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We develop and analyse a new family of virtual element methods on unstructured polygonal meshes
for the diffusion problem in primal form, which uses arbitrarily regular discrete spaces Vh ⊂ Cα , α ∈ N.
The degrees of freedom are (a) solution and derivative values of various degrees at suitable nodes and (b)
solution moments inside polygons. The convergence of the method is proved theoretically and an optimal
error estimate is derived. Numerical experiments confirm the convergence rate that is expected from the
theory.
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1. Introduction

In this work, we investigate a very appealing feature of the virtual element method (VEM): the design
of numerical schemes that incorporate a given degree α ∈ N of Cα global regularity into the discrete
solution. Indeed, the discrete spaces of the conforming finite element method are traditionally globally
continuous, that is, only C0, and the construction of more regular elements, for example, C1 elements,
is a very difficult task. Successful C1 discretizations date back to the mid sixties to early seventies
and were obtained by using either a high polynomial degree, as, for example, in the Argyris and Bell
triangle (Argyris et al., 1968; Bell, 1969; Ciarlet, 1978), or a complex design, as, for example, the
Hsieh-Clough-Tocher (HCT) triangle (Clough & Tocher, 1965; Ciarlet, 1978). Moreover, using such
strategies to obtain a finite element space with C2 or higher regularity becomes prohibitive. To the
authors knowledge, the only technology that succeeded later on in building piecewise polynomial and
highly regular spaces is that of splines (de Boor, 2001; Schumaker, 2007) and isogeometric analysis
(Cottrell et al., 2009), but at the cost of using tensor-product meshes or resorting to the much more
complex construction of T-splines.

The virtual element approach in Beirão da Veiga et al. (2013,?) offers a strong alternative to such
constructions: the finite element spaces that we will consider in this work are virtual in the sense that
we do not need to build the basis functions explicitly to implement the method. This feature allows
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760 L. BEIRÃO DA VEIGA AND G. MANZINI

us to design a family of numerical methods that are associated with discrete spaces with arbitrary Cα

regularity and are suitable for general unstructured polygonal meshes. To this end, we propose a new
VEM that depends on two integer parameters: α for the regularity and m for the polynomial degree of
the approximation, with the minimal condition that m � α + 1. The parameter α determines the global
smoothness of the underlying discrete space, that is, Cα regularity across the edges of the mesh. The
parameter m determines the order of convergence of the method in the energy norm, which is expected
to be O(hm) for a sufficiently regular solution.

Although the present paper is complete, we intend this contribution as a first step in exploring a new
direction. Indeed, the possibility of developing highly regular methods could pave the way to a wide
range of applications. At first glance, the main advantages offered by the VEM lie in simpler discretiza-
tion of higher-order problems (see, for example, Brezzi & Marini, 2013) and in the straightforward
computation of derived quantities such as fluxes, strains, stresses, etc., which are directly related to the
degrees of freedom of the numerical method. New research topics could also be anisotropic error esti-
mation based on the Hessian of the solution and the construction of finite element spaces that exactly
satisfy given constraints, as, for example, in the stream function formulation of the Stokes problem,
where the discrete velocity is the curl of a C1 scalar field. We can also devise a VEM for better eigen-
value approximation, as studies in isogeometric analysis have shown that highly regular discrete spaces
may give a better approximation of the high end of the spectrum. Finally, the present construction can
be extended to a more general approach in which the polynomial degree may vary from element to
element and the regularity index α may vary from edge to edge.

These goals may be achieved while still keeping the property of mesh generality of mimetic finite
difference (MFD) methods; see, for example, the mixed and primal formulations given in Brezzi et al.
(2005a, 2009) and Beirão da Veiga et al. (2011b). The VEM can, indeed, be considered as a Galerkin
reformulation of the MFD method. This fact is of primary importance since it establishes a clear and
well-defined bridge between MFD methods and the finite element framework. Such reformulations for
mixed and nodal MFD methods allow us to extend mimetic technology (see, for example, Brezzi et al.,
2005a,b, 2009; Beirão da Veiga, 2008, 2010; Beirão da Veiga & Manzini, 2008; Cangiani & Manzini,
2008; Beirão da Veiga et al., 2009a,b, 2011b; Cangiani et al., 2009; Lipnikov et al., 2011) to the VEM.
Other approaches that generalize finite element methods to elements of general shape are found, for
instance, in Belytschko et al. (1994), Benson et al. (2010), Cueto et al. (2003), Fries & Belytschko
(2010), Mousavi & Sukumar (2011), Sukumar & Malsch (2006), Sukumar & Tabarraei (2004) and
Wachspress (1975).

The outline of the paper is as follows. In Section 2, we introduce the mathematical model.
In Section 3, we present the formulation of the new VEM proposed here. In Section 4, we present
the convergence analysis of the scheme. In Section 5, we confirm the theoretical results with numerical
experiments. In Section 6, we offer final remarks and conclusions.

2. The mathematical model

Let us consider the steady diffusion problem for the scalar solution field u given by

−div(K∇u) = f in Ω , (2.1)

u = g on Γ , (2.2)

where Ω ⊂ R
2 is the computational domain, Γ is the boundary of Ω , K is the diffusion tensor describing

the material properties, f is the forcing term and g is the Dirichlet datum. For simplicity of exposition,
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 761

we will focus on the case of homogeneous Dirichlet boundary conditions, that is, g = 0. The more
general case is a straightforward extension and will be considered for the numerical experiments
in Section 5.

We assume the following:

(H1) Ω is a bounded, open, polygonal subset of R
2;

(H2) the diffusion tensor K : Ω → R
2×2, is a 2 × 2, bounded, measurable and symmetric tensor.

Moreover, we assume that K is strongly elliptic, that is, there exist two positive constants κ∗
and κ∗ such that for every x ∈ Ω it holds

κ∗||v||2 � v · K(x)v � κ∗||v||2 ∀v ∈ R
2, (2.3)

where ||v|| is the usual Euclidean norm of the vector v;

(H3) the function f belongs to L2(Ω).

Throughout the paper, we will follow the usual notation for Sobolev spaces and norms (see, for
example, Ciarlet, 1978). In particular, for a bounded and open domain D , we will use || · ||s,D and
| · |s,D to denote the norm and the seminorm in the Sobolev space Hs(D), while (·, ·)0,D will denote
the L2(D) inner product. Often the subscript will be omitted when D is the computational domain Ω .
Moreover, we represent the set of polynomials of degree at most j on P by Pj(P). Finally, πD

j will
denote the usual L2(D) projection onto Pj(D), j ∈ N.

