RMSE1 MAPE2 8-14 15-21 22-28 29-36 

Day 1-7 VBM 1.79 .07 .09 .03 .07 .14 
 Nested VBM 4.02 .23 .39 .60 .37 .25 
 Standard Bass Model 8.73 2.58 .51 .77 .82 .84 
 Extended Bass Model 0.48 0.24 .08 .19 .33 .39 
Day 1-14 VBM 4.47 .05 - .02 .03 .03 
 Nested VBM 44.41 .48 - .21 .38 .46 
 Standard Bass Model 15.85 2.66 - .09 .25 .32 
 Extended Bass Model 1.12 .40 - .15 .33 .39 
Day 1-21 VBM 6.06 .06 - - .01 .02 
 Nested VBM 83.60 .58 - - .06 .14 
 Standard Bass Model 14.79 2.51 - - .03 .10 
 Extended Bass Model 2.35 .43 - - .02 .02 
Day 1-28 VBM 3.48 .04 - - - .01 
 Nested VBM 116.54 .66 - - - .01 
 Standard Bass Model 12.85 2.07 - - - .04 
 Extended Bass Model 2.04 .28 - - - .00 
Day 1-36 VBM 6.98 .05 - - - - 
 Nested VBM 119.70 .61 - - - - 
 Standard Bass Model 9.90 1.65 - - - - 
 Extended Bass Model 1.83 .22 - - - - 
1. RMSE: Root Mean Squared Errors are multiplied by 1,000. 
2. MAPE: Mean Absolute Percentage Error. 

 
and does not attract many new customers. A similar phenomenon is true for the standard Bass 

model. Although the extended Bass model does slightly better, it is not able to predict the 

number of customers in the campaign after Day 7 or Day 14. As a matter of fact, after Day 14, 

the extended Bass model hugely under predicts at 134,682 whereas the prediction of the Viral 

Branching Model is at 221,429, which is very close to the true ultimate level of 228,351.The 

extended Bass model starts to predict the process relatively well only after Day 21, while the 

nested model and standard Bass only start to predict well after Day 28. The fact that the extended 

Bass model is not able to predict the process at Day 7 or 14 confirms previous research findings 

that forecasts can only be made after the inflection point (Lenk and Rao 1990), which seems to  
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Table 2: Model Performance – Participants by Day 
 
Estimation 
Period 
 

 In sample fit Out of sample forecast (MAPE) for 
days 

Model RMSE1 MAPE2 8-14 15-21 22-28 29-36 

Day 1-7 VBM 1.12 .11 .15 .50 .61 .93 
 Nested VBM 1.91 .25 .79 .88 .83 .99 
 Standard Bass Model 3.73 3.26 1.00 1.00 1.00 1.00 
 Extended Bass Model 0.84 0.32 .30 .59 .93 .99 
Day 1-14 VBM 1.16 .08 - .22 .24 .35 
 Nested VBM 8.40 .57 - .92 1.51 1.43 
 Standard Bass Model 3.18 2.80 - .75 .98 1.00 
 Extended Bass Model 0.84 0.36 - .82 1.00 1.00 
Day 1-21 VBM 0.96 .07 - - .15 .31 
 Nested VBM 7.65 .68 - - .80 1.35 
 Standard Bass Model 3.18 2.62 - - .63 .91 
 Extended Bass Model 1.62 .46 - - .18 .29 
Day 1-28 VBM 1.01 .11 - - - .33 
 Nested VBM 8.49 .64 - - - .34 
 Standard Bass Model 2.85 2.23 - - - .75 
 Extended Bass Model 1.45 .35 - - - .24 
Day 1-36 VBM 1.23 .18 - - - - 
 Nested VBM 6.57 .62 - - - - 
 Standard Bass Model 2.57 1.88 - - - - 
 Extended Bass Model 1.30 .31 - - - - 
1. RMSE: Root Mean Squared Errors are multiplied by 1,000.  
2. MAPE: Mean Absolute Percentage Error. 
 
occur after Day 14 (see Figure 6). 

5.2 Parameter Estimates of the Viral Branching Model 

In addition to using the Viral Branching Model for forecasting the spread of the viral marketing 

campaign, we also used its parameter estimates to gain insight into the spread of information in 

the viral campaign. Table 3 presents the parameter estimates for our Viral Branching Model8. 

When we examine the parameter estimates, a number of observations can be made. First, on 

average participants sent out over four ( *μ = 4.15) viral emails to friends. Second, the 

probability that these friends start participating after receiving such an email is, on average, .26. 
                                                 
8 We did not estimate qβ  for the banners, because the company bought a fixed amount of 6,400 clicks. 
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Figure 6: Model Performance for Different Estimation Periods 
7 days estimation period

14 days estimation period

21 days estimation period

28 days estimation period

 
Note: Left (right) graphs reflect the (cumulative) number of participants by day for the four different calibration 
periods for the Viral Branching Model (  ), and the Bass Model ( ). The actual values are indicated by the 
line ( ). The shaded areas represent 95 percent prediction intervals of the Viral Branching Model (See Web 
Appendix B for its derivation). 
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Interestingly, this leads to an average infection rate of 1.08 (i.e., *vπ μ ) at the start of the 

campaign, which shows that this particular viral campaign is extremely successful as the 

infection rate is larger than one. Hence, the number of participants grows exponentially. Note 

that as expected, the proportion of emails sent to customers who already received an invitation or  

already participated θ  gradually increases over time as a function of the number of participants 

and people who already received an invitation, R. As explained in Section 3.4.1, equation (6), 

this increase is captured by a binary logit regression. The results of this analysis confirmed our 

expectations with 1α =2.99 (p <.01), and 7
2 7.24 10α −= ⋅  (p<.01). Consequently, at the end of the 

campaign the average infection rate is smaller than one and equals .87, which means that the 

number of additional participants does decrease over time as shown in Figure 5. This infection 

rate is still substantially larger than those reported by Watts and Peretti (2007), who find 

infection rates between .041 and .769. This emphasizes the success of the specific campaign we 

studied. 

