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A VIRTUAL ELEMENT DISCRETIZATION FOR THE TIME DEPENDENT

NAVIER–STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION

Dibyendu Adak1,2,* , David Mora1,3, Sundararajan Natarajan2

and Alberth Silgado1

Abstract. In this work, a new Virtual Element Method (VEM) of arbitrary order k ≥ 2 for the time
dependent Navier–Stokes equations in stream-function form is proposed and analyzed. Using suitable
projection operators, the bilinear and trilinear terms are discretized by only using the proposed degrees
of freedom associated with the virtual space. Under certain assumptions on the computational domain,
error estimations are derived and shown that the method is optimally convergent in both space and
time variables. Finally, to justify the theoretical analysis, four benchmark examples are examined
numerically.
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1. Introduction

In this work, we study a Virtual Element Method (VEM) for a fourth order nonlinear problem arising in
the numerical discretization of the Navier–Stokes problem. The VEM, introduced in [6], is a generalization
of the Finite Element Method (FEM) which is characterized by the capability of dealing with very general
polygonal/polyhedral meshes, and it also permits to construct in a straightforward way highly regular discrete
spaces. Indeed, by avoiding the explicit construction of the local basis functions, the VEM can easily handle
general polygons/polyhedrons without complex integrations on the element (see [7] for details on the coding
aspects of the method). The VEM has been applied successfully for problems in fluid mechanics; see for instance
[1, 8, 17, 18, 24, 26, 30, 33, 34, 39, 41], where Stokes, Brinkman, Stokes–Darcy and Navier–Stokes equations have
been recently developed.

The Navier–Stokes system is a paradigm of fluid flow problems. Usually, the variables u and p denote the
velocity and the pressure field, respectively. It is proved that if the body force f and the initial data u0 are
smooth enough and the boundary of domain Ω is locally Lipschitz continuous, then the two dimensional non
stationary Navier–Stokes problem has weak solution. In [38], Temam showed that u ∈ L∞

(
0, T ; [H2(Ω)]2

)

with the assumption that f and initial data u0 are suitably smooth. Since the model problem consists of
nonlinear term, it is not straightforward to find analytical solution. Therefore, numerical approximation is
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the only available option in the majority of the cases found in practice, which involves very difficult initial
and boundary conditions. A large amount of articles are contributed to improve the effectiveness of numerical
schemes, the computer resolution of Navier–Stokes equations still challenges the applied mathematician and
scientist. In this article, we have attempted to develop a VEM scheme for a time dependent stream-function
formulation of the Navier–Stokes equations.

In the proposed formulation, the stream-function is the principal unknown of the system [27, 28]. Salient
features in formulations of this kind include that: there is only one scalar variable, the incompressible condition
is satisfied automatically, the stream-function is one of the most useful tools in flow visualization. On the other
hand, we note that the velocity and pressure are not present in the formulation. However, the velocity can be
easily obtained by a simple postprocess from stream-function. In 1979 in [27] the standard weak formulation was
presented for the first time in terms of the stream-function for the Navier–Stokes equations, in this direction in
[20] the authors present conforming finite element method for the steady formulation, including an algorithm
for pressure recovery. More recently, in [25] a C1 finite element method based on the Argyris element has been
proposed for the stationary quasi-geostrophic equations, which corresponds to an extension of a stream-function
formulation for the Navier–Stokes problem.

It is well-known that conforming finite element methods to solve the fourth order problems require C1-
continuity. The construction of finite elements with such regularity is not straightforward (see [23]). However,
this can be easily achieved by using the virtual element strategy. More precisely, we will follow the VEM
approach presented in [16,21] (see also [10,12,35,36]) to build global discrete spaces of H2(Ω) of arbitrary order
to solve the time dependent fourth order nonlinear problem.

There are some works for the approximation by VEM for fluid flow problems using the stream-function
formulation. In [4] a C1 conforming virtual element method has been presented to solve the Stokes problem
on general polygonal meshes. More recently, a 2D Stokes complex structure for the VEM was analyzed and a
discrete curl formulation of the Navier–Stokes problem has been obtained in [11]. The extension to the 3D case
of the Stokes complex structure for the VEM has been presented in [13].

The goal of this paper is to propose a conforming C1 virtual element method to solve continuous weak
formulation (2.5) (will be defined in Sect. 2) and to prove that the method is optimally convergent in both space
and time variables. More precisely, we will propose a new VEM discretization to solve the time dependent Navier–
Stokes problem written in terms of the stream-function variable. We consider a primal variational formulation of
the problem written in H2(Ω). Then, we propose a direct C1 global virtual element subspace of arbitrary order
k ≥ 2 to be used in the semi-discrete and fully-discrete formulations. We construct projection operators in order
to write bilinear and trilinear forms that are fully computable. In particular, to discretize the trilinear form, we
propose a form which does not need any stabilization. We prove that the fully-discrete problem is well-posed
by using fixed point arguments and assuming that the data is in a certain sense small enough. Then, we obtain
optimal rate of convergence in H2(Ω) for the proposed discretizations by using an adequate projection operator
and under standard assumptions on the computational domain. In addition, the velocity field is then obtained
from the discrete stream-function by a postprocess. In a summary, the advantages of the present method are:
the C1 conforming virtual space can be built with a straightforward construction due to the flexibility of the
VEM and it provides a very competitive alternative to solve the time dependent Navier–Stokes problem on
polygonal meshes.

The rest of the paper is organized as follows: In Section 2, the model problem and the continuous weak
formulation are defined. Using the stream-function formulation, we rewrite the continuous weak formulation that
is nonlinear time dependent biharmonic problem. Further, the basic settings of the functional analysis and the
assumptions required to develop the theory are also highlighted. In Section 3, we introduce the virtual element
subspaces, the polynomial projection operators and the discrete forms which are exploited to construct the
discrete schemes. In Section 4, the semi-discrete and fully-discrete schemes are introduced and the well posedness
of the schemes are also discussed. A priori error estimates for the semi-discrete and the fully-discrete schemes
are investigated in Section 5. The theoretical convergence rates are justified with four numerical examples in
Section 6.
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2. Preliminaries and the model problem

Let Ω ⊂ R2 be a simply connected polygonal domain with boundary Γ := ∂Ω. We denote by L2(Ω), the
space of square integrable scalar functions with the standard inner product (ψ, φ)0,Ω :=

∫
Ω
ψφ. For each positive

integer s ∈ N, we define Hs(Ω) [2], the Sobolev space with standard norm

‖φ‖s,Ω :=


 ∑

0≤α≤s

‖∂αφ‖2
0,Ω




1/2

,

where α is multi index and ∂αφ denotes αth partial derivative of φ. Let t denote the time variable taking values
in the interval I := (0, T ], where T is a given final time. Moreover, the function space L2(0, T ;Hs(Ω)) consists
of scalar functions φ such that for almost all t ∈ [0, T ], φ(·, t) ∈ Hs(Ω) [15] with the norm,

‖φ‖L2(0,T,Hs(Ω)) :=

(∫ T

0

‖φ(t)‖2
s,Ω

)1/2

; ‖φ‖L∞(0,T,Hs(Ω)) := ess sup
0≤t≤T

‖φ(t)‖s,Ω.

In addition, given any Hilbert space V , we will denote by [V ]2 the space of vectors functions with entries in V

(see [2]). Further, we define ∂tφ := dφ
dt , ∂ttφ := d2φ

dt2 , divφ := dφ
dx + dφ

dy , curlφ :=
(

dφ
dy ,−

dφ
dx

)
, D2φ := (∂ijφ)1≤i,j≤2

denotes the Hessian matrix of φ, and ∂nφ := ∇φ ·n, where n is outward normal vector. For second order tensor
fields σ, τ : Ω → R2×2, we define scalar product : : R2×2 × R2×2 → R by

σ : τ :=
∑

1≤i,j≤2

σijτ ij ,

where σij and τ ij are the entries at (i, j)-th position of σ and τ , respectively.

2.1. Model problem

We consider the time-dependent Navier–Stokes problem (for more details, see for instance [28, 37]): given a
sufficiently smooth force density f ∈ [L2(Ω)]2, we seek (u(t), p(t)) such that:

∂tu− ν∆u+ (u · ∇)u+ ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

(p, 1)0,Ω = 0,

u(0) = u0,

(2.1)

where u, p are the velocity and the pressure fields, respectively, and ν > 0 is the viscosity of the fluid. We
introduce the following Hilbert spaces:

H :=
{
v ∈ [H1(Ω)]2 : v = 0 on Γ

}
,

and
Q :=

{
q ∈ L2(Ω) : (q, 1)0,Ω = 0

}
.

The standard velocity-pressure variational formulation of the Navier–Stokes problem reads as follows: find
(u(t), p(t)) ∈ H ×Q, such that

∫

Ω

∂tu · v + ν

∫

Ω

∇u : ∇v +

∫

Ω

(u · ∇)u · v −

∫

Ω

p div v =

∫

Ω

f · v ∀v ∈ H,

∫

Ω

q div u = 0 ∀q ∈ Q.

(2.2)
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It is well known that (2.2) admits a unique solution (see [28]). Let us introduce the following space of functions
in H with vanishing divergence

Z := {v ∈ H : div v = 0}.

Then, equation (2.2) can be rewritten in the following form: find u(t) ∈ Z such that
∫

Ω

∂tu · v + ν

∫

Ω

∇u : ∇v +

∫

Ω

(u · ∇)u · v =

∫

Ω

f · v ∀v ∈ Z.

Now, we reformulate the above problem as follows: since Ω is a simply connected domain, a well known
result states that a vector function v ∈ Z if and only if there exists a scalar function ϕ ∈ H2(Ω) (called
stream-function) such that

v = curl ϕ ∈ H.

The function ϕ is defined up to a constant. Thus, we consider the following space

H2
0 (Ω) :=

{
ϕ ∈ H2(Ω) : ϕ = ∂nϕ = 0 on Γ

}
.

We endow H2
0 (Ω) with the natural norm ‖ · ‖2,Ω. Then, (2.2) can be formulated as follows: find ψ(t) ∈ H2

0 (Ω)
such that

∫

Ω

∂t(curl ψ) · curl φ+ ν

∫

Ω

∆ψ∆φ+

∫

Ω

∆ψcurl ψ · ∇φ =

∫

Ω

f · curl φ ∀φ ∈ H2
0 (Ω),

ψ(0) = ψ0.

(2.3)

Now, we introduce the following trilinear form as follows,

C(·; ·, ·) : H2
0 (Ω) ×H2

0 (Ω) ×H2
0 (Ω) → R,

C(v;ψ, φ) :=

∫

Ω

∆vcurl ψ · ∇φ.
(2.4)

It is observed that C(v;φ, φ) = 0 and C(v;ψ, φ) = −C(v;φ, ψ). An application of Hölder inequality and the
Sobolev’s embedding theorem H1(Ω) ↪→ L4(Ω), we have

C(v;ψ, φ) ≤ C0(Ω) ‖v‖2,Ω‖ψ‖2,Ω‖φ‖2,Ω ∀v, ψ, φ ∈ H2(Ω).

Further, let X ′ be the dual space of X. For any smooth enough function u, v ∈ H2
0 (Ω), we define the function

G(u, v) ∈ H−2(Ω) = [H2
0 (Ω)]′ such that

〈G(u, v), w〉−2,2,Ω := C(u; v, w) ∀w ∈ H2
0 (Ω),

where 〈·, ·〉−2,2,Ω denotes duality pairing between H−2(Ω) and H2
0 (Ω). It can be easily deduced that

‖G(u, u)‖−2,Ω ≤ C0(Ω)‖u‖2
2,Ω ∀u ∈ H2

0 (Ω).

Since ∂t(curl ψ) = curl (∂tψ), problem (2.3) above can be written as follows: For a given function f ∈
L2
(
0, T ; [L2(Ω)]2

)
and ψ0 ∈ H2

0 (Ω), the continuous weak formulation is defined as find ψ ∈ L2
(
0, T ;H2

0 (Ω)
)

such that

A(∂tψ, φ) + νB(ψ, φ) + C(ψ;ψ, φ) = F (φ) ∀φ ∈ H2
0 (Ω), (2.5)

ψ(0) = ψ0,

where ψ(t) ∈ H2
0 (Ω) is the stream-function of the velocity field u(t) ∈ Z (i.e., u = curl ψ) and

A(·, ·) : H2
0 (Ω) ×H2

0 (Ω) → R, A(ψ, φ) :=

∫

Ω

curl ψ · curl φ ∀ψ, φ ∈ H2
0 (Ω), (2.6)
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B(·, ·) : H2
0 (Ω) ×H2

0 (Ω) → R, B(ψ, φ) :=

∫

Ω

∆ψ∆φ ∀ψ, φ ∈ H2
0 (Ω), (2.7)

F (·) : H2
0 (Ω) → R, F (φ) :=

∫

Ω

f · curl φ ∀φ ∈ H2
0 (Ω). (2.8)

Note that
|B(ψ, φ)| ≤ ‖ψ‖2,Ω‖φ‖2,Ω ∀ψ, φ ∈ H2

0 (Ω),

and
B(φ, φ) ≥ C ‖φ‖2

2,Ω ∀φ ∈ H2
0 (Ω),

where C is a positive generic constant. Next, we would like to discuss the well-posedness of continuous weak
formulation (2.5).