Let us now consider the functional space H1
0 (Ω) = {v ∈ H1(Ω), v|Γ = 0}. Problem (2.1–2.2) can be

restated in variational form:
find u ∈ H1

0 (Ω) such that

A(u, v) = (f , v) ∀v ∈ H1
0 (Ω), (2.4)

where

A(u, v) =
∫

Ω

K∇u · ∇v dV and (f , v) =
∫

Ω

fv dV .

Under assumptions (H1)–(H3), the bilinear form A is continuous and coercive and the linear functional
(f , ·) is continuous, thus implying the well-posedness of problem (2.4), that is, existence and uniqueness
of the weak solution (Grisvard, 1985).

3. The discrete model

Let {Ωh}h be a sequence of decompositions of Ω into elements P labelled by the mesh size parameter h.
For the moment, we assume that each decomposition Ωh is made of a finite number of simple polygons,
that is, open, simply connected sets whose boundary is a nonintersecting line made of a finite number
of straight line segments.

For every h, we construct a finite-dimensional space Vh ⊂ H1
0 (Ω), a bilinear form Ah : Vh × Vh →

R and a linear functional (fh, ·)h : Vh → R such that the discrete problem
find uh ∈ Vh such that

Ah(uh, vh) = (fh, vh)h ∀ vh ∈ Vh (3.1)
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762 L. BEIRÃO DA VEIGA AND G. MANZINI

has a unique solution uh, and we have ‘good’ approximation properties. If m � 1 is the target degree
of accuracy, and the solution u of (2.4) is smooth enough, we want to have

||u − uh||1 � Chm|u|m+1, (3.2)

where C is a positive constant independent of h.

3.1 Local discrete spaces

We denote a generic mesh vertex by v and its coordinate vector by xv, a generic mesh edge by e and its
length by |e|, the area of polygon P by |P| and its boundary by ∂P. The orientation of each edge e is
reflected by its unit normal vector ne, which is fixed once and for all. For any polygon P and any edge
e of ∂P, we define the unit normal vector nP,e that points out of P. We denote the set of mesh vertices
by V and the set of mesh edges by E .

We refer to the integer number α � 0 as the regularity index and to the integer number m � α + 1
as the consistency index. For any integer s � 0, we define the functional space

Bs(∂P) := {v ∈ L2(∂P) : v|e ∈ Ps(e)∀e ∈ ∂P}.

Now, let αj := max{2(α − j) + 1, m − j} so that for example, α0 := max{2α + 1, m} and α1 :=
max{2α − 1, m − 1}. We define the operator ∇ jv as the collection of derivatives of order j of the scalar
function v, with the usual convention that the zeroth-order derivative coincides with the function. Thus,
for example, it holds that ∇0v = v, while ∇1v is the gradient of v, ∇2v is the Hessian, etc. For each
polygonal cell P and any pair of indices (α, m) with α � 0 and m � α + 1, we consider the local finite
element space

Vh|P =
{

v ∈ H1+α(P) with Δ1+αv ∈ Pm−2(P) and
∂ jv

∂nj

∣∣∣∣
∂P

∈ Bαj(∂P) for j = 0, . . . , α

}
, (3.3)

with the convention that P−1(P) = {0} and where Δ1+α represents the Laplace operator Δ applied
(1 + α) times. Note that the conditions in (3.3) imply, in particular, that ∇ jv|∂P ∈ C0(∂P).

Let us illustrate the meaning of this definition through a couple of examples. For α = 0 and m � 1,
we obtain the finite element spaces introduced in Beirão da Veiga et al. (2013), which allow for the
formulation of a family of schemes that are equivalent to the arbitrary-order mimetic method in Beirão
da Veiga et al. (2011b). In particular, for m = 1, we have the low-order nodal MFD method (Brezzi
et al., 2009). The functions that belong to these spaces are the solutions of the equation Δv = p with
p ∈ Pm−2(P) inside each polygonal cell P, and their trace on the boundary ∂P is a continuous piecewise
polynomial of degree m. For α = 1 and m = 2, we obtain the finite element space of functions in H2(P)

that satisfy the following conditions:

• the trace on the boundary of P is continuous and on each edge is a polynomial of degree α0 = 3;

• the gradient on the boundary is continuous and on each edge the normal derivative is a polynomial
of degree α1 = 1;

• inside P these functions satisfy the biharmonic equation Δ2v = p with p ∈ R.

Remark 3.1 For α = 0 and m = 1 on triangles (the lowest-order-accurate lowest regular approximation
that we can build) the VEM considered here coincides with the linear conforming finite element method.
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 763

However, for α = 0 and m > 1, even on triangles, the virtual element schemes are no longer conforming
finite elements as the internal degrees of freedom are not the same as those used in the higher-order
conforming finite element approximation; cf. Beirão da Veiga et al. (2011b) and Beirão da Veiga &
Manzini (2012). Moreover, for α > 0 the method presented here does not correspond to any classical
FEM method. Indeed, the construction of C1 (or more regular) finite element spaces on unstructured
meshes is much more complicated and needs to use either higher polynomial orders or subdivision of
elements. In the special case of a rectangular mesh and α = 1, m = 3, the method resembles the (tensor-
product) Hermite element, but it is not the same scheme since the internal degrees of freedom are
different.

Remark 3.2 The local space Vh|P in (3.3) is virtual in the sense that we will not need to build it explicitly
in order to implement the family of schemes proposed here.

3.2 Local degrees of freedom

We distinguish three kinds of degrees of freedom that are associated with each polygonal cell P:

• Vh
P: vertex degrees of freedom of P;

• Eh
P: edge degrees of freedom of P;

• P h
P: interior degrees of freedom of P.

In Fig. 1, we depict some sample choices of degrees of freedom on a pentagonal element for α = 0, 1, 2
and m = α + 1, α + 2.