As expected, the probability of participation after receiving an email from a friend ( vπ =.26) is  

substantially higher than the probability of participation after receiving a seeding email sent by 

a company ( mπ =.12). The source of the email strongly influences its effectiveness, which is also 

apparent in the forecasts of the nested VBM. Interestingly, the probability of participation after a 

Table 3: Parameter Estimates 
 *μ  θ  

mπ
 

vπ
 

qπ  1 mλ  1 vλ  
     week weekend week weekend 

Day 1-7 4.59 4.06% .06 .25 .34 0.69 -1 1.12 1.06 
Day 1-14 4.29 6.47% .10 .26 .34 1.75 2.77 1.33 1.51 
Day 1-21 4.23 7.13% .11 .26 .34 2.80 3.85 1.53 2.15 
Day 1-28 4.19 7.38% .12 .26 .34 3.31 4.39 1.59 2.80 
Day 1-36 4.15 7.64% .12 .26 .34 3.88 5.03 1.64 3.24 

1. The response time to the seeding emails at the weekend could not be estimated because there were no responses, 
as the first seeding emails were sent just after the first weekend the campaign was online. 
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banner click is relatively high (i.e. .34qπ = ), and even higher than that of customers who 

received a viral email of a friend. This is probably due to the fact that customers who click on a 

banner are already interested in the campaign. Still, 66 percent of these customers decide not to 

participate and quickly leave the campaign’s landing page. The source of the email also affects 

the amount of time people participate in the viral campaign (1/ .λ ). This is more than two times 

shorter when the email is received from a friend rather than from a company (1.64 days vs. 3.88 

days during weekdays). Note that we allowed for different estimates for mλ , and vλ  for emails 

sent during weekdays and those sent during the weekend. At weekends, people probably read 

their emails less often leading to longer times to participate, which results in fewer participants at 

weekends as shown in Figure 3. 

In the next Section, we explore further implications of the parameter estimates of our Viral 

Branching Model by examining the effects of two alternative what-if scenarios. 

5.3 What-if Analyses 

The Viral Branching Model does not only allow us to predict the spread of the viral marketing 

campaign over time, it also enables us to forecast the spread if different marketing activities are 

pursued. This possibility to perform what-if analyses allows marketers to use the model to 

support decisions about modifying the campaign in order to reach their objectives. To illustrate 

this possibility, we explore the effects of two alternative marketing activities. Using the model 

parameters of the VBM based on the estimation period of 14 days, we predict how the spread of 

the viral marketing campaign is different if 1) an additional 10,000 seeding emails are sent on 

Day 15; and 2) an additional 10,000 clicks are bought through banners that are set online for one 

week from Day 15 to Day 22. 

Table 4 summarizes the effects of these two alternative marketing campaigns. The additional  
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Table 4: Predicted Effects of What-if Scenarios 
 
Marketing activity on Day 15 

Predicted cumulative 
number of participants 

on Day 36 

Predicted number 
of additional 
participants 

Predicted number of 
additional participants 

per click/seed 
Actual marketing strategy 221,429 - - 
Extra bannering for one week: 
10,000 clicks 

242,595 21,166 2.17 participants/click 

Extra seeding: 10,000 emails 227,640 6,211 0.62 participants/seed 
 
10,000 seeding emails results in an additional reach of 6,211 participants at the end of the 

campaign on Day 36. This means that on average .62 additional participants will be reached for 

every seeding email. This is the number of people that directly participate by responding to the 

seeding email and indirectly through receiving a viral email with an invitation from a friend. It is 

remarkable that the effect of buying 10,000 additional banner clicks is substantially higher. This 

leads to an additional reach of 21,166 participants at the end of the campaign and means that the 

additional reach for every click is 2.17. Again, this is the sum of people who start participating 

directly after they have clicked the banner and the subsequently invited contacts through viral 

emails. Apparently, the bannering approach benefits from a self-selection mechanism. People 

who click on a banner may have an interest in the campaign and are then also more likely to 

participate and send viral emails to their friends. These effects are reflected in the model by the 

different probabilities of participating after receiving a seeding email ( mπ =.10 for Day 1 to 14, 

see Table 3), and after clicking on a banner ( .34qπ = , see Section 5.2). Of course, the difference 

between the effectiveness of these approaches will also depend on the quality of the mailing 

database, the characteristics of the website where the banners are placed, and the costs of these 

seeding tools. Figure 7 graphically shows the difference in the spread of the campaign if the two 

alternative scenarios are executed. It is interesting to see that effects of the additional marketing 

expenditures on Day 15 or shortly after do not only have an immediate effect but also a more 

long term effect. This is due to the indirect or viral effect following the direct effect of these 
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Figure 7: Results of What-if Analyses 

 
Note: Left (right) panel reflects the predictions on day 14 for the (cumulative) number of participants by day for the 
current marketing activities (        ) and for 2 different scenarios. In the first scenario, an additional set of 10,000 
seeding emails is sent (         ), in the second scenario, an additional 10,000 clicks to the campaign website are 
generated via bannering (         ) 
 
marketing activities. Hogan, Lemon and Libai (2004) label this the ‘ripple’ effect and they find 

that ignoring this effect may underestimate the effectiveness of advertising campaigns. The same 

is true for viral marketing campaigns and the ripple effect is likely to be even stronger for these 

types of campaigns because participants are actively encouraged to further spread the campaign 

among their friends. Once the rates of banner clicks and seeding emails are known, a company 

can determine which seeding method is most cost-effective. Once  the company can also put a 

dollar value on a customer that participates (e.g. customer lifetime value) it is possible to 

determine if it is profitable to carry out a particular additional seeding. 

6. Discussion 

Viral marketing is a relatively new way of approaching markets and communicating with 

customers and can potentially achieve a large reach and a fast spread among target audiences. 

Often these campaigns are relatively inexpensive since customer networks take care of spreading 

the messages and no expensive media exposure needs to be purchased. The dependency on these 

networks requires new modeling techniques to predict how a campaign will evolve over time and 
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how many customers will receive the message and participate. Using insights from epidemiology 

to describe the spread of viruses as a branching process, we have derived and applied a new 

model to predict the reach of a viral marketing campaign. In addition to predicting the spread of 

information, our Viral Branching Model also incorporates the effects of marketing activities such 

as seeding emails, bannering, and traditional advertising on this process, which standard 

branching models do not allow for. This enables marketers to accurately forecast the effects of 

their marketing activities and to analyze a variety of what-if scenarios. The application of our 

model on a real life viral marketing campaign shows that it is able to accurately forecast the 

reach of a viral marketing campaign after only a few days that the campaign is online and the 

company just started seeding the campaign.  

Deriving the functional form of the Viral Branching Model requires solving complex 

differential equations. This results in closed-form solutions for the expected reach of viral 

marketing campaigns. Interestingly, this complex functional form of the reach is not needed to 

estimate the model parameters. Instead, they can be estimated relatively easily using the 

individual-level data that become available in large numbers early in the campaign. In fact, the 

functional form of the Viral Branching Model can be implemented in a spreadsheet program 

such as Excel, and the values of the parameter estimates can be plugged into the model to derive 

the reach of the viral marketing campaign over time. This makes our Viral Branching Model 

useful and implementable as a marketing decision support system (Lilien and Rangaswamy 

2004). In addition, the model parameters provide valuable insights for managers to improve their 

viral marketing campaigns, because they are easily interpretable. For instance, it is insightful to 

monitor the switching probabilities as presented in Figure 1. A low probability means a 

bottleneck in the viral process, and marketers can then be advised to take appropriate measures to 

increase these probabilities. De Bruyn and Lilien (2008) show how these switching probabilities 
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depend on characteristics of the sender and the receiver of the viral email and their relationships. 