Theorem 2.1. Let f ∈ L2
(
0, T ; [L2(Ω)]2

)
and ψ0 ∈ H2

0 (Ω). Then, there exists a unique solution ψ ∈
L2(0, T ;H2

0 (Ω)) of problem (2.5).

Proof. For detail proof, we refer to Theorem 2.1 of [31] (see also [14]). �

3. Virtual element method

Let {Th}h be a sequence of decompositions of Ω into general polygonal elements K. Let hK denote the
diameter of the element K and h the maximum of the diameters of all the elements of the mesh , i.e., h :=
maxK∈Th

hK . In what follows, we denote by NK the number of vertices of K, by e a generic edge of Th and for
all e ∈ ∂K, we define a unit normal vector neK that points outside of K and a unit tangent vector teK to K.
Further, we denote by he the length of the edge e. For each vertex Vi, we associate a characteristic length hVi

which is the average of the diameter of the elements having Vi as a vertex.
For the theoretical analysis, we will make the following assumptions: there exists a real number CT > 0 such

that, for every h and every K ∈ Th,

Assumption 3.1.

(a) The ratio between the shortest edge and the diameter hK of K is larger than CT ;
(b) K ∈ Th is star-shaped with respect to every point of a ball of radius CT hK .

3.1. Local and global virtual spaces

Now, for any subset D ⊆ R2 and non negative integer k, we will denote by Pk(D) the space of polynomials
of degree up to k defined on D. Then, for (s1, s2) ∈ N × N, we define the set of scale monomials as

M∗
s(K) :=

{
q∗ | q∗ =

(
x− xd
hK

)s1(y − yd
hK

)s2
; s = s1 + s2

}
,

where (xd, yd) denotes centroid of K. Then, we define Ms(K) := ∪j≤sM
∗
j (K) as a basis of Ps(K). Analogously,

we consider the set of the scaled monomials defined on each edge e:

Ms(e) :=

{
1,
ξ − ξe
he

,

(
ξ − ξe
he

)2

, . . . ,

(
ξ − ξe
he

)s}
,

where ξe is the midpoint of e.
Then, for any k ≥ 2 and for every polygon K ∈ Th, we introduce the following preliminary local virtual space:

Ṽh(K) :=
{
φh ∈ H2(K) : ∆2φh ∈ Pk−2(K), φh|∂K ∈ C0(∂K), φh|e ∈ Pr(e) ∀e ∈ ∂K,

∇φh|∂K ∈ [C0(∂K)]2, ∂n
e
K
φh|e ∈ Pα(e) ∀e ∈ ∂K

}
,
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where r := max{3, k} and α := k − 1.

Next, for a given φh ∈ Ṽh(K), we introduce five sets D1 −D5 of linear operators from the local virtual space

Ṽh(K) into R.

– D1 : contains linear operators evaluating φh at the NK vertices of K;
– D2 : contains linear operators evaluating hVi

∇φh(Vi) for all vertices Vi of K, where 1 ≤ i ≤ NK ;

– D3 : for r > 3, the moments
1

he

∫

e

q(ζ)φh(ζ) dζ ∀q ∈ Mr−4(e), ∀ edge e;

– D4 : for α > 1, the moments

∫

e

q(ζ)∂n
e
K
φh(ζ) dζ ∀q ∈ Mα−2(e), ∀ edge e;

– D5 : for k ≥ 4, the moments
1

h2
K

∫

K

q(x)φh(x) dx ∀q ∈ Mk−4(K), ∀polygon K.

In order to construct the discrete scheme, we first observe that
∫

Ω

∆ϕ∆φ =

∫

Ω

D2ϕ : D2φ.

Then, we decompose the bilinear form (2.7) in the following element by element contribution:

B(ϕ, φ) =

∫

Ω

D2ϕ : D2φ =
∑

K∈Th

BK(ϕ, φ) =
∑

K∈Th

∫

K

D2ϕ : D2φ, ∀ϕ, φ ∈ H2
0 (Ω).

In what follows, we are going to build the discrete version of the local bilinear forms listed above. With this
aim, we define the following projector operator Πk,∆

K : Ṽh(K) −→ Pk(K) ⊆ Ṽh(K) for each φh ∈ Ṽh(K), as the
solution of the local problems (on each polygon K):

BK

(
Πk,∆
K φh, q

)
= BK(φh, q) ∀q ∈ Pk(K), (3.1a)

̂
Πk,∆
K φh = φ̂h,

̂∇Πk,∆
K φh = ∇̂φh, (3.1b)

where (̂·) is defined as follows:

χ̂h :=
1

NK

NK∑

i=1

χh(Vi) ∀χh ∈ C0(∂K), (3.2)

and Vi, 1 ≤ i ≤ NK , are the vertices of K.
The following result establishes that the projector Πk,∆

K is computable using the output values of the sets
D1 − D5.

Lemma 3.2. The operator Πk,∆
K : Ṽh(K) −→ Pk(K) is explicitly computable for every φh ∈ Ṽh(K), using only

the information of the linear operators D1 − D5.

Proof. For detail proof, we refer to [21]. �

For each k ≥ 2 and for any K ∈ Th our local enhanced virtual space is given by:

W k
h (K) :=

{
φh ∈ Ṽh(K) :

∫

K

q∗ Πk,∆
K φh =

∫

K

q∗ φh, ∀q∗ ∈ M∗
k−2(K) ∪M∗

k−3(K)

}
, (3.3)

where M∗
k−2(K) and M∗

k−3(K) are scaled monomials of degree k−2 and k−3, respectively, with the convention
that M∗

−1(K) = ∅.

By using the linear operators D1−D5, we can evaluate Πk,∆
K φh for all φh ∈W k

h (K), which is stated explicitly
in the next result.
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Lemma 3.3. The operator Πk,∆
K is well defined and computable on the local enhanced virtual space W k

h (K).

Proof. From definition of local enhanced virtual space (3.3), we deduce that W k
h (K) ⊆ Ṽh(K). Consequently,

for φh ∈W k
h (K) implies φh ∈ Ṽh(K) and hence Πk,∆

K φh is well-defined and computable. �

On the other hand, we observe that Pk(K) ⊆W k
h (K) which will guarantee the good approximation properties

for the space. Moreover, following similar arguments presented in [3, 16] (see also [21]) we obtain that the sets
of linear operators D1 − D5 constitutes a set of degrees of freedom for W k

h (K).
Now, we introduce the global virtual space by combining the local spaces W k

h (K) and incorporating the
homogeneous Dirichlet boundary conditions. For every decomposition Th of Ω into polygons K, we define

Wh :=
{
φh ∈ H2

0 (Ω) : φh|K ∈W k
h (K)

}
.

3.2. Construction of bilinear forms and the force term

In order to build the discrete local and global forms, we observe that the particular condition appearing in the
definition of the local virtual space W k

h (K) will be useful to construct an L2-projection which will be employed
to build the discrete bilinear forms. In particular, we consider the L2(K)-projection onto Pk−2(K). For each
φ ∈ L2(K), Πk−2

K φ ∈ Pk−2(K) satisfies
∫

K

(
Πk−2
K φ

)
q =

∫

K

φq ∀q ∈ Pk−2(K). (3.4)

The following lemma establishes that Πk−2
K is computable on W k

h (K). The proof follows from the definition
of the local virtual space and the set of degrees of freedom.

Lemma 3.4. The operator Πk−2
K : W k

h (K) −→ Pk−2(K) is explicitly computable for each φh ∈ W k
h (K), using

only the information of the set of degrees freedom D1 − D5.

Proof. For a detail proof, we refer to [21]. �

Now, for k ≥ 2, we will introduce some additional projectors which will be used to write the virtual scheme.

First, we define Πk,∇⊥

K : W k
h (K) −→ Pk(K) ⊆ W k

h (K) for each φh ∈ W k
h (K) as the solution of the following

local problem.
∫

K

curl Πk,∇⊥

K φh · curl q =

∫

K

curl φh · curl q ∀q ∈ Pk(K), (3.5a)

̂
Πk,∇⊥

K φh = φ̂h, (3.5b)

where (̂·) has been defined in (3.2). The following result states that this operator is fully computable.

Lemma 3.5. The operator Πk,∇⊥

K : W k
h (K) −→ Pk(K) ⊆ W k

h (K) is explicitly computable for each φh ∈
W k
h (K), using only the information of the set of degrees freedom D1 − D5.

Proof. First we note that (3.5b) is computable using the information of the set D1. On the other hand, we
integrate by parts on the right hand side of (3.5a) to obtain:

∫

K

curl φh · curl q = −

∫

K

φh∆q +

∫

∂K

φh∂nK
q ∀q ∈ Pk(K)

= −

∫

K

Πk−2
K φh∆q +

∫

∂K

φh∂nK
q ∀q ∈ Pk(K),

where we have used the fact that ∆q ∈ Pk−2(K) and the definition of the projection Πk−2
K (cf. (3.4)). The

previous equality allows us to conclude that the polynomial Πk,∇⊥

K φh can be explicitly computed from the
degrees of freedom D1 − D5. �
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Now, we will introduce an additional projection operator onto the polynomial space [Pk−1(K)]2, which will
be used to construct a local approximation of A(·, ·) and C(·; ·, ·). For K ∈ Th, and v ∈ [L2(K)]2, we define
Πk−1
K : [L2(K)]2 → [Pk−1(K)]2 by

∫

K

Πk−1
K v · q =

∫

K

v · q ∀q ∈ [Pk−1(K)]2. (3.6)

We observe that for any φh ∈ W k
h (K), the vector functions Πk−1

K curl φh ∈ [Pk−1(K)]2 and Πk−1
K ∇φh ∈

[Pk−1(K)]2 can be explicitly computed from the degrees of freedom D1 − D5. In fact, for all K ∈ Th and for
all φh ∈W k

h (K), using integration by parts on the right-hand side of (3.6) (with curlφh instead of v), we have
(see [28])

∫

K

curl φh · q =

∫

K

φh rotq −

∫

∂K

φh(q · tK) ∀q ∈ [Pk−1(K)]2

=

∫

K

(
Πk−2
K φh

)
rotq −

∫

∂K

φh(q · tK) ∀q ∈ [Pk−1(K)]2,

where we have used (3.4). The first term on the right-hand side above depends only on Πk−2
K φh and this depends

only on the values of the degrees of freedom (see Lem. 3.4). The second term is an integral on the boundary of
the element K, which is fully computable.

Next, we use the above projection operators to construct computable approximations of the continuous
bilinear and trilinear forms, and for the right-hand side. First, let s∆K(·, ·) and scurl

K (·, ·) be any symmetric
positive definite bilinear forms to be chosen as to satisfy:

c0BK(φh, φh) ≤ s∆K(φh, φh) ≤ c1BK(φh, φh) ∀φh ∈W k
h (K), with Πk,∆

K φh = 0,

c2AK(φh, φh) ≤ scurl

K (φh, φh) ≤ c3AK(φh, φh) ∀φh ∈W k
h (K), with Πk,∇⊥

K φh = 0, (3.7)

with c0, c1, c2 and c3 are positive constants independent of h and K. From (3.7), we deduce that s∆K(·, ·), and
scurl

K (·, ·) scale same as BK(·, ·) and AK(·, ·), respectively.

On each element K, we define the local discrete bilinear forms

AhK(·, ·) : W k
h (K) ×W k

h (K) → R, BhK(·, ·) : W k
h (K) ×W k

h (K) → R

as follow, for all ψh, φh ∈W k
h (K)

AhK(ψh, φh) := AK

(
Πk,∇⊥

K ψh,Π
k,∇⊥

K φh

)
+ scurl

K

(
ψh − Πk,∇⊥

K ψh, φh − Πk,∇⊥

K φh

)
,

BhK(ψh, φh) := BK

(
Πk,∆
K ψh,Π

k,∆
K φh

)
+ s∆K

(
ψh − Πk,∆

K ψh, φh − Πk,∆
K φh

)
.