=0, m=1α =1, m=2α =2, m=3α

=0, m=2α =1, m=3α =2, m=4α

Fig. 1. Degrees of freedom for α = 0, 1, 2 and m = α + 1, α + 2. The symbols shown in the plots represent vertex values (dot),
vertex first-order derivatives (one circle), vertex first- and second-order derivatives (two circles), edge values (square), first-order
normal derivatives (arrow), first- and second-order normal derivatives (double arrow).
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764 L. BEIRÃO DA VEIGA AND G. MANZINI

Vertex degrees of freedom. The vertex degrees of freedom of a function v associated with the vertex v
are the partial derivatives ∇ jv(v) for j = 0, 1, . . . , α of degree up to α evaluated at xv. For instance,
for α = 1, we consider the value of v(xv) and ∇v(xv) at each vertex v of ∂P. For each mesh vertex,
the total number of such degrees of freedom is given by (α + 1)(α + 2)/2.

Edge degrees of freedom. Let us consider a set of N α,m
j distinct nodes {xj

i}i=1,...,N α,m
j

on the open edge
e, where

N α,m
j = max(m − (α + 1) − (α − j), 0) (3.4)

for α � 0, m � α + 1 and j = 0, . . . , α. These points can be uniformly spaced along e or chosen as the
nodes of suitable integration rules like those provided by Gauss–Lobatto formulas; cf. Beirão da Veiga
et al. (2011b). For each j = 0, . . . , α, the edge degrees of freedom of a function v are given by the N α,m

j

normal derivatives ∂ jv(xj
k)/∂nj evaluated at these points (as usual, for j = 0, we take the function value).

For each edge e of ∂P, the total number of such degrees of freedom is given by

(m − α + β)(m − α − 1 − β)

2
+ β, where β = max {m − (2α + 1), 0}.

Note that when m = α + 1 there are no edge degrees of freedom, since, in such a case, formula (3.4)
gives N α,m

j = 0 for all j = 0, . . . , α.

Internal degrees of freedom. Let s = (s1, s2) denote a two-dimensional multi-index with the usual
notation |s| := s1 + s2 and xs = xs1

1 xs2
2 when x = (x1, x2). For m > 1 we consider the set of m(m − 1)/2

monomials

Mm−2 =
{(

x − xP

hP

)s

, |s| � m − 2

}
, (3.5)

which is a basis for Pm−2(P). The internal degrees of freedom of the function v are the moments:

1

|P|
∫

P
q(x)v(x) dV ∀q ∈ Mm−2(P).

The total number of internal degrees of freedom is m(m − 1)/2.
The dimension N α,m

P of the local space Vh|P equals the total number of degrees of freedom of Vh
P

plus Eh
P plus P h

P and is given by

N α,m
P = NE

P

(
(α + 1)(α + 2)

2
+ (m − α)(m − α − 1)

2

)
+ m(m − 1)

2
, (3.6)

where NE
P is the number of edges of the polygon P. We still need to prove the unisolvence of the chosen

degrees of freedom.

Remark 3.3 The degrees of freedom Vh
P plus Eh

P uniquely determine a polynomial of degree α0 on
each edge e of P, which represents the function value, and α polynomials of degree αj, j = 1, 2, . . . , α,
each one of which represents the jth normal derivative along the edge. In other words, Vh

P plus Eh
P are

equivalent to prescribing ∂ jv/∂nj on ∂P, for j = 0, 1, . . . , α. On the other hand, the degrees of freedom
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 765

P h
P are equivalent to prescribing πP

m−2(v) in P. We recall that πP
m−2 is the projection operator, in the

L2(P) norm, onto the space Pm−2(P).

For the space Vh|P and the degrees of freedom Vh
P plus Eh

P plus P h
P we have the following unisolvence

result.

Proposition 3.4 Let P be a simple polygon with NE
P edges, and let the space Vh|P be defined as in (3.3).

The degrees of freedom Vh
P plus Eh

P plus P h
P are unisolvent for Vh|P.

Proof. The present proof is similar to the analogous one in Beirão da Veiga et al. (2013). We present it
for completeness. According to Remark 3.3, to prove the proposition it is enough to show that a function
v ∈ Vh|P such that

∂ jv

∂nj
= 0 for j = 0, 1, . . . , α, on ∂P (3.7)

and
πP

m−2(v) = 0 in P, (3.8)

is actually identically zero in P. In order to prove this, we show that Δ1+αv = 0 in P (that joined with
(3.7) gives v ≡ 0). To this end, we first solve, for every q ∈ Pm−2(P), the following auxiliary problem:

σΔ1+αw = q in P,

∂ jw

∂nj
= 0 on ∂P for j ∈ [0, α],

(3.9)

where σ = (−1)1+α . This problem is reformulated in variational form as follows:

find w ∈ H1+α
0 (P) such that BP(w, v) = (q, v)0,P ∀v ∈ H1+α

0 (P), (3.10)

with BP denoting the elliptic bilinear form associated to the operator σΔ1+α on P through the usual inte-
gration by parts. The solution of (3.9) can be written as w = σΔ−1−α

0,P (q), the latter symbol representing
the inverse operator applied to the right-hand side function q.

Next, we consider the map R, from Pm−2(P) into itself, defined by

R(q) := πP
m−2(σΔ−1−α

0,P (q)) ≡ πP
m−2(w). (3.11)

We claim that R is an isomorphism. Indeed, from (3.11), the definition of πP
m−2, and (3.10) we have,

for every q ∈ Pm−2(P),

(R(q), q)0,P = (πP
m−2(σΔ−1−α

0,P (q)), q)0,P = (πP
m−2(w), q)0,P = (w, q)0,P = BP(w, w).

Since w is in H1+α
0 (P) we have then that

R(q) = 0 ⇔ BP(w, w) = 0 ⇔ w = 0 ⇔ q = 0. (3.12)

We note that, if ∂ jv/∂nj = 0 on ∂P, j = 0, . . . , α, then

πP
m−2(v) = πm−2(σΔ−1−α

0,P (σΔ1+αv)) = R(σΔ1+αv).

Hence, πP
m−2(v) = 0 
⇒ R(σΔ1+αv) = 0 
⇒ σΔ1+αv = 0, and the proof is concluded. �
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766 L. BEIRÃO DA VEIGA AND G. MANZINI

Remark 3.5 We obtain a much better condition number of the stiffness matrix, and we also simplify its
construction (see Section 3.4), by scaling the nodal degrees of freedom as follows. Let ν be a vertex or
an edge node of P ∈ Ωh. We set

hν = max
{P:ν∈∂P}

hP.

Then, we multiply all the degrees of freedom that are derivatives of order j in ν by (hν)
j.