It would also be interesting to investigate how marketers could influence this process by 

changing, for example, the subject line of an email which in turn influences the probability of 

opening an email (Bonfrer and Drèze 2009). The number of emails sent by a participant is 

another important parameter that positively influences the reach of the campaign. Marketers can 

influence this parameter by changing the incentives to forward viral emails. Finally, in our 

empirical example, customers seem to read their emails less frequently during weekends 

compared to weekdays. This implies that it is more effective to send seeding emails on a 

weekday. Next to accurately forecasting and investigating alternative scenarios, managers can 

also use our model to compute the additional number of customers that a participant will 

generate in the viral marketing campaign. As shown by Hogan et al. (2004), the effectiveness of 

advertising is underestimated if word-of-mouth or the ‘ripple’ effect is not taken into account. 

Our model incorporates this ripple effect directly. 

In our research we only focused on the number of participants in a viral marketing campaign. 

However, an interesting feature of online marketing is the possibility to track the behavior of 

visitors on websites (Manchanda, Dubé, Goh, and Chintagunta 2006). This allows marketers not 

only to investigate the number of customers who visited the campaign website, but also to 

inspect the quality of these visits. An interesting opportunity for future research would be to 

study the impact of viral marketing campaigns by integrating the reach of the campaign with 

behavioral data, such as the time customers spend on the website, which pages they visit, 

whether they subscribe for a service or buy specific products.  

We applied the Viral Branching Model to one specific viral marketing campaign. Future 

research should investigate the performance of our model on other viral marketing campaigns. 

More interestingly, using a large set of viral marketing campaigns, it would be useful to 
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determine the relationships between viral marketing campaign characteristics and the value of 

the model parameter estimates. This will provide interesting insights into what makes a 

campaign successful and under which circumstances. Furthermore, such insights could be useful 

to predict the reach of viral marketing campaigns even before their launch. In addition to relating 

model parameters to campaign characteristics, it would also be valuable to investigate how 

model parameters evolve over time during the course of a viral marketing campaign. For 

instance, in our research we found that response times are slower during weekends and that the 

number of effectively forwarded emails decreases as more customers are invited. It is possible 

that in other campaigns other parameters evolve as well. For instance, the effectiveness of 

seeding activities may change if more customers joined the campaign. How to design these 

seeding tools effectively is another fruitful area for future research. For example, in a field 

experiment one could study the effect of timing and different formats of seeding emails and 

banners on traffic to the campaign website. Moreover, the effect of other media, such as blogs, 

and search engines would be valuable to study. 

To conclude, this paper is the first to describe and predict the spread of electronic word of 

mouth in viral marketing campaigns. Our approach captures the interactions between customers 

as they are directly observed in viral marketing campaigns. Furthermore, it shows how offline 

and online marketing activities affect these  interactions. We believe that our Viral Branching 

Model is a valuable tool to develop and optimize viral marketing campaigns. 
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WEB APPENDIX A 
 

Derivation of the Viral Branching Process Variables: ( )M t , ( )V t , and ( )N t  

Web Appendix A derives the expectations of the three stochastic processes ( )M t , ( )V t , and 

( )N t  of the viral branching model. The process denoted by ( )M t  captures the number of 

unopened seeding emails. The process ( )V t  captures the number of unopened viral emails and it 

depends on ( )M t , and includes immigration that is the number of viral emails may also increase 

due to consumers that participate because of other sources q Q∈  than seeding or viral emails, 

such as banners and traditional advertising. Finally, the process ( )N t  denotes the number of 

participants in the viral campaign and depends on both processes ( )M t  and ( )V t . Since the 

viral branching model, represented by the processes ( )M t , ( )V t , and ( )N t , is a continuous 

time Markov process, we can derive the Kolmogorov forward equations. This is done in the first 

Section of Web Appendix A. These differential equations represent the probability distributions 

that the three stochastic processes should satisfy. Since these differential equations do not have a 

closed form solution, we use them in the second section to derive the differential equations of the 

probability generating functions. In the final section we use these probability generating 

functions to derive closed-form solutions for the first moments of ( )M t , ( )V t , and ( )N t . 

 

1. Derivation of the Kolmogorov Forward Equations 

Let ( )P tik  denote the transition probability of switching from state ( )', ,m v ni i i=i  to 

( )', ,m v nk k k=k  in time t (i.e., ( ) ( ) ( )( )|P t P Z t s Z s= + = =ik k i , with 0s >  and 

( ) ( ) ( ) ( ){ }, ,Z t M t V t N t= , (see Ross 1997)), where ( )', ,m v ni i i=i  and ( )', ,m v nk k k=k  are 

nonnegative integers counting respectively the number of unopened seeding emails (indicated by 

subscript m), unopened viral emails (indicated by subscript v), and number of participants 

(indicated by subscript n). The Kolmogorov forward equations are defined as follows (Ross 

1997): 

 

( ) ( ) ( )d
d

P t h P t w P t
t ≠

= −∑ik jk ij k ik
j k

,     (A1) 
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for all i , j , and k , with ( )', ,m v nj j j=j . In (A1), wk  indicates the rate at which the process 

makes a transition given it is in state k . This transition occurs due to the three types of sources 

{ }, ,b m v Q∈ , i.e. when 1) a customer opens a seeding email (m), 2) a customer opens a viral 

email (v), and 3) a customer participates in the viral campaign by accepting an invitation from 

another source q Q∈ . Because of the assumptions that the time between receiving a seeding or 

viral email and participating in the campaign is exponentially distributed with parameters mλ  and 

vλ  respectively, a transition from state k due to a seeding email occurs at rate m mk λ  and a 

transition due to a viral email happens at rate v vk λ  (i.e., the number of unopened seeding and 

viral emails multiplied by the speed in which seeding and viral emails are opened respectively9). 

We model the third possibility, i.e. the process making a transition due to other sources Q given 

it is in state k,  using an immigration process (Harris 1963). This allows consumers to participate 

in the viral campaign at a given exponentially distributed rate, without being invited by seeding 

or viral emails. Since a customer participates in the viral campaign due to source q Q∈  at rate 

q qπ β , where qβ  is the exponentially distributed rate at which customers are invited by seeding 

tool q and qπ  is the probability that such a customer subsequently participates in the campaign, 

given that it is invited by source q. Hence, given seeding sources Q, transitions from state k due 

to these sources occur at rate 
1

Q

q q
q
π β

=
∑ . Because all rates are independent and exponentially 

distributed, we add these three possibilities of making a transition from state k, to arrive at the 

overall rate wk  at which the process makes a transition equals from state k: 

 
1

Q

m m v v q q
q

w k kλ λ π β
=

= + +∑k .      (A2) 

In (A1), hjk  represents the instantaneous transition rates that equal h w r=jk j jk (Ross 1997), 

where rjk  denotes the probability that a transition will occur into state k  given that the process is 

currently in state j . To derive rjk , note that transitions may occur due to three types of sources of 

                                                 
9 Note that if 1X , 2X , .., kX  are independent exponentially distributed random variables with parameter λ , than 

the minimum of these random variables, i.e. { }1 2min , ,.., kX X X , is exponentially distributed with parameter kλ . 
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invitation { }, ,b m v Q∈ . Therefore, we define ,
z z

z b
j kp  to denote the transition probability of process 

{ }, ,z m v n∈ , representing respectively the number of unopened seeding emails (m), number of 

unopened viral emails (v), and number of participants (n), due to invitation source type 

{ }, ,b m v Q∈ . Using these definitions, the probability that the process switches from state j to 

state k due to invitation source b equals: ( ) ( )
{ }

, , , ,
, , , , ,

, ,
z z m m v v n nm v n m v n

z b m b v b n b
j k j k j k j kj j j k k k

z m v n

r r p p p p
∈

= = =∏jk . 