It can be observed that the forms scurl

K (·, ·) and s∆K(·, ·) reduce to zero when one of the two entries φh or ψh
is a polynomial function. Different computable form of the stabilizers are available in the literature [5, 16, 36].
However, we choose the following representation

scurl

K

(
φi − Πk,∇⊥

K φi, φj − Πk,∇⊥

K φj

)
:= αcurl

K

Ndof
K∑

z=1

dofz

((
I − Πk,∇⊥

K

)
φi

)
dofz

((
I − Πk,∇⊥

K

)
φj

)
,

s∆K

(
φi − Πk,∆

K φi, φj − Πk,∆
K φj

)
:= α∆

K

Ndof
K∑

z=1

dofz

((
I − Πk,∆

K

)
φi

)
dofz

((
I − Πk,∆

K

)
φj

)
,
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where αcurl

K and α∆
K are the suitable constants, and Ndof

K denotes the number of degrees freedom of W k
h (K).

Adding the local contribution, the global forms are defined as

Ah(ψh, φh) :=
∑

K∈Th

AhK(ψh, φh) ∀ψh, φh ∈Wh, (3.8)

Bh(ψh, φh) :=
∑

K∈Th

BhK(ψh, φh) ∀ψh, φh ∈Wh. (3.9)

The following result establishes the usual consistency and stability properties for the discrete local bilinear
forms.

Proposition 3.6. For k ≥ 2, the local bilinear forms AhK(·, ·) and BhK(·, ·) on each element K satisfy

– Consistency: for all h > 0 and for all K ∈ Th, we have that

AhK(q, φh) = AK(q, φh) ∀q ∈ Pk(K), ∀φh ∈W k
h (K), (3.10)

BhK(q, φh) = BK(q, φh) ∀q ∈ Pk(K), ∀φh ∈W k
h (K). (3.11)

– Stability and boundedness: There exist positive constants αi, i = 1, . . . , 4, independent of K, such that:

α1AK(φh, φh) ≤ AhK(φh, φh) ≤ α2AK(φh, φh) ∀φh ∈W k
h (K), (3.12)

α3BK(φh, φh) ≤ BhK(φh, φh) ≤ α4BK(φh, φh) ∀φh ∈W k
h (K). (3.13)

Proof. For further details, we refer to [19,21,35]. �

We observe that from the symmetry of Ah(·, ·) and Bh(·, ·) and the stability conditions stated before imply
the continuity of Ah and Bh. In fact, for all ψh, φh ∈Wh:

|Ah(ψh, φh)| ≤ CA‖ψh‖1,Ω‖φh‖1,Ω,

|Bh(ψh, φh)| ≤ CB‖ψh‖2,Ω‖φh‖2,Ω.
(3.14)

The following result establishes that by virtue of (3.13), bilinear form Bh(·, ·) is uniformly elliptic.

Lemma 3.7. There exists a constant α > 0, independent of h, such that

Bh(vh, vh) ≥ α‖vh‖
2
2,Ω ∀vh ∈Wh.

Now, we proceed to discretize the force function as follows

FhK(·) : W k
h (K) → R

such that

FhK(φh) :=

∫

K

Πk−1
K f · curl φh =

∫

K

f · Πk−1
K curl φh ∀φh ∈W k

h (K). (3.15)

Globally, the force function FhK is defined as follows

Fh(φh) :=
∑

K∈Th

FhK(φh) ∀φh ∈Wh. (3.16)
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3.3. Discretization of the nonlinear term

In this section, we would like to discretize the trilinear term associated with the problem (2.3). Using the
projection operators Πk,∆

K and Πk−1
K , we discretize the trilinear term.

ChK(·; ·, ·) : W k
h (K) ×W k

h (K) ×W k
h (K) → R

such that

ChK(vh;ψh, φh) :=

∫

K

(
∆Πk,∆

K vh

)
Πk−1
K curl ψh · Π

k−1
K ∇φh ∀vh, ψh, φh ∈W k

h (K).

The term is fully computable from the degrees of freedom. Globally, the trilinear term is defined as

Ch(vh;ψh, φh) :=
∑

K∈Th

ChK(vh;ψh, φh) ∀vh, ψh, φh ∈Wh. (3.17)

Moreover, it can be shown that the discrete trilinear form Ch(·; ·, ·) is uniformly bounded on Wh.

Lemma 3.8. Let Ch(vh;ψh, φh) be the trilinear form defined in (3.17). Then there exists a positive constant Ĉ
such that

|Ch(vh;ψh, φh)| ≤ Ĉ‖vh‖2,Ω‖ψh‖2,Ω‖φh‖2,Ω,

where Ĉ is independent of mesh size h.

Proof. An application of boundedness of the projection operators Πk,∆
K and Πk−1

K , Hölder inequality, and
Sobolev’s embedding theorem yields the proof. �

Moreover, we have the following properties of Ch(·; ·, ·)

Ch(vh;φh, φh) = 0 ∀vh, φh ∈Wh. (3.18)

In addition, we observe that Ch(·; ·, ·) can be extended to H2
0 (Ω) only taking the projections of the continuous

v, ψ, φ ∈ H2
0 (Ω).

Remark 3.9. The discrete trilinear form Ch(·; ·, ·) does not contain non-polynomial part or stabilizer. It is
defined using the projection operators Πk,∆

K and Πk−1
K which are computable from the information provided by

the degrees of freedom. With this definition, we will show that the semi-discrete and fully-discrete schemes are
well-posed and we will obtain the corresponding error estimates.

4. Discrete schemes and their well posedness

In this section, we will introduce the semi-discrete and fully-discrete virtual element schemes for problem (2.5),
by using the discrete forms introduced in Sections 3.2 and 3.3. We will also prove that under some assumptions
on ν, the fully-discrete scheme is well posed.

4.1. Semi-discrete formulation

The semi-discrete VEM formulation for the time dependent Navier–Stokes problem reads as follows. For all
t > 0, find ψh ∈ L2(0, T ;Wh) such that

Ah(∂tψh(t), φh) + νBh(ψh(t), φh) + Ch(ψh(t);ψh(t), φh) = Fh(φh) ∀φh ∈Wh. (4.1)

Additionally, we set ψh(0) = ψI(0), where ψI(0) is a suitable interpolation of ψ0 (see Prop. 5.2). In this section,
we will discuss the well-posedness of semi-discrete scheme (4.1).
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First, we observe that the matrix representation corresponding to the discrete bilinear form Ah(·, ·) is positive
definite and hence inverse exists. Further, let us assume that A,B be the matrix representation corresponding
to the discrete forms Ah(·, ·), Bh(·, ·), respectively. Therefore, problem (4.1) reduces to a system of nonlinear
differential equations as follows

A
dψh
dt

+ νBψh + C(ψh) = F (4.2)

ψh(0) = ψ0, (4.3)

where ψh denotes the vector whose entries are the components in the basis of ψh. Moreover, C(ψh) is the matrix
corresponding to the nonlinear term and F be the right hand side load vector corresponding to the basis φh.
Before going into further details, we would like to prove that the nonlinear term , i.e., Ch(ψh;ψh, φh) satisfies
Lipschitz’s continuity condition. In this direction, let ψ1

h, ψ
2
h be two elements in Wh. Then, we can write as

∣∣∣Ch
(
ψ1
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

)∣∣∣ =
∣∣∣Ch

(
ψ1
h;ψ

1
h, φh

)
− C

(
ψ2
h;ψ

1
h, φh

)
+ C

(
ψ2
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

)∣∣∣

≤
∑

K∈Th

(∣∣∣
∫

K

∆Πk,∆
K

(
ψ1
h − ψ2

h

)
Πk−1
K curl ψ1

h · Π
k−1
K ∇φh

∣∣∣
︸ ︷︷ ︸

:=L1

+
∣∣∣
∫

K

∆Πk,∆
K ψ2

hΠ
k−1
K curl

(
ψ1
h − ψ2

h

)
· Πk−1

K ∇φh
︸ ︷︷ ︸

:=L2

∣∣∣
)
.

(4.4)

An application of Hölder inequality and using the continuity of Πk−1
K with respect to L4-norm and stability of

Πk,∆
K , we obtain ∑

K∈Th

L1 ≤ C‖ψ1
h − ψ2

h‖2,Ω‖curl ψ1
h‖L4(Ω)‖∇φh‖L4(Ω),

using Sobolev’s embedding theorem, we obtain
∑

K∈Th

L1 ≤ C‖ψ1
h − ψ2

h‖2,Ω‖curl ψ1
h‖1,Ω‖∇φh‖1,Ω. (4.5)

Using analogous arguments, we derive that
∑

K∈Th

L2 ≤ C‖ψ2
h‖2,Ω‖curl

(
ψ1
h − ψ2

h

)
‖1,Ω‖∇φh‖1,Ω. (4.6)

Inserting (4.5) and (4.6) into (4.4), we can claim that the nonlinear term Ch(ψh;ψh, φh) is Lipschitz contin-
uous. Therefore, from Picard’s Theorem of existence and uniqueness of system of differential equation, we can
deduce that (4.2) and (4.3) has a unique solution.

4.2. Fully-discrete formulation

A classical backward Euler integration method is employed for the time discretization of (4.1) with time step
∆t = T/N , where N is a positive integer. In addition, we introduce ψnh := ψh(tn) for n = 0, 1, 2, . . . , N . This
results in the following fully discrete method: find ψnh ∈Wh such that

Ah
(
ψnh − ψn−1

h

∆t
, φh

)
+ νBh(ψnh , φh) + Ch(ψnh ;ψnh , φh) = Fh(φh) ∀φh ∈Wh,

ψ0
h = ψI(0),

(4.7)
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where ψ0
h ∈ Wh is an initial approximation of ψ at t = 0. Next, we prove the well posedness of the fully-

discrete scheme (4.7). In this direction, we first recollect Brouwer’s fixed point theorem. Then, under certain
assumption, we will show that the fully-discrete scheme has unique solution ψnh and the solution is bounded,
i.e., ‖ψnh‖2,Ω ≤ R, where R is a positive constant which will be specified later.

Theorem 4.1 (Brouwer’s theorem). Let K be a Banach space and let B ⊂ K be a compact and convex subset.
If L : B → B is continuous, then L has a fixed point.

Theorem 4.2. Assume that

max

{
2Ĉ2

α2
3ν

2
,
2Ĉ2C2

B

α4
3ν

2

}
‖ψh‖

2
L∞(0,tn−1;H2(Ω)) < 1. (4.8)

Then, for 1 ≤ n ≤ N and for sufficiently small values of ∆t, there exists a unique solution of the fully-discrete
problem (4.7) and the solution ψnh satisfies the condition ‖ψnh‖2,Ω ≤ R, with

R :=

(
∆t

α1α3ν
‖f‖2

L∞(0,tn−1;L2(Ω)) +
2C2

B

α2
3

‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)1/2

(
1 − 2Ĉ2

α2
3ν

2 ‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)1/2
·

Proof. Let ψn−1
h ∈ Wh. Define a mapping F : Wh → Wh such that ψnh = F(ξh) for all ξh ∈ Wh, where ψh is

defined by
1

∆t
Ah(ψnh , φh) + νBh(ψnh , φh) + Ch(ξh;ψ

n
h , φh) = Fh(φh) +

1

∆t
Ah
(
ψn−1
h , φh

)
. (4.9)

The proof of the result will be divided in three steps. We first define a mapping F from Wh to Wh and prove
that the mapping is well-defined and maps a ball BR to a ball BR. In second stage, we prove that the mapping
is continuous. Then, from Brouwer’s Theorem, we deduce that F has a fixed point inside the ball BR which is
the solution of the fully-discrete scheme (4.7). Finally, using assumption (4.8), we prove that the solution is
unique.

Well possedness of F : Since the bilinear form Bh(φh, φh) is elliptic (cf. Lem. 3.7), (3.18) and the fact
that Ah(φh, φh) > 0, we have that problem (4.9) is well-posed, which follows from the Lax–Milgram Theorem.

Further, to present the analysis we denote by Dtψ
n
h :=

ψn
h−ψn−1

h

∆t .
Now, we will construct a ball with radius R say BR such that F : BR → BR. We consider φh = Dtψ

n
h in

(4.9) and obtain
Ah(Dtψ

n
h ,Dtψ

n
h) + νBh(ψnh ,Dtψ

n
h) + Ch(ξh;ψ

n
h ,Dtψ

n
h) = Fh(Dtψ

n
h).