3.3 Construction of the finite element space Vh

We can now design Vh, the virtual element space on the whole domain Ω . For every decomposition Ωh

of Ω into simple polygons P we first define the space without boundary conditions:

Wh = {v ∈ H1+α(Ω) : v|P ∈ Vh|P ∀P ∈ Ωh}. (3.13)

In agreement with the local choice of the degrees of freedom, in Wh we choose the following degrees
of freedom:

• Vh: the value of ∇ jvh, j = 0, . . . , α, at the vertices of V;

• Eh: the value of ∂ jvh/∂nj for j = 0, . . . , α at the N α,m
j internal nodes of each edge of E , where N α,m

j
is defined in (3.4);

• P h: the value of the moments

1

|P|
∫

P
q(x)vh(x) dV ∀q ∈ Mm−2(P), m � 2

in each polygonal cell P, where the set Mm−2(P) is defined in (3.5).

Finally, the discrete space Vh = Wh ∩ H1
0 (Ω) is given by

Vh = {v ∈ H1+α(Ω) : v|P ∈ Vh|P ∀P ∈ Ωh, v|∂Ω = 0}. (3.14)

Note that the condition vh ∈ Vh implies vh = 0 on the vertices and the edges of the boundary Γ . There-
fore, the degrees of freedom of Vh are simply the ones introduced above, excluding the nodal degrees
of freedom associated with the function values (but not with the derivatives) of the boundary vertices
and edges. The dimension of Vh equals the total number of degrees of freedom for vertices, edges
and elements. Proposition 3.4 implies that the global degrees of freedom are unisolvent for the global
space Vh.

3.4 Construction of Ah

We build the discrete bilinear form Ah by assembling the local bilinear forms Ah,P in accordance with

Ah(wh, vh) =
∑
P∈Ωh

Ah,P(wh, vh) ∀wh, vh ∈ Vh. (3.15)

The local bilinear forms Ah,P are all symmetric and satisfy the following fundamental properties of
consistency and stability.
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 767

• Consistency: for all h and for all P in Ωh it holds

Ah,P(p, vh) =
∫

Ω

(πP
m−1(K∇p)) · ∇vh dV ∀p ∈ Pm(P), ∀vh ∈ Vh|P. (3.16)

• Stability: there exist two positive constants α∗ and α∗, independent of h and P, such that

α∗AP(vh, vh) � Ah,P(vh, vh) � α∗AP(vh, vh) ∀vh ∈ Vh|P, (3.17)

where the local bilinear form AP is defined as

AP(w, v) =
∫

P
K∇w · ∇v dV . (3.18)

Note that in the present paper we consider a more general diffusion tensor K with respect to Beirão
da Veiga et al. (2013), which is the reason for the modified consistency condition (3.16). However, in
the case that K|P is constant, the projection operator πP

m−1 in (3.16) can be neglected, thus giving

Ah,P(p, vh) = AP(p, vh) ∀p ∈ Pm(P), ∀vh ∈ Vh|P.

The local degrees of freedom allow us to compute Ah,P(p, vh) exactly for any p ∈ Pm(P) and for any
vh ∈ Vh|P. Indeed, let us assume (3.16) and integrate by parts:

Ah,P(p, vh) =
∫

Ω

(πP
m−1(K∇p)) · ∇vh dV

= −
∫

P
div(πP

m−1(K∇p))vh dV +
∫

∂P
nP · (πP

m−1(K∇p))vh dS. (3.19)

Since div(πP
m−1(K∇p)) ∈ Pm−2(P), the first integral on the right-hand side of (3.19) can be expressed

through the polynomial moments of vh, and can thus be computed exactly by using its internal degrees of
freedom. On the other hand, it holds that nP · (πP

m−1(K∇p)) ∈ Pm−1(e) and vh|e ∈ Pα0(e) for all e ⊂ ∂P,
and the second integral on the right-hand side of (3.19) can be computed exactly. Therefore, the right-
hand side of (3.16) can be computed exactly without knowing vh in the interior of P.

We also observe that, as a consequence of (3.17), the symmetry of the bilinear form Ah,P and the
continuity of AP in H1(P), it easily follows that (see Beirão da Veiga et al., 2013 for the details)

Ah,P(vh, wh) � C|vh|1,P|wh|1,P ∀vh, wh ∈ Vh|P, (3.20)

with the constant C = C(α∗, κ∗) independent of h.

Remark 3.6 For all p, q ∈ Pm(P), from the definition of πP
m−1 and since ∇q ∈ Pm−1(P), it follows that

Ah,P(p, q) =
∫

Ω

(πP
m−1(K∇p)) · ∇q dV =

∫
Ω

(K∇p) · ∇q dV = AP(p, q).

Therefore, the bilinear form turns out to be exact when both entries are polynomials, even if K is not
constant on the element P. Note that the above identity also implies that the consistency condition is
compatible with the symmetry of AP

h , since it gives Ah,P(p, q) = Ah,P(q, p) for all p, q ∈ Pm(P).
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768 L. BEIRÃO DA VEIGA AND G. MANZINI

We are left to show how to construct a computable Ah that satisfies (3.16) and (3.17). Different
constructions are possible at this point. In this subsection we present the formal construction of the
local bilinear forms that avoids matrix or index notation. Later on, in Section 4.3, we will show a more
practical approach that directly addresses the implementation of the local stiffness matrix.

For any P ∈ Ωh and, for any sufficiently regular function ϕ, we set

ϕ̄ := 1

NV
P

NV
P∑

i=1

ϕ(xvi), (3.21)

where xvi is the position vector of vi, the ith vertex of ∂P in a local numbering system for i running from
1 to NV

P .
Next, we define the operator ΠP

m : Vh|P −→ Pm(P) ⊂ Vh|P as the solution of

⎧⎪⎨
⎪⎩

AP(ΠP
m(vh), q) =

∫
Ω

(πP
m−1(K∇q)) · ∇vh dV ∀q ∈ Pm(P),

ΠP
m(vh) = v̄h,

(3.22)

for all vh ∈ Vh|P, where v̄h is the cell average of vh over cell P. System (3.22) implies that

ΠP
m(p) = p ∀p ∈ Pm(P), (3.23)

since the first equation will tell us that p and ΠP
m(p) have the same gradient, and the second equation

takes care of the constant part.
At this point, choosing Ah,P(u, v) = AP(ΠP

m(u), ΠP
m(v)) for any couple of functions u and v would

ensure property (3.16), but (3.17) in general would not be verified. We need to add a term able to ensure
(3.17). Let SP(u, v) be any symmetric and positive definite bilinear form such that

c0AP(v, v) � SP(v, v) � c1AP(v, v) ∀v ∈ Vh|P with ΠP
m(v) = 0 (3.24)

for some positive constants c0 and c1 independent of P and hP using the same bilinear form AP defined
in (3.18).