Hence, given the three types of seeding sources { }, ,b m v Q∈ , and the fact that h w r=jk j jk  and 

using (A2), we get:  

1
m m v v n n m m v v n n m m v v n n

Q
mm vm nm mv vv nv mq vq nq

m m j k j k j k v v j k j k j k q q j k j k j k
q

h j p p p j p p p p p pλ λ π β
=

= + +∑jk  .    (A3) 

Note that the process ( )M t  only decreases when a customer opens a seeding email of the 

company, i.e. 1
m m

mm
j kp =  when 1m mj k= + , zero otherwise, and does not change due to other 

sources { },b v Q= , i.e. 1
m m m m

mv mq
j k j kp p= =  for all q Q∈  when m mj k= , zero otherwise. On the 

other hand, ( )V t  may change due to all three types of sources b. First, due to opening a seeding 

email (m), a customer decides to send one or more viral emails after participating in the viral 

campaign due to opening a seeding email. Second, due to opening a viral email (v) a customer 

decides to forward viral emails to two or more friends, i.e. ( )V t  increases, or a customer decides 

not to invite any friend and ( )V t  decreases by one. Third, due to source q Q∈ , a customer 

participates in the campaign and decides to invite one ore more friends by sending a viral email. 

When the change is due to company activities, i.e. seeding (m) or other sources q Q∈ , ( )V t  

cannot decrease. Hence, given that a consumer participates in the campaign with probability mπ  

due to opening a seeding email, 
0 if  

if  v v
v v

v vvm
j k

m k j v v

k j
p

k jπ φ −

<⎧⎪= ⎨ ≥⎪⎩
, where 

v vk jφ −  indicates the 

probability that a consumer sends v vk j−   viral emails to friends that have not been invited or did 

not participate yet. Similarly 
0 if  

if  v v
v v

v vvq
j k

q k j v v

k j
p

k jπ φ −

<⎧⎪= ⎨ ≥⎪⎩
 when the change is due to source q Q∈  

with probability qπ . However, as described above, when a customer participates with probability 
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vπ  after receiving a viral email, ( )V t  may also decrease which gives the following: 

1

0 if  
if  1v v

v v

v vvv
j k

v k j v v

k j
p

k jπ φ − +

<⎧⎪= ⎨ ≥ −⎪⎩
. Next, since ( )N t  counts the number of participants that 

participated in the viral campaign, and at most one participant can start participating in the viral 

campaign, 1
n n

nb
j kp =  if 1n nj k= − , and zero otherwise for all sources { }, ,b m v Q= .  

Using these derivations of the transition probabilities ,
z z

z b
j kp  in combination with (A3), the 

Kolmogorov forward equations (A1) of a viral marketing campaign become: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( )

( )

, , 1, , 1 , , 1, ,
0

1

1 , , , , 1 , , , 1,
1

, , , ,
1 0

d 1 1
d

1 1

v

v v m v n m v n m v n m v n
v

v

v v m v n m v n m v n m v n
v

v

v v m v n m v
v

k

m m m k j mi i i k j k i i i k k k
j

k

v v v k j v vi i i k j k i i i k k k
j

kQ

q q k j i i i k j k
q j

P t k P t P t
t

j P t k P

P

λ π φ π

λ π φ π

π β φ

− + − +
=

+

− + − +
=

−
= =

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ⋅ + − +⎜ ⎟
⎝ ⎠

+

∑

∑

∑ ∑

ik

( ) ( )

( )( ) ( )

1

, , , ,
1

n

m v n m v n

Q

m m v v q q i i i k k k
q

t

k k P tλ λ π β

−

=

⎛ ⎞
− + +⎜ ⎟
⎝ ⎠

∑

  ,   (A4) 

Equation (A4) consists of four parts (corresponding to the four lines at the right-hand-side of the 

equation). Recalling that the first part of (A4) denotes:  

( ) ( )( ) ( ) ( ) ( )( ) ( )

Customer accepts seeding invitation
Customer rejects seeding invitation

, , 1, , 1 , , 1, ,
0

1 1
v

v v m v n m v n m v n m v n
v

k

m m m k j mi i i k j k i i i k k k
j

k P t P tλ π φ π− + − +
=

⎛ ⎞
⎜ ⎟

+ + −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑  (A4.1) 

accounts for two situations. In the first situation, the customer opens the seeding invitation and 

participates in the campaign with probability mπ , and the process ( )V t  changes from vj  to vk  if 

this customer forwards v vk j−  viral emails which happens with probability 
v vk jφ − . Furthermore, 

( )N t  increases by 1 and hence nj  should equal 1nk −  in order to switch to nk . In the second 

situation when the customer opens a seeding email but decides not to participate in the viral 

campaign, which happens with probability 1 mπ− , only the process  ( )M t  changes and 

decreases by one, ( )V t  and ( )N t  are left unchanged. Similarly, recalling that the second part of 

(A4) also denotes two situations: 
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( )( ) ( ) ( )( ) ( )( )

Customer accepts viral invitation
Customer rejects viral invitation

1

1 , , , , 1 , , , 1,
1

1 1
v

v v m v n m v n m v n m v n
v

k

v v v k j v vi i i k j k i i i k k k
j

j P t k Pλ π φ π
+

− + − +
=

⎛ ⎞
⎜ ⎟

⋅ + − +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ . (A4.2) 

In the first situation, the customer opens a viral email and participates the viral campaign with 

probability vπ . If the process switches from state j to state k, this customer needs to send 

1v vk j− +  viral emails which happens with probability 1v vv k jπ φ − + , and the arrival rate of such a 

customer equals v vjλ . In this situation, ( )N t  increases by 1 and hence nj  should equal 1nk −  in 

order to switch to nk . In the second situation of (A4.2), the customer decides to reject the viral 

invitation and ( )V t  decreases by 1 (so 1v vj k= + ), leaving the other two process ( )M t  and 

( )N t  unchanged. This situation occurs with probability ( )1 vπ−  and at speed ( )1v v v vj kλ λ= + . 