An application of the stability property of the discrete bilinear forms (3.12), (3.13), and (3.18) yields

α1‖curl Dtψ
n
h‖

2
0,Ω +

α3ν

∆t
‖ψnh‖

2
2,Ω ≤ |Fh(Dtψ

n
h)| +

ν

∆t
Bh
(
ψnh , ψ

n−1
h

)
+

1

∆t
Ch
(
ξh;ψ

n
h , ψ

n−1
h

)
. (4.10)

By exploiting Cauchy–Schwarz inequality and boundedness of the L2-projection operator Πk−1
K , we obtain

|Fh(Dtψ
n
h)| =

∣∣∣∣∣
∑

K∈Th

∫

K

Πk−1
K f · curl Dtψ

n
h

∣∣∣∣∣ ≤ ‖f‖0,Ω‖curl Dtψ
n
h‖0,Ω. (4.11)

Using the continuity property of Bh(·, ·) (cf. (3.14)), we get

|Bh
(
ψnh , ψ

n−1
h

)
| ≤ CB‖ψ

n
h‖2,Ω‖ψ

n−1
h ‖2,Ω. (4.12)
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Inserting (4.11) and (4.12) in (4.10), and using boundedness of the trilinear term Ch(·; ·, ·) (cf. Lem. 3.8), we
obtain

α1‖curl Dtψ
n
h‖

2
0,Ω +

α3ν

∆t
‖ψnh‖

2
2,Ω ≤

(
‖f‖0,Ω‖curl Dtψ

n
h‖0,Ω +

CBν

∆t
‖ψnh‖2,Ω ‖ψn−1

h ‖2,Ω

+
Ĉ

∆t
‖ξh‖2,Ω‖ψ

n
h‖2,Ω ‖ψn−1

h ‖2,Ω

)
.

(4.13)

Upon employing Young’s inequality, we obtain

α1

2
‖curl Dtψ

n
h‖

2
0,Ω +

α3ν

∆t
‖ψnh‖

2
2,Ω ≤

1

2α1
‖f‖2

0,Ω +
CBν

∆t
‖ψnh‖2,Ω ‖ψn−1

h ‖2,Ω

+
Ĉ

∆t
‖ξh‖2,Ω‖ψ

n
h‖2,Ω ‖ψn−1

h ‖2,Ω.

Since the term α1

2 ‖curl Dtψ
n
h‖

2
0,Ω is positive, we can neglect the term and obtain

α3 ν‖ψ
n
h‖

2
2,Ω ≤

∆t

2α1
‖f‖2

0,Ω + CBν‖ψ
n
h‖2,Ω ‖ψn−1

h ‖2,Ω + Ĉ‖ξh‖2,Ω‖ψ
n
h‖2,Ω ‖ψn−1

h ‖2,Ω.

Exploiting Young’s inequality and kick-back argument, we obtain

α3 ν

2
‖ψnh‖

2
2,Ω ≤

∆t

2α1
‖f‖2

0,Ω +
C2
Bν

α3
‖ψn−1

h ‖2
2,Ω +

Ĉ2

α3ν
‖ξh‖

2
2,Ω‖ψ

n−1
h ‖2

2,Ω

≤
∆t

2α1
‖f‖2

L∞(0,tn−1;L2(Ω)) +

(
C2
Bν

α3
+

Ĉ2

α3ν
‖ξh‖

2
2,Ω

)
‖ψh‖

2
L∞(0,tn−1;H2(Ω)).

(4.14)

Moreover, we adopt that ‖ξh‖2,Ω ≤ R. Then from (4.14), we derive as

∆t

α1α3ν
‖f‖2

L∞(0,tn−1;L2(Ω)) +

(
2C2

B

α2
3

+
2Ĉ2

α2
3ν

2
R2

)
‖ψh‖

2
L∞(0,tn−1;H2(Ω)) ≤ R2. (4.15)

Upon writing explicitly (4.15), we obtain

R2 =

(
∆t

α1α3ν
‖f‖2

L∞(0,tn−1;L2(Ω)) +
2C2

B

α2
3

‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)

(
1 − 2Ĉ2

α2
3ν

2 ‖ψh‖
2
L∞(0,tn−1;H2(Ω))

) ·

Now, according to assumption (4.8), the term
(
1 − 2Ĉ2

α2
3ν

2 ‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)
is positive and consequently, we

define BR := {vh ∈Wh : ‖vh‖2,Ω ≤ R}. Therefore, we deduce that F : BR → BR is well defined.

Continuity of F : Let ε > 0 be a small number and let ξ?h, ξh be two elements in BR such that ψ?h := F(ξ?h)
and ψh := F(ξh) and ‖∆(ξ?h − ξh)‖0,Ω < δ. Then, from (4.9), we have

Ah(ψh − ψ?h, φh) + ∆tνBh(ψh − ψ?h, φh) + ∆t
(
Ch(ξh;ψh, φh) − Ch(ξ?h;ψ

?
h, φh)

)
= 0. (4.16)

Putting φh = (ψh − ψ?h) ∈Wh in (4.16), we obtain

Ah(ψh − ψ?h, ψh − ψ?h) + ∆tνBh(ψh − ψ?h, ψh − ψ?h) + ∆t
(
Ch(ξh;ψh, ψh − ψ?h) − Ch(ξ?h;ψ

?
h, ψh − ψ?h)

)
= 0.
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An application of stability property of Ah(·, ·) and Bh(·, ·) yields

α1‖curl (ψh − ψ?h)‖
2
0,Ω + ∆tνα3‖∆(ψh − ψ?h)‖

2
0,Ω ≤ ∆t|Ch(ξ?h;ψ

?
h, ψh − ψ?h) − Ch(ξh;ψh, ψh − ψ?h)|. (4.17)

The difference on the right hand side above can be bound as follows:

∣∣∣∣∣
∑

K∈Th

(∫

K

∆Πk,∆
K ξhΠ

k−1
K curl ψh · Π

k−1
K ∇(ψh − ψ?h) −

∫

K

∆Πk,∆
K ξ?hΠ

k−1
K curl ψ?h · Π

k−1
K ∇(ψh − ψ?h)

)∣∣∣∣∣

≤
∑

K∈Th

∣∣∣∣∣

(∫

K

∆Πk,∆
K ξhΠ

k−1
K curl ψh · Π

k−1
K ∇(ψh − ψ?h) −

∫

K

∆Πk,∆
K ξ?hΠ

k−1
K curl ψh · Π

k−1
K ∇(ψh − ψ?h)

)∣∣∣∣∣
︸ ︷︷ ︸

=:T1

+

∣∣∣∣∣

(∫

K

∆Πk,∆
K ξ?hΠ

k−1
K curl ψh · Π

k−1
K ∇(ψh − ψ?h) −

∫

K

∆Πk,∆
K ξ?hΠ

k−1
K curl ψ?h · Π

k−1
K ∇(ψh − ψ?h)

)∣∣∣∣∣
︸ ︷︷ ︸

=:T2

.

Using Hölder’s inequality and the boundedness of the projection operator Πk,∆K , the term T1 can be bounded
as follows:

|T1| ≤ ‖∆Πk,∆
K ξh − ∆Πk,∆

K ξ?h‖0,K‖Πk−1
K curl ψh‖L4(K) ‖Πk−1

K ∇(ψh − ψ?h)‖L4(K)

≤ ‖∆(ξh − ξ?h)‖0,K ‖curl ψh‖L4(K)‖∇(ψh − ψ?h)‖L4(K).

Suming the above inequality for all elements K and using the Sobolev’s embedding theorem,

∑

K∈Th

|T1| ≤ Ĉ‖∆(ξh − ξ?h)‖0,Ω‖curl ψh‖1,Ω‖∇(ψh − ψ?h)‖1,Ω. (4.18)

Now, using (3.18), we deduce that the term T2 = 0.
Inserting (4.18) into (4.17), we obtain

α1‖curl (ψh − ψ?h)‖
2
0,Ω + ∆tα3ν‖ψh − ψ?h‖

2
2,Ω ≤ Ĉ∆tδ‖curl ψh‖1,Ω‖∇(ψh − ψ?h)‖1,Ω.

Since the term α1‖curl (ψh − ψ?h)‖
2
0,Ω is positive, we deduce that

‖ψh − ψ?h‖2,Ω ≤
Ĉδ

α3ν
‖curl ψh‖1,Ω.

Hence, using that ψh ∈ BR, we conclude that ‖ψh − ψ?h‖2,Ω < ε if

δ <
α3νε

ĈR
,

which implies that the function F is continuous.
Therefore, we claim that the function F has a fixed point ψh ∈ BR from Brouwer’s fixed point theorem (cf.

Thm. 4.1) such that ψh = F(ψh). Hence the fully-discrete scheme (4.7) has a solution. Now we proceed to show
that the solution is unique.

Uniqueness of solution: Let ψ1
h, ψ

2
h ∈ BR be two solutions of (4.7). Then from (4.9), we have

Ah
(
ψ1
h − ψ2

h, φh
)

+ ∆tνBh
(
ψ1
h − ψ2

h, φh
)

+ ∆t
(
Ch
(
ψ1
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

))
= 0. (4.19)
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To bound the nonlinear term in (4.19), we add and substract Ch
(
ψ2
h;ψ

1
h, φh

)
in the above equality, to get

Ch
(
ψ1
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

)
= Ch

(
ψ1
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

1
h, φh

)

+ Ch
(
ψ2
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

)
.

(4.20)

Using Hölder’s inequality and Sobolev embedding theorem, the first two terms in (4.20) can be bounded as
follows

|Ch
(
ψ1
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

1
h, φh

)
| =

∣∣∣∣∣
∑

K∈Th

∫

K

(
∆Πk,∆

K

(
ψ1
h − ψ2

h

)
Πk−1
K curl ψ1

h · Π
k−1
K ∇φh

)∣∣∣∣∣

≤ Ĉ‖ψ1
h − ψ2

h‖2,Ω‖curl ψ1
h‖1,Ω‖∇φh‖1,Ω.

The last two terms on the right hand side of (4.20) can be written as follows,

Ch
(
ψ2
h;ψ

1
h, φh

)
− Ch

(
ψ2
h;ψ

2
h, φh

)
= Ch

(
ψ2
h;ψ

1
h − ψ2

h, φh
)
.

Taking φh =
(
ψ1
h − ψ2

h

)
∈ Wh in (4.19), we have that the right hand side above vanish (cf. (3.18)), and using

the stability property of the discrete bilinear forms Ah(·, ·) and Bh(·, ·), and Young’s inequality, we obtain

α1‖curl
(
ψ1
h − ψ2

h

)
‖2
0,Ω + α3∆tν‖ψ

1
h − ψ2

h‖
2
2,Ω ≤ ∆tĈ‖ψ1

h − ψ2
h‖2,Ω‖curl ψ1

h‖1,Ω‖∇
(
ψ1
h − ψ2

h

)
‖1,Ω.

An application of kick back arguments, we obtain

α1‖curl
(
ψ1
h − ψ2

h

)
‖2
0,Ω + ∆t

(
α3ν − ĈR

)
‖ψ1

h − ψ2
h‖

2
2,Ω ≤ 0.

Now, according to assumption (4.8), and for sufficiently small values of ∆t,
(
α3ν − ĈR

)
> 0. Hence, we have

‖ψ1
h − ψ2

h‖2,Ω = 0; therefore ψ1
h = ψ2

h, and we conclude the proof. �

Remark 4.3. In Theorem 4.2, we have proved the fully-discrete scheme (4.7) has unique solution based on
certain feasible assumption on the viscosity ν (cf. (4.8)) and for sufficiently small values of time-step ∆t. In
particular, for sufficiently large values of ν, we have

(
α2

3ν
2 −

2Ĉ2C2
B

α2
3

‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)
> 0.

Then for sufficiently small values of ∆t, we have

ν

(
α2

3ν
2 −

2Ĉ2C2
B

α2
3

‖ψh‖
2
L∞(0,tn−1;H2(Ω))

)
>

Ĉ2

α1α3
∆t‖f‖2

L∞(0,tn−1;L2(Ω)),

which implies (
α3ν − ĈR

)
> 0.

5. Convergence analysis

In this section, we will derive a priori error estimation for the virtual element semi-discrete and fully-discrete
schemes. With this aim, first we introduce a discrete energy projection operator Sh : H2

0 (Ω) → Wh, which is
defined as follows:

Bh(Shu,wh) = B(u,wh) ∀wh ∈Wh. (5.1)
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Upon exploiting the energy projection operator Sh, we will split the error of the stream-function as

ψ − ψh = ψ − Shψ + Shψ − ψh.