Then, we set

Ah,P(u, v) = AP(ΠP
m(u), ΠP

m(v)) + SP(u − ΠP
m(u), v − ΠP

m(v)) (3.25)

for any couple of functions u and v in Vh|P. The following lemma can be verified immediately.

Lemma 3.7 The bilinear form (3.25) satisfies the consistency property (3.16) and the stability property
(3.17).

In general, the choice of the bilinear form SP would depend on the problem and on the degrees
of freedom. From (3.24) it is clear that SP must scale like AP on the kernel of ΠP

m . For each element
P ∈ Ωh, we denote by χi, i = 1, . . . , N α,m

P the operator that associates the ith local degree of freedom
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 769

χi(ϕ) with each smooth enough function ϕ. Then, by choosing the canonical basis ϕ1, . . . , ϕN α,m
P

as

χi(ϕj) = δij, i, j = 1, . . . , N α,m
P , (3.26)

(with N α,m
P defined in (3.6)), the local stiffness matrix is given by

Ah,P(ϕi, ϕj) = AP(ΠP
m(ϕi), Π

P
m(ϕj)) + SP(ϕi − ΠP

m(ϕi), ϕj − ΠP
m(ϕj)). (3.27)

In our case it is easy to check that there must hold AP(ϕi, ϕi) 
 |ϕi|21,P 
 1 for each ‘reasonable poly-
gon’ (for example, any polygon satisfying the mesh assumptions that will be discussed in Section 4).
This property is true for all i = 1, 2, . . . , N α,m

P since we properly scaled the local degrees of freedom;
see (3.5) and Remark 3.5. Therefore, a simple choice for SP that satisfies (3.24) is given by

SP(ϕi − ΠP
m(ϕi), ϕj − ΠP

m(ϕj)) =
N α,m

P∑
r=1

χr(ϕi − ΠP
m(ϕi))χr(ϕj − ΠP

m(ϕj)).

3.5 Construction of the loading term

We first consider the case m � 2, and define fh on each element P as the L2(P) projection of f onto the
space Pm−2, that is,

fh = πP
m−2(f ) on each P ∈ Ωh.

The loading term can be transformed as

(fh, vh)h =
∑
P∈Ωh

∫
P

fhvh dV ≡
∑
P∈Ωh

∫
P

πP
m−2(f )vh dV =

∑
P∈Ωh

∫
P

f πP
m−2(vh) dV ,

where the last identity follows from the fact that vh and πP
m−2(vh) have the same internal moments. Thus,

the right-hand side of (3.1) can be computed exactly by using the degrees of freedom of the functions in
Vh that represent the internal moments. For m = 1, we approximate f by the piecewise constant whose
restriction to P is πP

0 (f ), and we define the right-hand side of (3.1) by

(fh, vh) =
∑
P∈Ωh

∫
P

πP
0 (f )v̄h dV =

∑
P∈Ωh

|P|πP
0 (f )v̄h, (3.28)

where v̄h is given by (3.21).

4. Convergence analysis

In this section we carry out the convergence analysis of the method.

4.1 Mesh regularity assumption

We will make use of the following regularity assumption on the mesh.

Assumption 4.1 (Mesh assumption) There exists a real number γ > 0 such that, for all h, each element
P in Ωh is star shaped with respect to a ball of radius at least γ hP, where hP is the diameter of P.
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770 L. BEIRÃO DA VEIGA AND G. MANZINI

Moreover, there exists a real number γ ′ > 0 such that, for all h and for each element P in Ωh, the
distance between any two vertices of P is at least γ ′hP.

Remark 4.2 The above mesh conditions can be relaxed. We refer the interested reader to Beirão da
Veiga et al. (2013) for a thorough discussion concerning this issue.

We now consider the following discrete approximations of the solution u. For each element P ∈ Ωh,
we extend the set of operators χi for i = 1, . . . , N α,m

P , which are defined on the functions of Vh
P, to any

sufficiently regular function ϕ. When applied to ϕ, these operators return the local degrees of freedom
χi(ϕ) associated with cell P. It follows that for any such function ϕ there exists a unique element ϕI

of Vh|P such that

χi(ϕ − ϕI) = 0, i = 1, . . . , N α,m
P . (4.1)

In the following, we will make use of the interpolant uI ∈ Vh of the exact solution u.

Lemma 4.3 Let u be a function in Hs+1(P) for any integer s � α + 1 and uI its interpolant in Vh|P
defined through the local degrees of freedom χi(ϕ) associated with cell P. Let uπ be the L2 projection
of u on the space of (discontinuous) functions that are piecewise polynomials of degree m on the mesh
Ωh. Under Assumption 4.1 on the mesh regularity, the following approximation result holds:

|u − uπ |1,P + |u − uI|1,P � hs
P|u|s+1,P. (4.2)

Proof. The lemma is a consequence of the Scott–Dupont approximation theory on star-shaped domains;
see, for example, Brenner & Scott (2008). �

4.2 Convergence theorem

The following convergence theorem holds.

Theorem 4.4 Let the consistency and stability assumptions (3.16–3.17) on the method, and the mesh
assumptions considered above, hold. Then, the discrete problem

find uh ∈ Vh such that

Ah(uh, vh) = (fh, vh)h ∀ vh ∈ Vh (4.3)

has a unique solution.
Moreover, let the tensor K|P be in W s,∞ for all P ∈ Ωh. Then, if the solution u belongs to H1+α(Ω),

it holds that

|u − uh|1 � Chs|u|s+1 (4.4)

for all 1 + α � s � m, where C is a constant independent of h.