The third part of (A4): 

( )( ) ( ), , , , 1
1 0

v

v v m v n m v n
v

kQ

q q k j i i i k j k
q j

P tπ β φ − −
= =
∑ ∑ ,   (A4.3) 

represents participation due to seeding sources q Q∈  at rate 
1

Q

q
q

β
=
∑  with probabilities qπ . In this 

case ( )M t  remains the same, ( )N t  increases by one, hence 1n nj k= − . Furthermore, the 

process ( )V t  may increase from state vj  to vk  if the customer forwards v vk j−  viral emails 

which occurs with probability 
v vk jφ − . Finally, recalling that part four of (A4): 

( )( ) ( ), , , ,
1

m v n m v n

Q

m m v v q q i i i k k k
q

k k P tλ λ π β
=

⎛ ⎞
− + +⎜ ⎟
⎝ ⎠

∑ ,   (A4.4) 

incorporates the rate wk  at which the process makes a transition (see also A2). 

Solving equation (A4) for arbitrary combinations of i, k, and t results in the complete 

probability distribution of the viral marketing campaign over time. However, the computations 

are highly cumbersome, as there is generally no analytical solution that expresses its probability 

distribution, except for very special cases such as the birth and death process (Athreya and Ney 

1972). However, it is possible to derive the differential equation of the probability generating 

function of the process using equation (A4) (Athreya and Ney 1972; Harris 1963), which we 

describe in the following Section. 
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2. Derivation of the Probability Generating Function 

Each probability distribution has a unique probability generating function from which we are 

able to derive its moments. Therefore, probability generating functions are popular 

representations of distributions especially when analytical representations are unknown. The 

probability generating function ( ),F ti s  of the viral branching process is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,
0 0 0

, , , , , with 
m v n

m v n

m v n m v n
m v n

m v ni i i
k k k

m v ni i i k k k
k k k

F t F s s s t P t s s s
∞ ∞ ∞

= = =

= = ≤∑ ∑∑i s s 1 .      (A5) 

To derive the conditional moments of the corresponding distribution, we only need to 

differentiate to s and evaluate the resulting equation in s 1= . For example 

( ) ( )( ) ( ),
d| '

dn
n

F tE N t N t i
s

== = i s 1 , and ( ) ( )( ) ( ),
d| '

dm
m

F tE M t M t i
s

== = i s 1 . To obtain the 

differential equation that ( ),F ti s  must satisfy, we multiply (A4) by m v nk k k
m v ns s s , and sum the 

resulting equation over mk , vk  and nk . For (A4.1) this leads to:  

( ) ( )( ) ( ) ( ) ( )( ) ( ), , 1, , 1 , , 1, ,
0 0 0 0

1 1
v

m v n

v v m v n m v n m v n m v n
m v n v

k
k k k

m v n m m m k j mi i i k j k i i i k k k
k k k j

s s s k p P t P tλ π π
∞ ∞ ∞

− + − +
= = = =

⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑ . (A6) 

Letting mk  run from 1 to infinity, and recognizing that ( )( ), , , , 1 0
m v n m v ni i i k j kP − =  for 0nk = , leads to 

the following result for the first part of (A6): 

( ) ( )( ) ( )

( )( ) ( )

, , 1, , 1
0 0 0 0

1 1
, , , ,

1 0 0 0

1
v

m v n

v v m v n m v n
m v n v

v
m v n

v v m v n m v n
m v n v

k
k k k

m v n m m m k j i i i k j k
k k k j

k
k k k

m v n m m m k j i i i k j k
k k k j

s s s k p P t

s s s k p P t

λ π

λ π

∞ ∞ ∞

− + −
= = = =

∞ ∞ ∞
− +

−
= = = =

+ =∑ ∑∑ ∑

∑∑∑ ∑                                                 
. (A7.1) 

   

Noting that ( )( ) ( ) ( )( ) ( ), , , , , , , ,
0 0 0 0

v
v v

v v m v n m v n m v n m v n
v v v

k
k k k
v k j v k vi i i k j k i i i k k k

k j k k

s P t s s P tφ φ
∞ ∞ ∞

−
= = = =

=∑ ∑ ∑ ∑  in (A7.1), leads to: 

( )( ) ( )
1 1

, , , ,
1 0 0 0

m v n

m v n m v n
m v n

k k k k
m v n m m m k v i i i k k k

k k k k

s s s k s P tλ π φ
∞ ∞ ∞ ∞

− +

= = = =
∑ ∑∑ ∑ .  (A7.2) 

Note that 1 1

1 0 0

d
d

m m m

m m m

k k k
m m m m m

k k km

k s k s s
s

∞ ∞ ∞
− −

= = =

= =∑ ∑ ∑ , and taking into account (A5), this leads to 

the following result for the first part of (A6): 
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( ) ( ), ,

0

d , , ,

d
m v n m v ni i ik

n m m k v
k m

F s s s t
s s

s
λ π φ

∞

=
∑ .   (A7.3) 

Similarly, by letting mk  run from 1 to infinity, the second part of (A6) becomes: 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

, , 1, ,
0 0 0

1
, , , ,

1 0 0

1 1

1

m v n

m v n m v n
m v n

m v n

m v n m v n
m v n

k k k
m v n m m m i i i k k k
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+
= = =
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.    (A8.1) 

Similar to step from (A7.2) to (A7.3), we observe that 1

1 0

d
d

m m

m m

k k
m m m

k km

k s s
s

∞ ∞
−

= =

=∑ ∑ . Combining 

this with definition (A5), (A8.1) equals: 

( ) ( ) ( ), ,d , , ,
1

d
m v n m v ni i i

m m
m

F s s s t

s
λ π−     (A8.2) 

 

Multiplying (A4.2) by m v nk k k
m v ns s s , and summing the resulting equation over mk , vk  and nk , 

leads to: 

( )( ) ( ) ( )( ) ( )( )

1

1 , , , , 1 , , , 1,
0 0 0 1

1 1
v

m v n

v v m v n m v n m v n m v n
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k
k k k
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⋅ + − +⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑ .(A9) 

Noting that ( )( ), , , , 1 0
m v n m v ni i i k j kP − =  for 0nk =  leads to the following for the first part of (A9): 

( )( ) ( )

( )( ) ( )

1

1 , , , , 1
0 0 0 1

1
1

1 , , , ,
0 0 0 1

                                      

v
m v n
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. (A10.1) 

Noting that ( )( ) ( ) ( )( )

1

1 , , , , , , , 1,
0 1 0 0

1
v

v v

v v m v n m v n m v n m v n
v v v

k
k k k
v v k j v v k vi i i k j k i i i k k k

k j k k
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+∞ ∞ ∞
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= = = =

= +∑ ∑ ∑ ∑  in (A10.1), 

leads to: 

( ) ( )( ) ( )
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, , , 1,
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+∑ ∑∑ ∑ .        (A10.2) 