Next, we define

ρh := ψ − Shψ,

θh := ψh − Shψ.
(5.2)

In what follows, we will prove approximations properties for Sh, thus the first term ρh will be easily bounded.
Then, using the continuous problem (2.3) and the polynomial approximation properties, we bound the term θh.
In this regard, we introduce the polynomial approximation property and the interpolation operator ψI on the
virtual element space Wh. Further, to derive the a priori error estimations of the semi-discrete and fully-discrete
schemes, some additional results are needed which will be presented in the next subsection.

5.1. Preliminary results

We start with the following approximation result, on star-shaped polygons, which is derived by interpolation
between Sobolev spaces (see for instance [28], Thm. I.1.4 from the analogous result for integer values of s). We
mention that this result has been stated in Proposition 4.2 of [6] for integer values and follows from the classical
Scott–Dupont theory (see [15] and [5], Prop. 3.1):

Proposition 5.1. There exists a constant C > 0, independent of mesh size h but depends on mesh regularity
parameter CT (Assumption 3.1) such that for every v ∈ Hδ(K) there exists vπ ∈ Pk(K), k ≥ 0 such that

‖v − vπ‖`,K ≤ Chδ−`K ‖v‖δ,K 0 ≤ δ ≤ k + 1, ` = 0, . . . , [δ],

with [δ] denoting largest integer equal or smaller than δ ∈ R.

Now, we present an interpolation result in the virtual space Wh (see [5, 10]).

Proposition 5.2. Assume A1 and A2 are satisfied, then for all v ∈ Hδ(K) there exist vI ∈ Wh and C > 0
independent of h such that

‖v − vI‖`,K ≤ Chδ−`K ‖v‖δ,K , ` = 0, 1, 2, 2 ≤ δ ≤ k + 1,

where C is independent of mesh size h but depends on mesh regularity parameter CT (Assumption 3.1).

Next, in order to prove the convergence of our method, we introduce the following broken H`-seminorm
(` = 1, 2):

|v|`,h :=

( ∑

K∈Th

|v|2`,K

)1/2

,

which is well defined for every v ∈ L2(Ω) such that v|K ∈ H`(K) for all polygon K ∈ Th.
In order to obtain the error estimates, we prove the following approximation properties of the discrete

projection operator Sh (cf. (5.1)).

Lemma 5.3. For each u ∈ H2
0 (Ω)∩H2+s(Ω), with 1/2 < s ≤ k−1, there exists a unique function Sh(u) ∈Wh,

such that the following approximation properties hold:

(1) There exists a positive constant C, independent of h, such that

‖u− Sh(u)‖2,Ω ≤ Chs‖u‖2+s,Ω. (5.3)
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(2) There exist a positive constant C and s̃ ∈ (1/2, 1], independent of h, such that

‖u− Sh(u)‖1,Ω ≤ Chs̃+s‖u‖2+s,Ω. (5.4)

Proof. We begin by proving (1). Since the bilinear form Bh(·, ·) is bounded and coercive in Wh and the function
B(u, ·) is continuous on Wh hence there exists an unique solution of the variational formulation (5.1).

Now, we proceed to prove the approximation results. In this direction, we rewrite the term u − Sh(u) as
follows.

u− Sh(u) = u− uI + uI − Sh(u),

where uI ∈Wh is the interpolation operator introduced in Proposition 5.2.
The estimation of u − uI is known, hence we proceed to bound the term ξh := (Sh(u) − uI) ∈ Wh. Using

coercivity (cf. Lem. 3.7), we have

α|ξh|
2
2,Ω ≤ Bh(ξh, ξh)

= Bh(Sh(u), ξh) −Bh(uI , ξh)

= B(u, ξh) −
∑

K∈Th

(
BhK(uI − uπ, ξh) +BhK(uπ, ξh)

)

= B(u, ξh) −
∑

K∈Th

(
BhK(uI − uπ, ξh) +BK(uπ, ξh)

)

=
∑

K∈Th

(
BhK(uπ − uI , ξh) +BK(u− uπ, ξh)

)
,

where we have added and subtracted uπ ∈ Pk(K), k ≥ 2 and then we have used (3.11). Using the continuity
property of the bilinear form Bh(·, ·) and Cauchy–Schwarz inequality, we have

α|ξh|
2
2,Ω ≤ C (|uπ − u|2,h + |u− uI |2,Ω)|ξh|2,Ω.

Now, an application of the approximation properties of the interpolation operator and the projection operator
uI and uπ, respectively, we obtain

α|ξh|2,Ω ≤ Chs‖u‖2+s,Ω. (5.5)

Thus, we have that
|u− Sh(u)|2,Ω ≤ Chs‖u‖2+s,Ω. (5.6)

Now, we proceed to prove (2). Let φ ∈ H2
0 (Ω) be the solution of the auxiliary variational problem: find φ

such that

B(φ, v) =

∫

Ω

∇(u− Sh(u)) · ∇v ∀v ∈ H2
0 (Ω), (5.7)

where B(·, ·) is the bilinear form defined in (2.6).
As a consequence of a classical regularity result for the biharmonic problem with its right hand side in

H−1(Ω) := [H1
0 (Ω)]′ (cf. [29]), there exists s̃ ∈ (1/2, 1] such that φ ∈ H2+s̃(Ω) and

‖φ‖2+s̃,Ω ≤ C|u− Sh(u)|1,Ω. (5.8)

Now, let φI ∈Wh be such that Proposition 5.2 holds true. Taking v := (u− Sh(u)) ∈ H2
0 (Ω) as test function

in (5.7), using the symmetry of the bilinear form and adding and subtracting φI , we obtain

|u− Sh(u)|
2
1,Ω ≤ B(u− Sh(u), φ)

= B(u− Sh(u), φ− φI) +B(u− Sh(u), φI)

= B(u− Sh(u), φ− φI) +B(u, φI) −B(Sh(u), φI)

= B(u− Sh(u), φ− φI) +Bh(Sh(u), φI) −B(Sh(u), φI)

=: T1 + T2,

(5.9)
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where we have used the definition of the continuous (see (2.5)) and discrete problems (see (5.1)).
Now, we bound the terms T1 and T2 separately. We start with T1 as follows.

T1 = B(u− Sh(u), φ− φI) ≤ ‖u− Sh(u)‖2,Ω‖φ− φI‖2,Ω

≤ Chs(‖u‖2+s,Ω)hs̃‖φ‖2+s̃,Ω

≤ Chs̃+s(‖u‖2+s,Ω)|u− Sh(u)|1,Ω,

(5.10)

where we have used the continuity of bilinear form B(·, ·), (5.6) and Proposition 5.2.
Now, we continue with the term T2 in (5.9). Let uπ ∈ Pk(K), φπ ∈ P2(K) such that Proposition 5.1 holds

true with respect to u and φ, respectively. Using (3.11), we have

T2 =
∑

K∈Th

[
BhK(Sh(u) − uπ, φI − φπ) +BK(uπ − Sh(u), φI − φπ)

]

≤
∑

K∈Th

C‖Sh(u) − uπ‖2,K‖φI − φπ‖2,K

≤
∑

K∈Th

C(‖Sh(u) − u‖2,K + ‖u− uπ‖2,K)(‖φI − φ‖2,K + ‖φ− φπ‖2,K)

≤
∑

K∈Th

C(‖Sh(u) − u‖2,K + hsK‖u‖2+s,K)
(
‖φI − φ‖2,K + Chs̃K‖φ‖2+s̃,K

)

≤ C(‖Sh(u) − u‖2,Ω + Chs‖u‖2+s,Ω)
(
Chs̃‖φ‖2+s̃,Ω + ‖φI − φ‖2,Ω

)

≤ C(hs‖u‖2+s,Ω)Chs̃‖φ‖2+s̃,Ω

≤ Chs̃+s(‖u‖2+s,Ω)|u− Sh(u)|1,Ω,

(5.11)

where we have used continuity of local bilinear forms BK(·, ·) and BhK(·, ·), Proposition 5.1, (5.6) and (5.8).
Thus, equation (5.3) follows from (5.9) to (5.11). The proof is complete. �

5.2. Error estimation for semi-discrete scheme

In this section, we will derive the error estimation for the semi-discrete scheme (cf. (4.1)). With this end, we
state the following lemma.

Lemma 5.4. Let ψ(t) ∈W be the solution of problem (2.5). Assume that ψ(t) ∈ H2+r(Ω), for 1
2 < r ≤ k − 1,

for almost all t ∈ [0, T ]. Then, there exists a positive generic constant C, which could be depended on mesh
regularity Assumption 3.1, Sobolev regularity of the solution ψ, but independent of mesh size h such that

|C(ψ;ψ, φh) − Ch(ψ;ψ, φh)| ≤ Chr(|ψ|1+r,Ω + ‖ψ‖2,Ω)|ψ|2+r,Ω‖φh‖2,Ω ∀φh ∈Wh. (5.12)

Proof. Using the definition of the continuous nonlinear term C(·; ·, ·) (see (2.4)) and discrete nonlinear term
Ch(·; ·, ·) (see (3.17)), we have that

C(ψ;ψ, φh) − Ch(ψ;ψ, φh)

=
∑

K∈Th

(∫

K

∆ψcurl ψ · ∇φh −

∫

K

(
∆Πk,∆

K ψ
)
Πk−1
K curl ψ · Πk−1

K ∇φh

)
,

=
∑

K∈Th

(∫

K

∆ψcurl ψ ·
(
I − Πk−1

K

)
(∇φh) +

∫

K

∆ψ
(
I − Πk−1

K

)
curl ψ · Πk−1

K ∇φh

+

∫

K

∆
(
I − Πk,∆

K

)
ψ Πk−1

K curl ψ · Πk−1
K ∇φh

)

=: D1 +D2 +D3.

(5.13)
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Next, we bound the term D1, and we split it in two cases. First, we consider the case 1/2 < r ≤ 1.

D1 =
∑

K∈Th

∫

K

∆ψcurl ψ ·
(
I − Πk−1

K

)
∇φh

≤
∑

K∈Th

‖∆ψ‖L4(K)‖curl ψ‖L4(K)‖(I − Πk−1
K )∇φh‖0,K

≤ Ch

( ∑

K∈Th

‖∆ψ‖4
L4(K)

)1/4( ∑

K∈Th

‖curl ψ‖4
L4(K)

)1/4( ∑

K∈Th

|φh|
2
2,K

)1/2

≤ Ch‖∆ψ‖L4(Ω)‖curl ψ‖L4(Ω)|φh|2,Ω

≤ Ch‖ψ‖2+r,Ω‖curl ψ‖r,Ω|φh|2,Ω

≤ Ch‖ψ‖2+r,Ω‖ψ‖1+r,Ω|φh|2,Ω,

where we have used the Sobolev embedding Hr(Ω) ↪→ L4(Ω) for r ∈ (1/2, 1]. On the other hand, for the case
1 ≤ r ≤ k − 1, we proceed as follows. Using the orthogonality property of the projection operator Πk−1

K on the
polynomial function of degree k− 1 and Cauchy–Schwarz inequality, we bound the first term on the right hand
side of (5.13).

D1 =
∑

K∈Th

∫

K

∆ψcurl ψ ·
(
I − Πk−1

K

)
∇φh =

∑

K∈Th

∫

K

(
I − Πk−1

K

)
(∆ψcurl ψ)

(
I − Πk−1

K

)
∇φh

≤
∑

K∈Th

‖
(
I − Πk−1

K

)
(∆ψcurl ψ)‖0,K‖

(
I − Πk−1

K

)
∇φh‖0,K

≤ Chr−1|(∆ψcurl ψ)|r−1,ΩC̃h|φh|2,Ω.

An application of Hölder’s inequality and Sobolev embedding theorem Lemma 4.2 of [9] yields,

|∆ψcurl ψ|r−1,Ω ≤ C‖∆ψ‖W r−1,4(Ω) ‖curl ψ‖W r−1,4(Ω) ≤ C‖ψ‖2+r,Ω ‖ψ‖1+r,Ω.

Collecting the above inequalities, we obtain for r > 1/2 that

D1 =
∑

K∈Th

∫

K

∆ψcurl ψ ·
((
I − Πk−1

K

)
∇φh

)
| ≤ Chr‖ψ‖1+r,Ω‖ψ‖2+r,Ω‖φh‖2,Ω. (5.14)

Using Hölder’s inequality, the term D2 in (5.13) can be bounded as follows

∑

K∈Th

∫

K

∆ψ
((
I − Πk−1

K

)
curl ψ

)
· Πk−1

K ∇φh ≤
∑

K∈Th

C‖∆ψ‖0,K‖
(
I − Πk−1

K

)
curl ψ‖L4(K)‖Π

k−1
K ∇φh‖L4(K).