Proof. Existence and uniqueness of the solution of (4.3) is a consequence of (3.17) and of the coer-
civity of A. To ease the notation, we will use the symbol � to indicate bounds up to a constant that
is independent of h. Setting δh := uh − uI, using (4.3), (3.15), and adding and subtracting uπ (the L2
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 771

projection of u defined in Lemma 4.3), it follows that

k�α∗|δh|21 � α∗A(δh, δh)

� Ah(δh, δh)

= Ah(uh, δh) − Ah(u
I, δh)

= (fh, δh)h −
∑
P∈Ωh

Ah,P(uI, δh)

= (fh, δh)h −
∑
P∈Ωh

(Ah,P(uI − uπ , δh) + Ah,P(uπ , δh)). (4.5)

From the above equation, first using (3.16) and then by some simple manipulation, we obtain

|δh|21 � (fh, δh)h −
∑
P∈Ωh

(Ah,P(uI − uπ , δh) + AP(uπ , δh) + TP
1 )

= (fh, δh)h −
∑
P∈Ωh

(Ah,P(uI − uπ , δh) + AP(uπ − u, δh) + TP
1 ) − A(u, δh), (4.6)

where we introduced the term

TP
1 =

∫
P
(πP

m−1 − I)(K∇uπ ) · ∇δh. (4.7)

Now, recalling (2.4), the above bound yields

|δh|21 � (fh, δh)h −
∑
P∈Ωh

(Ah,P(uI − uπ , δh) + AP(uπ − u, δh) + TP
1 ) − (f , δh)

= Tf −
∑
P∈Ωh

(TP
1 + TP

2 + TP
3 ), (4.8)

where the terms

Tf = (fh, δh)h − (f , δh), (4.9)

TP
2 = Ah,P(uI − uπ , δh), (4.10)

TP
3 = AP(uπ − u, δh). (4.11)

We need to bound the three terms above. By assuming that f is sufficiently regular and using the same
argument as in Beirão da Veiga et al. (2013,?), we obtain the following approximation estimate:

|(fh, δh)h − (f , δh)| � hs

⎛
⎝ ∑

P∈Ωh

|f |2s−1,P

⎞
⎠

1/2

|δh|1. (4.12)

We thus obtain the inequality
|Tf | � hs|u|s+1|δh|1. (4.13)
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772 L. BEIRÃO DA VEIGA AND G. MANZINI

By a triangle inequality and using the continuity of both AP and Ah,P (see (3.20)), we obtain

|TP
2 | + |TP

3 | � (|u − uπ |1,P + |u − uI|1,P)|δh|1,P. (4.14)

Combining (4.14) with the approximation result of Lemma 4.3 gives the estimate

|TP
2 | + |TP

3 | � hs
P|u|s+1,P|δh|1,P. (4.15)

We finally bound the terms TP
1 . We first note that by the Cauchy–Schwarz inequality we have

|TP
1 | � ||(πP

m−1 − I)(K∇uπ )||0,P|δh|1,P. (4.16)

By the triangle inequality and recalling the definition of πP
m−1 we obtain

||(πP
m−1 − I)(K∇uπ )||0,P � ||(πP

m−1 − I)(K∇u)||0,P + ||(πP
m−1 − I)(K∇(u − uπ ))||0,P

� ||(πP
m−1 − I)(K∇u)||0,P + ||K∇(u − uπ )||0,P. (4.17)

By using a standard approximation estimate on polygons and recalling the hypothesis of regularity on
K, the last inequality in (4.7) implies that

||(πP
m−1 − I)(K∇uπ )||0,P � hs|u|s+1,P + |u − uπ |1,P � hs|u|s+1,P. (4.18)

We consider (4.16–4.18) and we have

|TP
1 | � hs|u|s+1,P|δh|1,P. (4.19)

A bound for |δh|1 follows easily by combining (4.8) with (4.13), (4.15) and (4.19). Finally, the result is
obtained by a triangle inequality and from Lemma 4.3. �

Remark 4.5 We note that the interpolated field uI can also be defined in a different way, for example,
by using local integrals in accordance with the classical Clément approximation. In such a case, the ele-
mentwise locality of the approximation estimates is lost, but the regularity requirement for the solution
u is relaxed to u ∈ Hα(Ω).

The regularity requirement on u appearing in (4.4) is not realistic when K is discontinuous across the
edges of the mesh Ωh. Indeed, in such a case a discrete space Vh with C1 or higher regularity is not the
best choice. Nevertheless, the schemes considered herein can be easily adapted in order to make use of
a less regular space Vh across selected vertices and edges of the mesh. To this purpose, we consider the
same degrees of freedom for each element P, but those associated with first- or higher-order derivatives
at the nodes of the chosen edges or at the selected vertices are no longer single valued and may take
different values when referred to different elements. This strategy requires only the assembly of the
global stiffness matrix to be modified, while the construction of the local element matrices remains
unchanged. The resulting discrete space Vh will show C0 regularity only across the selected edges.

4.3 Implementation of the local stiffness matrices

In this section, we show an algebraic construction of the local stiffness matrix associated to Ah,P,
P ∈ Ωh. The final formula for the stiffness matrix, which is suitable for direct interpretation, is simi-
lar to the matrix formulas found in the mimetic literature.
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 773

We refer the interested reader to Beirão da Veiga & Manzini (2012) for a deeper investigation of the
connection with the MFD scheme.

Given P ∈ Ωh, we build an elemental stiffness matrix MP such that

Ah,P(wh,P, vh,P) = wT
h,PMPvh,P ∀wh,P, vh,P ∈ Vh

P,

where the vectors wh,P and vh,P represent the local degrees of freedom of wh,P and vh,P. The global
stiffness matrix is then obtained by a standard finite-element-like assembly procedure.

To this purpose, we first construct two matrices NP and RP that satisfy an algebraic form of consis-
tency condition (3.16), that is, that are such that MPNP = RP and NT

PRP is a symmetric and nonnegative-
definite matrix. Let pi be the ith element of the basis Mm(P) for the polynomial space Pm(P). The index
i runs from 1 to n := (m + 1)(m + 2)/2 and suitably renumbers the monomials forming Mm(P); for
example,

p1(x, y) = 1,

p2(x, y) = (x − xP)/hP, p3(x, y) = (y − yP)/hP, etc.

Taking N α,m
P degrees of freedom of Vh

P in accordance with (4.1), we define the matrix NP ∈ R
N α,m

P ×n

by
(NP)ij = χi(pj).

The columns of matrix RP, which belongs to R
N α,m

P ×n, represent the right-hand side of the consis-
tency condition given by (3.16) applied to the polynomials {p1, p2, . . . , pn}. Let εi

h,P indicate the unique
function in Vh

P such that χj(ε
i
h,P) = δij, i, j = 1, 2, . . . , N α,m

P . Matrix RP takes the form

(RP)ij =
∫

Ω

(πP
m−1(K∇pj)) · ∇εi

h,P dV

for i = 1, . . . , N α,m
P and j = 1, . . . , n, which is computable thanks to the observations in Section 3.4.