Letting vk  run from 1 to infinity and observing that (A10.3) is equal to zero if 0vk = , (A10.2) 

can be written as: 
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( )( ) ( )
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Note again that 1

0 0

d
d

v v

v v

k k
v v v

k kv

k s s
s

∞ ∞
−

= =

=∑ ∑ , which leads to the following expression for (A10.3): 
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=
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By letting vk  run from 1 to infinity, and observing that the rhs of (A11.1) equals zero if 0vk = , 

the second part of (A9) becomes: 

( )( ) ( )( )

( ) ( )( )
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, , , ,
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Note again that 1

0 0

d
d

v v

v v

k k
v v v

k kv

k s s
s

∞ ∞
−

= =

=∑ ∑ , which leads to the following expression for (A11.1): 

( ) ( ) ( ), ,d , , ,
1

d
m v n m v ni i i
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F s s s t

s
λ π− .    (A11.2) 

 

The multiplication of (A4.3) by m v nk k k
m v ns s s , and summing the resulting equation over mk , vk  

and nk , leads to: 

  ( )( ) ( ), , , , 1
0 0 0 1 0

v
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v v m v n m v n
m v n v

kQ
k k k
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Taking into account that ( )( ) ( ) ( )( ) ( ), , , , 1 , , , , 1
0 0 0 0

v
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v v v

k
k k k
v k j v k vi i i k j k i i i k k k

k j k k

s P t s s P tφ φ
∞ ∞ ∞

− − −
= = = =

=∑ ∑ ∑ ∑  as 

noted above, and recognizing that ( )( ), , , , 1 0
m v n m v ni i i k k kP − =  for 0nk = , (A12) can be written as: 
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Given the definition in (A5), (A13.1) can be written as: 
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, , ,
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Q
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n q q k v
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Finally, the multiplication of (A4.4) by m v nk k k
m v ns s s , and summing the resulting equation over mk , 

vk  and nk , leads to: 
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  (A14) 

Given these derivations, the differential equation of the probability generating function of the 

viral branching model is equal to the sum of equations (A7.3), (A8.2), (A10.4), (A11.2), (A13.2), 

and (A14), which equals:  
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.   (A15) 

 
Using (A15), we are now able to derive the moments ( ) ( )( )| 'E M t M t , ( ) ( )( )| 'E V t V t , and 

( ) ( )( )| 'E N t N t , with 0 't t≤ ≤ , of the viral marketing processes in the next Section. 

 

3. Derivation of the moments of the Viral Branching Model 

Derivation of ( ) ( )( )| ' mE M t M t i= : 

Let, ( ) ( ) ( )( ) ( ) ( ), ,
d, | ' 1, 1, 1,
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= = = = = = . Differentiating (A15) 

to ms  leads to the following equation: 
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Setting 1m v ns s s= = =  in (A16), and by observing that 
0

1k
k v

k
sφ

∞

=

=∑  if 1vs = , we get ( ),mM i t  by 

solving the following differential equation: 
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d m m mM i t M i t

t
λ= − ⋅ .     (A17) 

Using the fact that ( ), 'm mM i t i= , we get:  

( ) ( )', m t t
m mM i t i e λ− −= .     (A18) 

Clearly, as mλ  is always positive, ( )M t  decreases exponentially over time and reaches zero as 

time passes by. A marketer, however, may increase ( )M t  by sending an additional set of 

seeding emails to a list of customers, i.e., a marketer controls the value mi  directly. 

Derivation of ( ) ( )( )| ' vE V t V t i= : 
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vs  leads to the following equation: 
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Setting 1m v ns s s= = =  in (A19), and by observing that 
0

1k
k v

k
sφ

∞

=

=∑ , and 
0

k
k v

k
k sφ μ

∞

=

=∑ , i.e. the 

expected number of forwarded viral emails to friends that did not participate or have not been 

invited yet. Note that in the paper, ( )* 1μ μ θ= − , where *μ  denotes the average number of 
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forwarded viral emails, and θ  denotes the probability of sending a viral email to a friend that has 

already received an invitation or that already participated. Furthermore, note that if 1vs = , and , 

( ) ( )
( ), ,d , , ,

d

1 1 1
,m v n m v ni i i

m
m

F s s s t

s
M i t

= = =
=  we get ( ),vV i t  by solving the following differential 

equation: 

( ) ( ) ( ) ( )
1

d , , 1 ,
d

Q

v m m m v v v q q
q

V i t M i t V i t
t

λ π μ λ π μ π β μ
=

= ⋅ + − ⋅ +∑ ,     (A20) 

Using the fact that ( ), 'v vV i t i= , and ( ) ( )', m t t
m mM i t i e λ− −= , we get: 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )( )1 ' 1 ' 1 ''
1 2, 1v v v v v vmt t t t t tt t

v vV i t i e K e e K eλ π μ λ π μ λ π μλ− − − − − −− −= + − + − ,   (A21) 

after solving (A20), with 
( )1 1

m m m

v v m

iK λ π μ
λ π μ λ

=
− +

, and
( )
1

2 1

Q

q q
q

v v

K
π β μ

λ π μ
==

−

∑
. (A21) consists of three 

components. The first component, not directly under the marketer’s control, depends on the 

number of unopened viral emails at 't t= , i.e. vi . These customers may invite new customers by 

opening their emails and forwarding it to their friends. When 1vπ μ < , this process dies out as 

time passes by. The second component depends on the number of unopened seeding emails mi  at 

time 't  and the subsequent viral process, and is therefore under marketers control. Because 

( )( ) ( )( )1 ' 'v v mt t t te eλ π μ λ− − − −−  goes to zero when t gets very large, the second component goes to zero 

as well. The third component is also under marketers control and depends on seeding activities Q 

and the subsequent viral process. Interestingly, this component reaches an equilibrium larger 

than zero that equals 2K− , which is nonnegative when 1 0vπ μ − < . However, when marketers 

quit their seeding activities (i.e. 0qβ =  for all q Q∈ ), 2K  becomes zero, and the process dies 

out. 