Using the continuity of Πk−1
K on the space L4(K) and optimal approximation property of the polynomial

projection operator, we have

‖
(
I − Πk−1

K

)
curl ψ‖L4(K) ≤ ‖curl (ψ − ψπ)‖L4(K) + ‖Πk−1

K (curl ψ − curl ψπ)‖L4(K)

≤ Chr|ψ|W r,4(K).

Also, the term can be bounded as

‖Πk−1
K ∇φh‖L4(Ω) ≤ ‖∇φh‖L4(Ω) ≤ C|φh|2,Ω,
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where we have used that H1(Ω) ↪→ L4(Ω). Hence, by the Sobolev embedding H1+r(Ω) ↪→ W r,4(Ω), we can
write

D2 ≤
∑

K∈Th

|

∫

K

∆ψ
((
I − Πk−1

K

)
curl ψ

)
· Πk−1

K ∇φh| ≤ Chr‖∆ψ‖0,Ω|ψ|2+r,Ω|φh|2,Ω. (5.15)

Using the Hölder’s inequality and suming over each element K, the third term of (5.13) can be bounded as
follows

D3 =
∑

K∈Th

∫

K

∆
(
I − Πk,∆

K

)
ψΠk−1

K curl ψ · Πk−1
K ∇φh

≤
∑

K∈Th

∫

K

|
(
I − Πk,∆

K

)
ψ|2,K‖Πk−1

K curl ψ‖L4(K)‖Π
k−1
K ∇φh‖L4(K).

Therefore, from the fact that Πk,∆
K is the projector defined by (3.1a), the continuity of Πk−1

K on the space L4(K)
and Sobolev’s embedding theorem, we obtain

D3 ≤ Chr|ψ|2+r,Ω|ψ|2,Ω|φh|2,Ω. (5.16)

Finally, the proof follows by collecting all the estimations (5.14)–(5.16) and inserting into (5.13). �

The following theorem provides the error estimates for the semi-discrete virtual element scheme.

Theorem 5.5. Let ψ(t) ∈ W be the solution of problem (2.5) and let ψh(t) ∈ Wh be the solution of problem
(4.1). Assume that ψ(t) ∈ H2+r(Ω), ∂tψ(t) ∈ H1+r(Ω), for 1

2 < r ≤ k − 1 and for almost all t ∈ [0, T ]. In

addition, assume that ψ,ψh ∈ K :=
{
v ∈W :

2‖v‖2,Ω

α3ν
< 1
}
. Then, there exists a positive generic constant C,

which could be depended on mesh regularity Assumption 3.1, Sobolev regularity of the solution ψ, ∂tψ, ∂ttψ but
independents of mesh size h such that the following estimation holds

‖ψ − ψh‖L∞(0,t,H1(Ω)) + C‖ψ − ψh‖L2(0,t,H2(Ω)) ≤ ‖ψ(0) − ψh(0)‖1,Ω + C(CA)hr
(
‖ψ(0)‖1+r,Ω

+ ‖f‖L2(0,t,Hr−1(Ω)) + ‖∂tψ‖L2(0,t,H1+r(Ω)) + ‖ψ‖L2(0,t,H2+r(Ω))

)
.

Proof. Upon applying the projection operator Sh, we split the error as (see (5.2)):

ψh − ψ := ψh − Shψ + Shψ − ψ

=: θh + ρh.

Since the estimation for ρh is known from the Lemma 5.3, we attempt to bound θh.
Using the semi-discrete scheme (4.1), definition of the projection operator Sh (5.1) and the continuous weak

formulation (2.3), we obtain

Ah(∂tθh(t), φh) + νBh(θh(t), φh) = Fh(φh) − Ch(ψh;ψh, φh) −Ah(∂tShψ, φh) − νBh(Shψ, φh)

= Fh(φh) − F (φh) − Ch(ψh;ψh, φh) + C(ψ;ψ, φh)

−Ah(∂tShψ, φh) +A(∂tψ, φh) − νBh(Shψ, φh) + νB(ψ, φh).

(5.17)

Now, we will bound all the terms on the right hand side above. We start with the nonlinear terms C(ψ;ψ, φh)−
Ch(ψh;ψh, φh). We rewrite the term as follows:

C(ψ;ψ, φh) − Ch(ψh;ψh, φh) = C(ψ;ψ, φh) − Ch(ψ;ψ, φh)︸ ︷︷ ︸
=:A1

+Ch(ψ;ψ, φh) − Ch(ψh;ψh, φh)︸ ︷︷ ︸
=:A2

.
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The term A1 has been bounded in Lemma 5.4. Thus, we will bound the term A2.
We rewrite the term A2 as follows

Ch(ψ;ψ, φh) − Ch(ψh;ψh, φh)

=
∑

K∈Th

(∫

K

∆Πk,∆
K ψΠk−1

K curl ψ · Πk−1
K curl φh −

∫

K

∆Πk,∆
K ψh Πk−1

K curl ψh · Π
k−1
K curl φh

)
,

=
∑

K∈Th

(∫

K

∆Πk,∆
K ψΠk−1

K curl ψ · Πk−1
K curl φh −

∫

K

∆Πk,∆
K ψhΠ

k−1
K curl ψ · Πk−1

K curl φh

+

∫

K

∆Πk,∆
K ψhΠ

k−1
K curl ψ · Πk−1

K curl φh −

∫

K

∆Πk,∆
K ψhΠ

k−1
K curl ψh · Π

k−1
K curl φh

)

=
∑

K∈Th

(∫

K

∆
(
Πk,∆
K ψ − Πk,∆

K ψh

)
Πk−1
K curl ψ · Πk−1

K curl φh

+

∫

K

∆Πk,∆
K ψhΠ

k−1
K (curl ψ − curl ψh) · Π

k−1
K curl φh

)

Using Hölder’s inequality, the first term on the right hand side of (5.18) can be bounded as follows,

∑

K∈Th

∫

K

∆
(
Πk,∆
K ψ − Πk,∆

K ψh

)
Πk−1
K curl ψ · Πk−1

K curl φh

≤ C
∑

K∈Th

‖∆Πk,∆
K (ψ − ψh)‖0,K‖Πk−1

K curl ψ‖L4(K)‖Π
k−1
K curl φh‖L4(K)

≤ C‖∆Πk,∆
K (ψ − ψh)‖0,Ω‖Π

k−1
K curl ψ‖L4(Ω)‖Π

k−1
K curl φh‖L4(Ω)

≤ C|ψ − ψh|2,Ω‖curl ψ‖1,Ω‖curl φh‖1,Ω

≤ C(|ψ − Shψ|2,Ω + |Shψ − ψh|2,Ω)‖curl ψ‖1,Ω‖curl φh‖1,Ω

≤ C(hr|ψ|2+r,Ω + |θh(t)|2,Ω)‖ψ‖2,Ω‖φh‖2,Ω,

(5.18)

where we have used the boundedness of Πk,∆
K , Sobolev’s embedding theorem and the approximation property

of the operator Sh (cf. (5.3)).
Using Hölder’s inequality, we can bound the second term on the right hand side of (5.18) as follows,

∑

K∈Th

∫

K

∆
(
Πk,∆
K ψh

)
Πk−1
K (curl ψ − curl ψh)Π

k−1
K ∇φh

≤
∑

K∈Th

‖∆Πk,∆
K ψh‖L2(K)‖Π

k−1
K (curl ψ − curl ψh)‖L4(K)‖Π

k−1
K ∇φh‖L4(K)

≤ C|ψh|2,Ω‖curl ψ − curl ψh‖L4(Ω)‖∇φh‖L4(Ω)

≤ C|ψh|2,Ω‖curl ψ − curl ψh‖1,Ω‖∇φh‖1,Ω

≤ C|ψh|2,Ω(hr|ψ|2+r,Ω + |θh(t)|2,Ω)‖φh‖2,Ω,

(5.19)

where we have exploited Sobolev inequality and approximation property of Sh (cf. (5.3)).
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Using the polynomial consistency property of discrete bilinear form Ah(·, ·) (cf. (3.10)), we can represent the
time derivative term in (5.17) as

−Ah(∂tShψ, φh) +A(∂tψ, φh) = Ah(−Sh∂tψ, φh) +A(∂tψ, φh)

+
∑

K∈Th

(
AhK

(
Πk,∇⊥

K ∂tψ, φh

)
−AK

(
Πk,∇⊥

K ∂tψ, φh

))

=
∑

K∈Th

AhK

(
Πk,∇⊥

K ∂tψ − Sh∂tψ, φh
)

+AK

(
∂tψ − Πk,∇⊥

K ∂tψ, φh

)

≤ C
∑

K∈Th

|Πk,∇⊥

K ∂tψ − Sh∂tψ|1,K |φh|1,K + |∂tψ − Πk,∇⊥

K ∂tψ|1,K |φh|1,K

≤ C(CA)hr|∂tψ|1+r,Ω|φh|2,Ω,

(5.20)

where we have used the Cauchy–Schwarz inequality, the approximation property of the projection operator

Πk,∇⊥

K and Lemma 5.3.
Now, we move to bound the load term in (5.17). To bound this term (cf. (3.15)), we will exploit the approx-

imation property of the projection operator Πk−1
K , which implies

|Fh(φh) − F (φh)| =
∑

K∈Th

∣∣∣
∫

K

(Πk−1
K f − f) · curl φh

∣∣∣

≤
∑

K∈Th

‖Πk−1
K f − f‖0,K‖Πk−1

K curl φh − curl φh‖0,K

≤ Chr|f |r−1,Ω|φh|2,Ω.

(5.21)

Now, inserting the estimations (5.18), (5.12), (5.19), (5.20), (5.21) into (5.17), choosing test function φh =
θh(t), using stability properties of the bilinear forms Ah(·, ·) and Bh(·, ·), we derive

α1
1

2

d

dt
‖curl θh(t)‖

2
0,Ω + α3 ν‖θh(t)‖

2
2,Ω ≤ C hr|f |r−1,Ω‖θh(t)‖2,Ω + C(CA)hr|∂tψ|1+r,Ω‖θh(t)‖2,Ω

+ C(hr|ψ|2+r,Ω + ‖θh(t)‖2,Ω)‖ψ‖2,Ω‖θh(t)‖2,Ω

+ ‖ψh‖2,Ω(hr|ψ|2+r,Ω + ‖θh(t)‖2,Ω)‖θh(t)‖2,Ω.

Upon applying kick-back argument, we obtain

α1
1

2

d

dt
‖curl θh(t)‖

2
0,Ω + (α3ν − ‖ψ‖2,Ω − ‖ψh‖2,Ω)‖θh(t)‖

2
2,Ω

≤ C(CA)hr(|f |r−1,Ω + |∂tψ|1+r,Ω + |ψ|2+r,Ω) ‖θh(t)‖2,Ω.
(5.22)

Since ψ,ψh ∈ K, from the assumption of the theorem, and applying Young’s inequality and taking integration
on both sides of (5.22), we derive

‖curl θh(t)‖0,Ω + C(α3, ν,R)‖θh(t)‖L2(0,t,H2(Ω)) ≤ ‖curl θh(0)‖0,Ω + C(CA)hr
(
|f |L2(0,t,Hr−1(Ω))

+ |∂tψ|L2(0,t,H1+r(Ω)) + |ψ|L2(0,t,H2+r(Ω))

)
,

for almost all t ∈ (0, T ]. Using the approximation properties of Sh (Lem. 5.3), we derive

‖ψ − ψh‖L∞(0,t,H1(Ω)) + C(α3, ν,R)‖ψ − ψh‖L2(0,t,H2(Ω)) ≤ ‖ψ(0) − ψh(0)‖1,Ω + C(CA)hr
(
|ψ(0)|r+1,Ω

+|f |L2(0,t,Hr−1(Ω)) + |∂tψ|L2(0,t,H1+r(Ω)) + |ψ|L2(0,t,H2+r(Ω))

)
.

The proof is complete. �
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5.3. Error estimation for fully-discrete scheme

In this section, we would like to derive the error estimation for the fully-discrete scheme (cf. (4.7)). To derive
the estimates, we first split the error as follows:

ψnh − ψ(tn) = ψnh − Shψ(tn) + Shψ(tn) − ψ(tn) = θnh + ρnh,

where θnh := ψnh−Shψ(tn) and ρnh := Shψ(tn)−ψ(tn). Since the estimation for ρnh is known from the Lemma 5.3,
we will focus in bounding the term θnh .