From the definitions above it is easy to show that MPNP = RP, which is the matrix form of the
consistency condition (3.16). Furthermore, a straightforward calculation shows that

(NT
PRP)ij =

∫
P

K∇pi · ∇pj dV , (4.20)

that is, NT
PRP is symmetric and semipositive definite. Let KP (not to be confused with the diffusivity

tensor K) be the square symmetric matrix that represents the bilinear form Ah restricted to the space
Pm(P) so that

KP = NT
PMPNP = NT

PRP. (4.21)

Matrix KP has the block-diagonal form

KP =
(

0 0
0 K̂P

)
,

where K̂P ∈ R
(n−1)×(n−1) is a strictly positive-definite matrix. More precisely, matrix K̂P is the strictly

positive-definite matrix that is given by (4.20) if we do not consider the row i = 1 and the column j = 1,
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774 L. BEIRÃO DA VEIGA AND G. MANZINI

that is, the constant polynomial p1(x, y) = 1. Let K†
P ∈ R

n×n be the pseudo-inverse of matrix KP, which
we define as

K†
P =

(
0 0
0 K̂ −1

P

)
.

Let us now consider the matrix

ΠP = NPK†
PRT

P, (4.22)

which is indicated, with a small abuse of notation, by using the same symbol ‘Π ’ of the corresponding
operator defined in (3.22).

In accordance with (3.25) and (3.27), the local stiffness matrix of the VEM on cell P is given by

MP = RPK†
PRT

P + η(I − ΠP)TPP(I − ΠP), (4.23)

where the positive scalar η is equal to the trace of RPK†
PRT

P, I is the (properly sized) identity matrix, and
PP is a symmetric and positive-semidefinite matrix that does not scale with h. An effective choice for
PP is given by

PP = I − NP(NT
PNP)−1NT

P. (4.24)

Using (4.24) in (4.23) (and a few straightforward manipulations) yields

MP = RPK†
PRT

P + ηPP, (4.25)

which is a well-known formula for the mimetic schemes. Matrix MP in (4.25) is the formula for the
local stiffness matrix that we used to implement, the numerical schemes considered in Section 5. The
bilinear form associated with matrix MP satisfies both the consistency and stability conditions. Indeed,
matrix PP is the projector to the orthogonal complement of the space spanned by the columns of matrix
NP and the product PPNP is zero. Therefore, also due to (4.21), we immediately have the consistency
condition (3.16) in the matrix form MPNP = RP. The purpose of the second matrix in (4.23) is only
to guarantee the coercivity (up to the correct kernel) of the system, and, thus, the stability property
of (3.17). This latter property can be checked by following the same (standard) arguments that are
commonly used in the mimetic literature.

Remark 4.6 We note that the first matrix on the right-hand side of (4.23) corresponds to the first term
on the right-hand side of (3.27). Instead, the other two matrices in (4.23) and (3.27) may be different,
but serve the same purpose of guaranteeing the stability.

5. Numerical experiments

The numerical experiments presented in this section are designed to confirm the a priori analysis devel-
oped in the previous section in a general setting. In particular, when we use a method corresponding
to the pair (α, m), the numerical solution is expected to behave like an m-order-accurate approxima-
tion of the exact solution in the H1 norm, assuming that this latter is at least H1+α regular. Since the
discrete solution uh is unknown inside the element, we evaluate the H1 norm of the error through the
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A VIRTUAL ELEMENT METHOD WITH ARBITRARY REGULARITY 775

mesh-dependent norm

||vh||21,h =
∑
P∈Ωh

||vh||21,h,P, (5.1)

where each term ||vh||1,h,P is a local approximation of the energy seminorm of vh. For m � 2, this local
contribution reads as

||vh||21,h,P =
∑
e∈∂P

hP|vh|2H1(e) +
α∑

j=1

∑
e∈∂P

h2j−1
P ||∂ j

nvh||2L2(e)

+
(

1

|P|
∫

P
vh dV − v̄h,P

)2

+
m−2∑
j=1

∑
q∈Mj(P)

(
1

|P|
∫

P
vhq dV

)2

, (5.2)

where v̄h,P is the arithmetic mean of the values that vh takes at the NV
P vertices of the element P (here

denoted by vv), that is,

v̄h,P = 1

NV
P

∑
v∈∂P

vv. (5.3)

For m = 1, the last two summation terms in (5.2) must be neglected. It is easy to check that the kernel
of the seminorm (5.2) is given by the constant functions, and that this seminorm scales like the H1

seminorm. Therefore, norm || · ||1,h represents an H1-type discrete norm. Recalling Theorem 4.4, we
therefore expect that, under the same hypotheses, the rate of convergence measured by norm (5.1) will
satisfy

||uh − u||1,h,P � Chm|u|m+1,

as holds for the H1 norm.
We solve the diffusion problem (2.1–2.2) on the domain Ω = [0, 1] × [0, 1] with Dirichlet condi-

tions assigned on all of the domain boundary Γ . The right-hand side f and the boundary function g are
determined in accordance with the exact solution

u(x, y) = x sin(2πx) sin(2πy) + x3y2, (5.4)

and the diffusion tensor

K(x, y) =
(

1 + y2 −xy
−xy 1 + x2

)
. (5.5)

The performance of these new numerical methods is investigated by evaluating the rate of conver-
gence on three families of refined meshes. The second mesh in each family is shown in Fig. 2 and the
data of the refined meshes are given in Tables 1–3. In these tables, the columns labelled NP, Ne and Nv

report the number of mesh cells, edges and vertices, respectively; #dofs is the number of degrees of
freedom and h is the mesh-size parameter.

Let us briefly describe the construction of these mesh families. The meshes in M1 are built by
dualization of a regular triangular mesh after a smooth coordinate transformation. This kind of mesh
is rather common in the mimetic literature; see, for example, Beirão da Veiga et al. (2009b). To this
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776 L. BEIRÃO DA VEIGA AND G. MANZINI

Fig. 2. Poisson problem on the square domain [0, 1] × [0, 1]; from left to right: the mainly hexagonal mesh (M1), the mesh
of randomized quadrilaterals (M2) and the nonconvex mesh corresponding to the second refinement level (M3).