Derivation of ( ) ( )( )| ' nE N t N t i= : 
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Let ( ) ( ) ( )( ) ( ) ( ), ,, | ' 1, 1, 1,
m v nn n m v ni i i

n

dN i t E N t N t i F s s s t
ds

= = = = = = . Differentiating (A15) to 

ns  leads to the following equation: 
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. (A22) 

Setting 1m v ns s s= = =  in (A22), and by observing that 
0

1k
k v

k
sφ

∞

=

=∑  if 1vs = ,  

( ) ( )
( ), ,d , , ,

d

1 1 1
,m v n m v ni i i

m
m

F s s s t

s
M i t

= = =
= , and ( ) ( )

( ), ,d , , ,

d

1 1 1
,m v n m v ni i i

v
m

F s s s t

s
V i t

= = =
=  we get 

( ),nN i t  by solving the following differential equation: 

( ) ( ) ( )
1

d , , ,
d

Q

n m m m v v v q q
q

N i t M i t V i t
t

λ π λ π π β
=

= ⋅ + ⋅ +∑ .   (A23) 

Using the fact that ( ), 'n nN i t i= , and the solutions for ( ),mM i t  and ( ),vV i t , we get:  

( ) ( )( )( ) ( )( ) ( )1 ' '
3 4 5, 1 1 'v v mt t t t

n nN i t i K e K e K t tλ π μ λ− − − −= + − + − + − ,   (A24) 

with: 
( ) ( )3 1 21

v
v

v

K K K iπ
π μ

= + +
−

, ( )
( )4 1

m m v m

m v v

i
K

π λ λ
λ λ π μ

−
=

+ −
, and 1

5 1

Q

q q
q

v

K
π β

π μ
== −

−

∑
. Equation (A24) 

consists of 4 components. Because the cumulative number of participants in the viral campaign is 

strictly increasing, the first component represents the number of participants at time 't , i.e. 

( )' nN t i= . The second and third components are a mix of both participants opening seeding and 

viral emails, because ( )V t  depends on ( )M t . When time passes by, these two components do 
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not generate additional participants and the total number of participants generated by these two 

processes equals 3 4K K+ . As discussed previously, a marketer may directly influence this sum 

by sending out additional seeding emails to a list of customers. The fourth component increases 

linearly in time with coefficient 5K , which depends on seeding sources q Q∈  and the subsequent 

viral process. Again, when marketers quit their seeding activities Q, 5K  gets equal to zero and 

( )N t  does not increase further. 
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WEB APPENDIX B 

Derivation of Confidence Intervals using Second-Order Moments of the Viral Branching 
Process Variables 

 

Web Appendix B describes how to obtain confidence intervals as presented in Figure 6 of the 

paper. For the derivation of these confidence intervals, we take into account two sources of 

stochasticity: 1) stochasticity due to parameter uncertainty, and 2) stochasticity due to 

uncertainty of the viral branching process itself. We solve the first source of stochasticity by 

simulating repeatedly from the distribution of the estimated parameters, and subsequently 

computing the expected number of participants ( )N t  over time. However, the resulting 

distribution of ( )N t  underestimates the true variation in the process, because ( )N t  is stochastic 

as well. In order to take this stochasticity into account, we derive the second-order moments 

( ) ( )( )1M t M t − , ( ) ( )( )1V t V t − , and ( ) ( )( )1N t N t −  of the viral branching process variables 

which we denote respectively by ( )2M t , ( )2V t , and ( )2N t . Using these second order moments, 

we are able to derive the variance of the number of participants in the viral campaign which 

equals: 

( )( ) ( ) ( ) ( )2
2var N t N t N t N t= + − .    (B1) 

Because of the large number of participants in viral marketing campaigns, we apply the Central 

Limit Theorem, which states that the distribution of the number of participants at time t is 

approximately normal with mean ( )N t  and variance ( )2N t .  

Using the above procedure, we simulate the distribution of ( )N t  by repeatedly executing the 

following steps10: 

Step 1) Randomly draw each of the parameters from their estimated distributions. 

Step 2) Using the parameter draws from Step 1), compute the expected mean and 

variance of the process variable ( )N t . 

Step 3) Draw ( )N t  from a normal distribution with mean and variance as computed in 

Step 2). 

                                                 
10 In the empirical application we used 20,000 draws to simulate the 95 percent prediction intervals in Figure 6. 
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Using the draws generated in Step 3, it is straightforward to compute confidence intervals as we 

presented in Figure 6 of our paper. However, to execute these three steps repeatedly, we need a 

closed-form expression of the second-order moment of ( )2N t , which we derive next. 

 

Second-order moments 

Similar to the first-order moments in Web Appendix A, we derive the second-order moments 

using the differential equation of the probability generating function (A15). Using the notation in 

Web Appendix A, the second-order moment of the process ( )N t  can be computed as follows: 

( ) ( ) ( )( ) ( )( ) ( ) ( )2 , ,
d, 1 | ' 1, 1, 1,

d d m v nn n m v ni i i
n n

N i t E N t N t N t i F s s s t
s s

= − = = = = = . Using (A15) 

and (A22), we get 
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∑ ∑

.  (B1) 

Note that (B1) depends, among others, on ( ) ( ), ,d , , ,

d d
m v n m v ni i i

m n

F s s s t

s s
, which equals 

( ) ( ) ( ) ( )( )| ' , 'm nE M t N t M t i N t i= =  and represents the interaction between process variables 

( )M t  and ( )N t . Hence, to derive second-order moment of the process ( )N t , we also need to 

derive the second-order moments of the other processes, ( )M t  and ( )V t , and its interactions. 

We first derive ( )2M t  next. 
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Derivation of ( ) ( )( ) ( )( )1 | ' mE M t M t M t i− = : 

Let, ( ) ( ) ( )( ) ( )( ) ( ) ( )2 , ,, 1 | ' 1, 1, 1,
m v nm m m v ni i i

m m

dM i t E M t M t M t i F s s s t
ds ds

= − = = = = = . 

Differentiating (A16) to ms  leads to the following equation: 
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. (B2) 

Setting 1m v ns s s= = =  in (B2), and by observing that 
0

1k
k v

k
sφ

∞

=

=∑  if 1vs = , we get ( )2 ,mM i t  by 

solving the following differential equation: 

( ) ( )2 2
d , ,
d m m mM i t M i t

t
λ= − ⋅ .     (B3) 

Using the fact that ( ), 'm mM i t i= , so that ( ) ( )2 , ' 1m m mM i t i i= −  we get:  

( ) ( ) ( )2 '
2 , 1 m t t

m m mM i t i i e λ− −= − .     (B4) 

Derivation of ( ) ( )( ) ( )( )1 | ' vE V t V t V t i− = : 

To derive the second-order moment of ( )V t , we first need to have an expression for 

( ) ( ) ( ) ( )( )| ' , 'm vE M t V t M t i V t i⋅ = = , as ( ) ( )( ) ( )( )1 | ' vE V t V t V t i− =  depends on this. Let 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ), ,, , | ' , ' 1, 1, 1,
m v nm v m v m v ni i i

m v

dMV i i t E M t V t M t i V t i F s s s t
ds ds

= ⋅ = = = = = = . 

Differentiating (A16) to vs , we get: 
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Setting 1m v ns s s= = =  in (B5), and by observing that 
0

1k
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k
sφ
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=∑ , and 
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k
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k
k sφ μ

∞

=

=∑ , we get  

 the following differential equation for ( ), ,m vMV i i t : 

( ) ( )( ) ( ) ( ) ( )2
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, , 1 , , , ,
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m v v v m m v m m m q q m
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d MV i i t MV i i t M i t M i t
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Using (A18), (B4) and the fact that ( ), , 'm v m vMV i i t i i= =  to solve (B6), we get:  
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. 