Theorem 5.6. Let ψnh ∈Wh be the virtual element solution generated by (4.7), and ψ(tn) ∈W be the analytical

solution of the problem (2.3) at time t = tn. Assume that ψ(tn), ψ
n
h ∈ K̃ :=

{
v ∈ BR : 2R

α3ν
< 1
}
. Also, we assume

that the Assumption 3.1 is satisfied on mesh regularity. Then, under the condition of the Theorem 5.5, there
exists a positive generic constant C that depends on mesh regularity parameter, and Sobolev regularity of the
exact solution ψ, ∂tψ, ∂ttψ and force function f but independent of mesh size h and time steps ∆t such that the
following estimation holds

‖ψnh − ψ(tn)‖1,Ω +


∆t

n∑

j=1

‖ψjh − ψ(tj)‖
2
2,Ω




1/2

≤ C(CA, α3,R, ψ, ∂tψ, ∂ttψ, f)(h
r + ∆t),

for 1
2 < r ≤ k − 1.

Proof. Using the fully discrete scheme (4.7), weak formulation (2.3), and the biharmonic projection operator
Sh, we obtain

Ah
(
θnh − θn−1

h

∆t
, φh

)
+ νBh(θnh , φh) = Ah

(
ψnh − ψn−1

h

∆t
, φh

)
+ νBh(ψnh , φh)

−Ah
(
Shψ(tn) − Shψ(tn−1)

∆t
, φh

)
− νBh(Shψ(tn), φh)

= Fh(φh) − F (φh) − Ch(ψnh ;ψnh , φh) + C(ψ(tn);ψ(tn), φh)

+A(∂tψ(tn), φh) −Ah
(
Shψ(tn) − Shψ(tn−1)

∆t
, φh

)
.

(5.23)

In order to derive the desired estimation, we will put φh = θnh into (5.23).

Ah
(
θnh − θn−1

h

∆t
, θnh

)
+ νBh(θnh , θ

n
h) = Fh(θnh) − F (θnh) − Ch(ψnh ;ψnh , θ

n
h) + C(ψ(tn);ψ(tn), θ

n
h)

+A(∂tψ(tn), θ
n
h) −Ah

(
Shψ(tn) − Shψ(tn−1)

∆t
, θnh

)
.

(5.24)

The nonlinear term can be rewritten as follows:

C(ψ(tn);ψ(tn), θ
n
h) − Ch(ψnh ;ψnh , θ

n
h) = C(ψ(tn);ψ(tn), θ

n
h) − Ch(ψ(tn);ψ(tn), θ

n
h)

+ Ch(ψ(tn);ψ(tn), θ
n
h) − Ch(ψnh ;ψnh , θ

n
h).

(5.25)

Using analogous arguments as in the proof of the Theorem 5.5, we have

|C(ψ(tn);ψ(tn), θ
n
h) − Ch(ψ(tn);ψ(tn), θ

n
h)| ≤ Chr|ψ(tn)|2+r,Ω‖ψ(tn)‖2,Ω‖θ

n
h‖2,Ω. (5.26)
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Proceeding same as semi-discrete case, another term of (5.25) can be estimated as follows

|Ch(ψ(tn);ψ(tn), θ
n
h) − Ch(ψnh ;ψnh ; θnh)| ≤ C(hr|ψ(tn)|2+r,Ω + ‖∆θnh‖0,Ω)‖curl ψ(tn)‖1,Ω‖curl θnh‖1,Ω

+ ‖∆ψnh‖0,Ω(hr|ψ(tn)|2+r,Ω + ‖θnh‖0,Ω) ‖∇θnh‖1,Ω.
(5.27)

Using the projection operator Πk,∆
K , and polynomial consistency property of the discrete bilinear form Ah(·, ·),

we obtain

A(ψt(tn), θ
n
h) −Ah

(
Shψ(tn) − Shψ(tn−1)

∆t
, θnh

)
= A

(
ψt(tn) −

ψ(tn) − ψ(tn−1)

∆t
, θnh

)

+
∑

K∈Th

AK

(
ψ(tn) − ψ(tn−1)

∆t
−

(
Πk,∆
K (ψ(tn) − ψ(tn−1))

∆t

)
, θnh

)

+
∑

K∈Th

AhK

((
Πk,∆
K (ψ(tn) − ψ(tn−1))

∆t

)
−

Shψ(tn) − Shψ(tn−1)

∆t
, θnh

)

:= Σ1 + Σ2 + Σ3.

(5.28)

Following the analogous arguments as Theorem 3.3 of [40], we can write the term Σ1 as follows,

Σ1 ≤
1

∆t
|ψ(tn) − ψ(tn−1) − ∆tψt(tn)|1,Ω|θ

n
h |1,Ω ≤

1

∆t

∣∣∣∣∣

∫ tn

tn−1

(s− tj−1) ψtt(s)

∣∣∣∣∣
1,Ω

|θnh |1,Ω

≤ ‖∂ttψ‖L1(tn−1,tn;L2(Ω))|θ
n
h |1,Ω.

Further, in order to bound Σ2, we derive the following estimate

Σ2 ≤
1

∆t

∑

K∈Th

‖curl (ψ(tn) − ψ(tn−1)) − curl Πk,∆
K (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K

≤
1

∆t
Chr‖∂tψ‖L1(tn−1,tn;Hr+1(Ω))|θ

n
h |1,Ω.

Adding and subtracting curl (ψ(tn) − ψ(tn−1)), the term Σ3 (cf. (5.28)) can be written as

Σ3 ≤
1

∆t
CA

∑

K∈Th

‖curl (Shψ(tn) − Shψ(tn−1)) − curl Πk,∆
K (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K

≤
1

∆t
CA

∑

K∈Th

‖curl (Shψ(tn) − Shψ(tn−1)) − curl (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K

+ ‖curl (ψ(tn) − ψ(tn−1)) − curl Πk,∆
K (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K .

Using the approximation properties of the operator Sh, we obtain

∑

K∈Th

‖curl (Shψ(tn) − Shψ(tn−1)) − curl (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K

≤ Chr‖∂tψ‖L1(tn−1,tn;H1+r(Ω))|θ
n
h |1,Ω.

Analogously, we have

∑

K∈Th

‖curl (ψ(tn) − ψ(tn−1)) − curl Πk,∆
K (ψ(tn) − ψ(tn−1))‖0,K |θnh |1,K

≤ Chr‖∂tψ‖L1(tn−1,tn;H1+r(Ω))|θ
n
h |1,Ω.
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Inserting the above estimates in (5.28), and then using it together with (5.26) and (5.27) into (5.24), and
multiplying by ∆t, we obtain that

α1‖curl θnh‖
2
0,Ω + ν∆tα3‖θ

n
h‖

2
2,Ω ≤ C∆t hr|f |r−1,Ω‖θ

n
h‖2,Ω + C ∆t(hr|ψ(tn)|r+2,Ω + ‖θnh‖2,Ω)

× ‖ψ(tn)‖2,Ω ‖θnh‖2,Ω + C ∆t ‖ψnh‖2,Ω(hr|ψ(tn)|r+2,Ω + ‖θnh‖2,Ω) ‖θnh‖2,Ω

+ C(CA)∆thr‖∂tψ‖L1(tn−1,tn;Hr+1(Ω))‖curl θnh‖0,Ω + C∆t‖∂ttψ‖L1(tn−1,tn;L2(Ω))‖curl θnh‖0,Ω

+ α1‖curl θnh‖0,Ω ‖curl θn−1
h ‖0,Ω.

An application of the Young’s inequality and kick-back argument yields

α1

2
‖curl θnh‖

2
0,Ω−

α1

2
‖curl θn−1

h ‖2
0,Ω + ∆t(να3 − ‖ψ(tn)‖2,Ω − ‖ψnh‖2,Ω)‖θnh‖

2
2,Ω

≤ Chr(|f |r−1,Ω + |ψ(tn)|r+2,Ω)‖θnh‖2,Ω + C(CA)hr‖∂tψ‖L1(tn−1,tn;Hr+1(Ω))‖curl θnh‖0,Ω

+ C∆t‖∂ttψ‖L1(tn−1,tn;L2(Ω))‖curl θnh‖0,Ω.

Since ψ(tn), ψ
n
h ∈ K̃, from the assumption of the theorem, and using Young’s inequality and iterating j =

1, . . . , n, we have

α1

2
‖curl θnh‖

2
0,Ω + ∆tC(ν, α3,R)

n∑

j=1

‖θjh‖
2
2,Ω ≤

α1

2
‖curl θ0h‖

2
0,Ω + C ∆t2 ‖∂ttψ‖

2
L1(0,tn;L2(Ω))

+ C(CA)h2r
(
‖f‖2

L∞(0,tn;Hr−1(Ω)) + ‖ψ‖2
L∞(0,tn;Hr+2(Ω)) + ‖∂tψ‖

2
L∞(0,tn;Hr+1(Ω))

)

≤ C‖ψ0
h − Sh(ψ(0))‖2

1,Ω + C(CA)h2r
(
‖f‖2

L∞(0,tn;Hr−1(Ω)) + ‖ψ‖2
L∞(0,tn;Hr+2(Ω))

+ ‖∂tψ‖
2
L∞(0,tn;Hr+1(Ω))

)
+ C ∆t2 ‖∂ttψ‖

2
L1(0,tn;L2(Ω))

≤ C
(
‖ψI(0) − ψ(0)‖2

1,Ω + ‖ψ(0) − Sh(ψ(0))‖2
1,Ω

)
+ C ∆t2 ‖∂ttψ‖

2
L1(0,tn;L2(Ω))

+ C(CA)h2r
(
‖f‖2

L∞(0,tn;Hr−1(Ω)) + ‖ψ‖2
L∞(0,tn;Hr+2(Ω)) + ‖∂tψ‖

2
L∞(0,tn;Hr+1(Ω))

)
.

Using the approximation properties for Sh, and Proposition 5.2, we get

α1

2
‖curl θnh‖

2
0,Ω + ∆tC(ν, α3,S)

n∑

j=1

‖θjh‖
2
2,Ω ≤ C ∆t2 ‖∂ttψ‖

2
L1(0,tn;L2(Ω))

+ C(CA)h2r
(
‖ψ(0)‖2

2+r,Ω + ‖f‖2
L∞(0,tn;Hr−1(Ω)) + ‖ψ‖2

L∞(0,tn;Hr+2(Ω))

+ ‖∂tψ‖
2
L∞(0,tn;Hr+1(Ω))

)
.

Finally, using the fact that ψnh − ψ(tn) = θnh + ρnh, from the above estimation and approximation properties for
Sh (see Lem. 5.3), we have the desired thesis. �

Remark 5.7. In Theorems 5.5 and 5.6, we have chosen that the analytical solution ψ at time t = tn and fully
discrete solution ψnh belong to a bounded subset of BR. To satisfy this condition, an additional condition has
to be imposed on viscosity ν, which leads

max





2Ĉ2

α2
3ν

2
,
2C2

B

(
4 + Ĉ2

)

α4
3ν

2



‖ψh‖

2
L∞(0,tn−1;H2(Ω)) < 1.

For sufficiently small values of ∆t and ν satisfying the above mentioned condition, we advocate a numerical
approximation of (2.3) that converges optimally in both space and time variable. The primary advantage of this
scheme is that the condition imposed on ν is independent of 1/∆t which ensures the robustness of the scheme
for very small values of ∆t.
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Figure 1. Sample meshes: T 1
h (top left), T 2

h (top right), T 3
h (bottom left) and T 4

h (bottom right).

6. Numerical experiments

In this section, we report the results of four numerical tests carried out with the fully-discrete virtual element
scheme proposed in Section 4, in order to validate the theoretical results presented in Section 5. We have
developed a MATLAB code that implements the fully-discrete scheme for k = 2 and k = 3. For the time
discretization, we employ a backward Euler scheme and for each time step, we use the Newton–Raphson method
to solve the resulting nonlinear system, with maximum 10 iterations, a user specified tolerance tol:= 10−8, and
taking ψin

h = 0 as initial guess.
For our numerical tests, we have used different families of polygonal meshes (see Fig. 1):

– T 1
h : Uniform triangular meshes.

– T 2
h : Trapezoidal meshes.

– T 3
h : Sequence of Centroidal Voronoi Tessellation.

– T 4
h : Distorted concave rhombic quadrilaterals.

In order to test the convergence properties of the VEM method, we measure the errors as the difference
between the exact solution ψ and the suitable projections of the numerical solution ψh. More precisely, for the
norm L2

(
0, T ;H2(Ω)

)
, we consider the following quantity:

E2(ψ) := error

(
ψ,L2, H2

)
=

(
∆t

N∑

n=1

|ψ(tn) − Πk,∆
K ψnh |

2
2,h

)1/2

.