Table 1 Mesh data for the sequence M1 of meshes with mainly hexag-
onal cells; l is the refinement level, NP is the number of cells, Ne is the
number of edges, Nv is the number of vertices, #dofs is the number of
degrees of freedom, h is the mesh size

l NP Ne Nv #dofs h

1 36 125 90 251 3.405 × 10−1

2 121 400 280 801 2.008 × 10−1

3 441 1400 960 2801 1.071 × 10−1

4 1681 5200 3520 10401 5.422 × 10−2

5 6561 20000 13440 40001 2.719 × 10−2

6 25921 78400 52480 156801 1.361 × 10−2

Table 2 Mesh data for the sequence M2 of randomized quadrilateral
meshes; l is the refinement level, NP is the number of cells, Ne is the
number of edges, Nv is the number of vertices, #dofs is the number of
degrees of freedom, h is the mesh size

l NP Ne Nv #dofs h

1 25 60 36 121 3.311 × 10−1

2 100 220 121 441 1.865 × 10−1

3 400 840 441 1681 9.412 × 10−2

4 1600 3280 1681 6561 4.693 × 10−2

5 6400 12960 6561 25921 2.389 × 10−2

6 25600 51520 25921 103041 1.221 × 10−2

purpose, we remap the position (x̂, ŷ) of the nodes of a uniform partition by the smooth coordinate
transformation

x = x̂ +
(

1

10

)
sin(2π x̂) sin(2π ŷ),

y = ŷ +
(

1

10

)
sin(2π x̂) sin(2π ŷ).

(5.6)
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Table 3 Mesh data for the sequence M3 of meshes with nonconvex
cells; l is the refinement level, NP is the number of cells, Ne is the number
of edges, Nv is the number of vertices, #dofs is the number of degrees of
freedom, h is the mesh size

l NP Ne Nv #dofs h

1 25 120 96 241 2.915 × 10−1

2 100 440 341 881 1.458 × 10−1

3 400 1680 1281 3361 7.289 × 10−2

4 1600 6560 4961 13121 3.644 × 10−2

5 6400 25920 19521 51841 1.822 × 10−2

6 25600 103040 77441 206081 9.111 × 10−3

The meshes in M1 are built from the ‘primal’ mesh at level l by splitting each quadrilateral cell into two
triangles and connecting the barycentres of adjacent triangular cells by a straight segment. The mesh
construction is carried out at the boundary Γ by connecting the barycentres of the triangular cells close
to Γ to the midpoints of the boundary edges and these latters to the boundary vertices of the ‘primal’
mesh. The leftmost plot of Fig. 2 shows the second refinement mesh of M1, which is built from an initial
10 × 10 regular partition.

The meshes in M2 are built by randomly perturbing an underlying uniform partition of the domain
Ω formed by square-shaped elements. Since the randomization is carried out independently at every
mesh refinement, there is no mesh regularization effect in the process as it occurs, for example, when a
quadrilateral is split into four subcells by joining the midpoints of opposite edges. The middle plot of
Fig. 2 shows the second refinement mesh of M2, which is built from an initial 10 × 10 regular partition.
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Fig. 3. Poisson problem on the square domain [0, 1] × [0, 1] with variable permeability using the mesh family M1 (mainly hexag-
onal meshes); the error curves correspond to the schemes labelled (α, m) with α = 0 (circles), α = 1 (squares), α = 2 (diamonds)
and m = α + 1 (left plot), m = α + 2 (right plot); the expected rates are of order O(N−ν) with ν = m/2 (since N ≈ h−2); exact
slopes corresponding to ν are shown in each plot for comparison.
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Fig. 4. Poisson problem on the square domain [0, 1] × [0, 1] with variable permeability using the mesh family M2 (randomized
quadrilateral meshes); the error curves correspond to the schemes labelled (α, m) with α = 0 (circles), α = 1 (squares), α = 2
(diamonds) and m = α + 1 (left plot), m = α + 2 (right plot); the expected rates are of order O(N−ν) with ν = m/2 (since N ≈
h−2); exact slopes corresponding to ν are shown in each plot for comparison.
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Fig. 5. Poisson problem on the square domain [0, 1] × [0, 1] with variable permeability using the mesh family M3 (nonconvex
polygon meshes); the error curves correspond to the schemes labelled (α, m) with α = 0 (circles), α = 1 (squares), α = 2 (dia-
monds) and m = α + 1 (left plot), m = α + 2 (right plot); the expected rates are of order O(N−ν) with ν = m/2 (since N ≈ h−2);
exact slopes corresponding to ν are shown in each plot for comparison.
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As shown in the rightmost plot of Fig. 2, a nonconvex mesh of M3 is made of a regular pattern
of octagonal cells, which are built by adding a mesh vertex at each edge midpoint of an underlying
square mesh. This additional vertex is then translated by a fixed displacement vector when the original
position lies in the interior of the computational domain. The rightmost plot of Fig. 2 shows the second
refinement mesh of M3, which is built from an initial 10 × 10 regular partition.

The numerical results are shown in Figs 3–5 for mesh families M1, M2 and M3, respectively. In
each figure, we show the error curves for the numerical approximation that are obtained by applying
the virtual element schemes corresponding to the pair of indices (α, m) with α = 0, 1, 2 and m = α + 1
(left plots) and m = α + 2 (right plots); see the captions for more details. The relative errors, which
are measured by using the norm defined in (5.1), are plotted against N , the total number of degrees of
freedom. The convergence rate on each mesh sequence is reflected by the slope of the corresponding
error curve, and is expected to be of order O(N−m/2) asymptotically, since N ≈ h−2. In each plot, we
show, for comparison, the theoretical slope and we also indicate the exponent. All these plots essentially
confirm the good behaviour of the schemes that we propose in this paper.

6. Conclusions

In this work, we proposed and analysed a VEM that is suitable for the numerical approximation of
second-order diffusion problems with variable coefficients and provides arbitrary regular discrete solu-
tions. The numerical approximation can be of arbitrary order, the optimality being dependent on the
regularity of the exact solution. The numerical results confirm the effectiveness of the approach.

As pointed out in Section 1 and remarked upon throughout the paper, the possibility of building such
methods quite easily is one of the major properties of the VEM and, in this respect, this work is intended
as a first contribution to the virtual finite element literature. Following the idea presented here opens a
wide range of applications, such as, for example, easier discretization of higher-order problems, direct
calculation of derived quantities (such as fluxes, strains, stresses), anisotropic error estimation based on
the Hessian of the solution, better eigenvalue approximation, numerical treatment of the stream-function
formulation of the Stokes problem, etc.
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