Using (B7), we are able to derive the second-order moment 

( ) ( ) ( )( ) ( )( ) ( ) ( )2 , ,, 1 | 0 1, 1, 1,
m v nv v m v ni i i

v v

dV i t E V t V t V i F s s s t
ds ds

= − = = = = = . Differentiating 

(A19) to vs , we get the following differential equation: 
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Setting 1m v ns s s= = =  in (B8), and by observing that 
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− =∑ , where 2μ  is the second-order moment of forwarded viral emails to 

friends that did not participate or have not been invited yet11, we get ( )2 ,vV i t  by solving the 

following differential equation: 

                                                 
11 Similar to the other parameters of the viral branching process, we estimate 2μ  directly from the individual-level 

data that readily comes available during a viral marketing campaign, i.e. ( )2
1 1

1
1

dnD

cd cd
d cd

x x
n

μ
= =

= −∑∑ . 
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( ) ( ) ( ) ( )

( ) ( )

2 8 2

2 2
1

, , , 2 , ,

2 1 ,

v v m m v

Q

v q q
q

m m m m

v v

d
V i t K V i t M i t MV i i t

dt

V i t

λ π μ λ π μ

λ π μ π β μ
=

⋅ + ⋅ + ⋅

+ − +

=

∑
,    (B9) 

with 
1

8 2 2
Q

q q
q

v vK π βλ π μ μ
=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

∑ . Using (A18), (A21), (B7) and ( ) ( )2 ' 1v vV t i i= − , we get: 

 

( ) ( )( ) ( )( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( )( ) ( ) ( )( )
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11 12
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t t t t
v v
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K e e K e e e
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λ π μ λ π μ λ π μλ λ

λ π μ λ π μ

− − − − − − − −
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− − − −

= − + −

+ − + −

+ − + −

,  (B10) 

 with ( )
( )

8 1 2
9 1

v

v v

K K K i
K

λ π μ
+ +

=
−

, ( )
( )

2 7 1 8
10

2
2 1

m m m

v v m

i K K K
K

λ π μ μ
λ π μ λ

− −
=

− +
, 

( )
6

11
2

2 1 2
m m

v v m

KK λ π μ
λ π μ λ

= −
− +

, 

( )
( )

6 7
12

2
1

m m m v

v v m

K K i i
K

λ π μ
λ π μ λ

+ +
=

− +
, and 

( )

2 2 8
1

13 2 1

Q

q q
q

v v

K K
K

π β μ

λ π μ
=

−
=

−

∑
. 

Derivation of ( ) ( )( ) ( )( )1 | ' nE N t N t N t i− = : 

To derive the second-order moment of ( )N t , we need, next to (B4), (B7) and (B10), expressions 

for ( ) ( ) ( ) ( )( )| ' , 'm nE M t N t M t i N t i= = , and ( ) ( ) ( ) ( )( )| ' , 'v nE V t N t V t i N t i= = , as 

( ) ( )( ) ( )( )1 | ' nE N t N t N t i− =  depends on it. Let 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ), ,, , | ' , ' 1, 1, 1,
m v nm n m n m v ni i i

m n

dMN i i t E M t N t M t i N t i F s s s t
ds ds

= = = = = = = . 

Differentiating (A16) to ns , we get: 
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( ) ( )
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d d
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λ φ
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∞
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∑

∑

∑
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 .          B
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1
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λ π π φ
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∑

∑ ∑
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Setting 1m v ns s s= = =  in (B11), and by observing that 
0

1k
k v

k

sφ
∞

=

=∑  and 
0

k
k v

k

k sφ μ
∞

=

=∑ , we get 

( ), ,m nMN i i t  by solving the following differential equation: 

( ) ( ) ( ) ( )

( )

2
1

, , , , , ,

, ,

Q

m n v v m v m m m q q m
q

m m n

d MN i i t MV i i t M i t M i t
dt

MN i i t

λ π λ π π β

λ
=

= ⋅ + ⋅ + ⋅

− ⋅

∑ . (B10) 

Using (A18), (B4), (B7) and the fact that ( ), , 'm n m nMN i i t i i= , we get: 

 
( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )

' ' 2 '
14 15

1 ' ' ' '
16

, , ' m m m

v v m m m

t t t t t t
m n

t t t t t t t t
m n

MN i i t K t t e K e e

K e e e i i e

λ λ λ

λ π μ λ λ λ

− − − − − −

− − − − − − − −

= − + −

+ − +
,  (B12) 

with 14 7
1

Q

q q m v v
q

K i Kπ β λ π
=

= −∑ , ( ) 6
15

1m m m m v v

m

i i K
K

λ π λ π
λ
− −

= , and ( )
( )

6 7
16 1

v v m v

v v

K K i i
K

λ π
λ π μ

+ +
=

−
. 

 

Let ( ) ( ) ( ) ( ) ( )( ) ( ) ( ), ,, , | ' , ' 1, 1, 1,
m v nv n v n m v ni i i

v n

dVN i i t E V t N t V t i N t i F s s s t
ds ds

= = = = = = = . 

Differentiating (A19) to ns , we get: 
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ns

 

 

Setting 1m v ns s s= = =  in (B13), and by observing that 
0

1k
k v

k

sφ
∞

=

=∑  and 
0

k
k v

k

k sφ μ
∞

=

=∑ , we get 

( ), ,v nVN i i t  by solving the following differential equation: 
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∑ .  

(B14) 
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Using (A18), (A21), (A24), (B7), (B10), (B12) and the fact that ( ), , 'v n v nVN i i t i i= , we get: 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
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with ( )17 1 2 3 9
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Let ( ) ( ) ( )( ) ( )( ) ( ) ( )2 , ,, 1 | ' 1, 1, 1,
m v nn n m v ni i i

n n

dN i t E N t N t N t i F s s s t
ds ds

= − = = = = = . 

Differentiating (A22) to ns , we get: 
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Setting 1m v ns s s= = =  in (B16), and by observing that 
0

1k
k v

k

sφ
∞

=

=∑  we get ( )2 ,nN i t  by solving 

the following differential equation: 
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Using (B12), (B15) and the fact that ( ) ( )2 , ' 1n n nN i t i i= − , we get: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )

( )( )( ) ( ) ( )

1 ' 1 ''
2 25 26 27

1 '' 2 ' '
28 29 30

22 1 '
31 32 33

, 1 ' ' 1

1 1 1

1 ' '

v v v vm

v vm m m

v v

t t t tt t
n n n

t tt t t t t t

t t

N i t i i K t t e K t t e K e

K e K e K e e

K e K t t K t t

λ π μ λ π μλ

λ π μλ λ λ

λ π μ

− − − −− −

− −− − − − − −

− −

= − + − + − + −

+ − + − + −

+ − + − + −

,  (B18) 
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