6.1. Test 1. Homogeneous Dirichlet boundary conditions and initial data

In this numerical test, we solve the Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take
the load term f , boundary and initial conditions in such a way that the analytical solution is given by:

u(x, y, t) = 0.1

(
sin(t) x2(1 − x)2(2y − 6y2 + 4y3)

− sin(t) y2(1 − y)2(2x− 6x2 + 4x3)

)
, p(x, y, t) = t2

(
x3y3 −

1

16

)
,
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Table 1. Test 1. Errors for the stream-function ψh in the discrete L2
(
0, T ;H2(Ω)

)
norm

obtained with k = 2, ν = 1 and T 2
h .

dof h ∆t0 ∆t0/2 ∆t0/4 ∆t0/8 ∆t0/16

147 h0 1.076690e-3 1.055725e-3 1.045194e-3 1.039916e-3 1.037273e-3

675 h0/2 5.450550e-4 5.344520e-4 5.291258e-4 5.264563e-4 5.251199e-4

2883 h0/4 2.723653e-4 2.670638e-4 2.644015e-4 2.630672e-4 2.623994e-4

11907 h0/8 1.361231e-4 1.334675e-4 1.321353e-4 1.314681e-4 1.311342e-4

48387 h0/16 6.807611e-5 6.673602e-5 6.606687e-5 6.573250e-5 6.556536e-5

Table 2. Test 1. Errors for the stream-function ψh in the discrete L2
(
0, T ;H2(Ω)

)
norm

obtained with k = 3, ν = 10−3 and T 4
h .

dof h ∆t0 ∆t0/2 ∆t0/4 ∆t0/8 ∆t0/16

211 h0 9.546949e-4 9.395878e-4 9.320480e-4 9.282763e-4 9.263893e-4

899 h0/2 2.760235e-4 2.701636e-4 2.678057e-4 2.667518e-4 2.662540e-4

3715 h0/4 8.270615e-5 7.376976e-5 7.135559e-5 7.064923e-5 7.041604e-5

15107 h0/8 4.423838e-5 2.603643e-5 1.969686e-5 1.785950e-5 1.736430e-5

60931 h0/16 4.077910e-5 1.976831e-5 1.021248e-5 6.047226e-6 4.554491e-6

ψ(x, y, t) = 0.1 sin(t) x2(1 − x)2y2(1 − y)2.

We consider the time interval [0, 1], for the viscosity we consider the values ν = 1 and ν = 10−3 and we start
the process with h0 = 1/8 and ∆t0 = 1/16.

We report in Tables 1 and 2 the errors E2(ψ) for different refinement levels and time steps and using the
family of meshes T 2

h for k = 2 and the family T 4
h for k = 3. Moreover, the maximum number of iterations that

are required for the Newton method in this example is 4 for all the meshes and for k = 2, 3. It can be seen
along the diagonal of Table 1, that the error E2(ψ) reduces linearly with respect to h and along the diagonal of
Table 2 can be observed that the error E2(ψ) reduces quadratically with respect to h, which are the expected
order of convergence for k = 2 and k = 3, respectively. In addition, we have highlighted the errors which are
dominated by space in Tables 1 and 2 for small values of time-step ∆t. We also observed that for big values of
h, the error E2(ψ) is almost constant with respect to ∆t. Further, to examine the rate of convergence for the
space variable, we have included convergence graph using all family of meshes in Figure 2, for k = 2 and k = 3.

6.2. Test 2. Non-homogeneous Dirichlet boundary conditions and initial conditions

In this numerical test, we solve the Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take
the load term f , non-homogeneous Dirichlet boundary and initial conditions in such a way that the analytical
solution is given by:

u(x, y, t) = 0.1π

(
− exp(0.1t)(1 + cos(πx)) sin(πy)

exp(0.1t)(1 + cos(πy)) sin(πx)

)
, p(x, y, t) = exp(−t)

(
x2 + y2 −

2

3

)
,

ψ(x, y, t) = 0.1 exp(0.1t)(1 + cos(πx))(1 + cos(πy)).

In this test, we consider the time interval to [0, 1], the viscosity ν = 10−3 and we start with h0 = 1/4 and
∆t0 = 1/16.
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Figure 2. Test 1: Rate of convergence for space variable for different meshes with meshsize
h = 1/4, . . . , 1/64, ν = 1 and for small values of time-step ∆t. For k = 2 and ∆t = 0.05 (left
panel) and k = 3 and ∆t = 0.0025 (right panel).

Table 3. Test 2. Errors for the stream-function ψh in the discrete L2
(
0, T ;H2(Ω)

)
norm

obtained with T 4
h and ν = 10−3.

dof h ∆t0 ∆t0/2 ∆t0/4 ∆t0/8 ∆t0/16

123 h0 3.312118e-1 3.307043e-1 3.304508e-1 3.303242e-1 3.302609e-1

531 h0/2 1.674332e-1 1.672076e-1 1.670951e-1 1.670389e-1 1.670108e-1

2211 h0/4 8.358238e-2 8.345864e-2 8.339822e-2 8.336843e-2 8.335366e-2

9027 h0/8 4.229862e-2 4.222367e-2 4.218726e-2 4.216934e-2 4.216047e-2

36483 h0/16 2.163267e-2 2.160239e-2 2.158950e-2 2.158367e-2 2.158092e-2

We report in Table 3 the errors E2(ψ) for the family of meshes T 4
h and different refinement levels and time

steps. In this example, the maximum number of iterations that are required for the Newton method is 5. Once
again, it can be seen along the diagonal of Table 3 that the error E2(ψ) reduces linearly with respect to h, which
is the expected order of convergence for k = 2. In addition, we have highlighted the errors which are dominated
by space in Table 3 for small values of time-step ∆t.

6.3. Test 3. Example with dominating time error

In the present numerical test, we study the order of convergence of the virtual scheme in time. We solve the
Navier–Stokes problem (2.1) on the square domain Ω := (0, 1)2. We take the load term f , boundary and initial
conditions in such a way that the analytical solution is given by:

u(x, y, t) =

(
sin(10πt) x2(1 − x)2(2y − 6y2 + 4y3)

− sin(10πt) y2(1 − y)2(2x− 6x2 + 4x3)

)
,

p(x, y, t) = −

(
x3 + y3 −

1

2

)(
3

2
+

1

2
sin(10πt)

)
, ψ(x, y, t) = sin(10πt) x2(1 − x)2y2(1 − y)2.

We consider the time interval [0, 1], the viscosity ν = 1 and we start the process with h0 = 1/8 and ∆t0 = 1/8.



VEM FOR THE NAVIER-STOKES EQUATIONS 2563

Table 4. Test 3. Errors and experimental rates for the stream-function ψh in norm
L2
(
0, T ;H2(Ω)

)
obtained with the meshes T 1

h , k = 2 and ν = 1.

dof h ∆t0 ∆t0/2 ∆t0/4 ∆t0/8 ∆t0/16

147 h0 2.556643e-2 1.851436e-2 1.439994e-2 1.256422e-2 1.186603e-2

675 h0/2 2.437394e-2 1.579445e-2 1.025426e-2 7.432721e-3 6.296528e-3

2883 h0/4 2.406341e-2 1.502749e-2 8.911963e-3 5.428423e-3 3.772418e-3

11907 h0/8 2.398373e-2 1.482783e-2 8.541759e-3 4.795144e-3 2.800171e-3

48387 h0/16 2.396363e-2 1.477733e-2 8.446522e-3 4.623010e-3 2.498059e-3

Figure 3. Rate of convergence for time variable for different meshes with time-steps ∆t =
1/8, . . . , 1/128 and meshsize h = 1/64, ν = 1 and k = 3.

We report in Table 4 the errors E2(ψ) obtained for k = 2 and using the family of meshes T 1
h with different

refinement levels and time steps. In this experiment, differently to the first and second tests, we can observe
that, for small values of h, the error E2(ψ) reduces linearly with respect to ∆t (see the last row of Tab. 4), which
is the expected order of convergence in time according to Theorem 5.6. We also observe that for big values of ∆t
the error E2(ψ) is almost constant with respect to h. In this numerical test, the maximum number of iterations
that are required for the Newton method is 3.

Further, in Figure 3, we have posted a convergence graph where errors E2(ψ) are dominated by time and
virtual element space of order k = 3 is chosen. We have used all family of meshes. We deduce that the rate of
convergence is closer to 1 (expected order of convergence for time variable) for very small values of h.

6.4. Test 4. Chorin problem

In this example, we consider the well-known Chorin problem for incompressible Navier–Stokes equations [22].
For this test the load term is f = 0, and the initial and boundary conditions correspond to the analytical
solution:

u(x, y, t) =

(
− cos(2πx) sin(2πy)e−8π2νt

sin(2πx) cos(2πy)e−8π2νt

)
, p(x, y, t) = −

1

4
(cos(4πx) + cos(4πy))e−8π2νt,

ψ(x, y, t) =
1

2π
cos(2πx) cos(2πy)e−8π2νt.
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Table 5. Test 4. Errors and experimental rates for the stream-function ψh, using the meshes
T 3
h , and with different values of ν.

ν dof h E1(ψ) r1(ψ) E2(ψ) r2(ψ)

54 1/4 2.589181e-2 – 3.689706e-1 –
294 1/8 6.856293e-3 1.916 1.979657e-1 0.898

10−3 1371 1/16 1.796994e-3 1.931 1.012519e-1 0.967
5796 1/32 4.332627e-4 2.052 5.059189e-2 1.000
23874 1/64 1.078390e-4 2.006 2.519974e-2 1.005

54 1/4 2.590922e-2 – 3.691334e-1 –
294 1/8 6.858939e-3 1.917 1.980514e-1 0.898

10−6 1371 1/16 1.796887e-3 1.932 1.012955e-1 0.967
5796 1/32 4.328584e-4 2.053 5.061318e-2 1.000
23874 1/64 1.074008e-4 2.010 2.520898e-2 1.005

It has been observed that some finite element methods for a velocity-pressure formulation, the L2 error of the
velocity converge suboptimally or even lock for small values of the viscosity (see [32], Sect. 4.2). It can be seen
that the L2 error of the velocity is related with the H1 error for the stream-function. Thus, in order to assess
the performance of the virtual scheme for this numerical example, we introduce the following discrete quantity:

E1(ψ) := error(ψ,L2, H1) =

(
∆t

N∑

n=1

|ψ(tn) − Πk,∆
K ψnh |

2
1,h

)1/2

.

We observe that an additional order of convergence is expected in this discrete error. To show this fact, we will
compute experimental rates of convergence for each individual error as follows:

ri(ψ) :=
log(Ei(ψ)/E′i(ψ))

log(h/h′)
, i = 1, 2,

where h, h′ denote two consecutive mesh sizes with their respective errors Ei and E
′
i.

We report in Table 5 the discrete errors E1(ψ) and E2(ψ), for the family of meshes T 3
h . The results were

obtained by considering the final time T = 0.01 and time stepping ∆t = 0.001. For the viscosity ν, we take two
values: ν = 10−3 and ν = 10−6. The maximum number of iterations that are required for the Newton method
in this example is 4 for ν = 10−3 and 5 for ν = 10−6.

It can be clearly observed from Table 5 a linear order of convergence in the norm E2(ψ) and a quadratic order
in the norm E1(ψ) (which has not been proved). Thus, we conclude that our virtual scheme does not suffer from
a suboptimal order of convergence or locking phenomenon.

Exact and approximate solutions (including a postprocessed velocity field) are illustrated in Figure 4.

7. Conclusion

In this article, we have proposed a C1 VEM to discretize the time-dependent Navier–Stokes problem in the
stream-function form. Exploiting enhanced virtual element spaces, we have approximated the spatial variables
and we have discretized the time variable using the backward Euler scheme. We have derived a priori error
estimations for semi-discrete and fully-discrete schemes and the theoretical results are verified by four numerical
experiments. Moreover, the fourth numerical experiment allows us to conclude that our virtual scheme does not
suffer from a suboptimal order of convergence when the diffusion coefficient ν is small, in contrast to some finite
element methods in velocity-pressure formulation, where a suboptimal convergence is observed in L2-norm of
the velocity for the Chorin problem with small values of ν (see [32]).
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Figure 4. Test 4. Exact and approximate solutions ψ, ψh and the postprocessed velocity field
uh := curlψh, using ∆t = 0.001 for T = 0.01, using the mesh T 3

h with h = 1/32 and ν = 10−6.
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