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ABSTRACT
Assigning the resources of a virtual network to the compo-
nents of a physical network, called Virtual Network Map-
ping, plays a central role in network virtualization. Existing
approaches use classical heuristics like simulated annealing
or attempt a two stage solution by solving the node map-
ping in a first stage and doing the link mapping in a second
stage.

The contribution of this paper is a Virtual Network Map-
ping (VNM) algorithm based on subgraph isomorphism de-
tection: it maps nodes and links during the same stage. Our
experimental evaluations show that this method results in
better mappings and is faster than the two stage approach,
especially for large virtual networks with high resource con-
sumption which are hard to map.

Categories and Subject Descriptors
C2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms

Keywords
Virtual Network Mapping; Network Embedding; Resource
Allocation; Subgraph Isomorphism Detection; Network Vir-
tualization

1. INTRODUCTION
Virtualization is a well investigated research area in com-

puter science. One of its initial purposes is to run multiple
different applications (e.g. servers, operating systems) upon
the same shared physical resources. Network Virtualization
has become more and more important over the last years.
It is used for example for network simulation [10, 1, 8] or to
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provide customized end-to-end services over the same phys-
ical network [6, 14].

Virtual Network Mapping (VNM) plays a central role in
building a virtual network (VN). During this mapping pro-
cess each node of the VN is assigned to a node of the physi-
cal network (PN) and each virtual link is assigned to a path
or flow in the PN, such that a set of previously defined con-
straints (e.g. topology constraints, data rate, CPU capacity)
is satisfied.

The main objective in solving the Virtual Network Map-
ping Problem (VNMP) is to make efficient use of the un-
derlying resources, while still satisfying the set of previously
defined mapping constraints. In addition, a VNMP Algo-
rithm should be able to handle dynamicly arriving online
requests and also offer admission control, since some VN
requests must be rejected or postponed to avoid violation
of resource guarantees for already existing virtual networks
[15].

Several efficient VNMP heuristics solving different vari-
ants of the VNMP have been proposed in the past years [11,
17, 13, 5, 9, 15]. Some try to solve the problem considering
data rate constraints [5, 9] while others restrict the search
space by only solving the link embedding, since they as-
sume that the node mapping is known in advance [13]. Ref.
[11] describes a simulated annealing approach to map VNs
onto the Emulab [4] infrastructure, and Ref. [15] presents
a two stage mapping algorithm, handling the node mapping
in a first stage and doing the link mapping in a second stage,
based on shortest path and multi commodity flow detection.

In contrast to existing approaches, in this paper we pro-
pose a backtracking algorithm based on a subgraph isomor-
phism search method [2] that maps nodes and links during
the same stage. The advantage of this single stage approach
is that link mapping constraints are taken into account at
each step of the mapping. When a bad mapping decision is
detected it can be revised by simply backtracking to the last
valid mapping decision, whereas the two stage approach has
to remap all links which is very expensive in terms of run-
time. Our experimental evaluations show that our subgraph
isomorphism based method results in better mappings and
is faster than the traditional two stage approach.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces terms and definitions related to the VNMP
we use throughout the rest of the paper. Section 3 then spec-
ifies the vnmFlib algorithm, which is a modified version of
the Vflib graph matching algorithm. Section 4 presents some
experimental results and a performance comparison with a
two stage VNM algorithm, Section 5 concludes the paper.
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Figure 1: Example of virtual network mapping

2. VN MAPPING MODEL AND PROBLEM
FORMULATION

The definitions presented in the following correspond to
the problem formulation of [15].

Definition 1 (Network). A Network is given by a
directed graph G = (N,L,C), where N is a set of nodes and
L a set of links. Each node or link e ∈ N ∪ L is associated
with a set of constraints C(e) = {C1(e), ..., Cm(e)}.

Definition 2 (Virtual Network Mapping (VNM)).
A VNM of a virtual network GV = (NV , LV , CV ) onto a
physical network GP = (NP , LP , CP ) is defined as a map-
ping of GV to a subset of GP such that each virtual node is
mapped onto exactly one physical node and each virtual link
is mapped onto a loopfree path in the physical network:

M : GV −→ (NP , PP ),

where PP denotes the subset of all loopfree paths in GP .
M is called a valid VNM if all constraints of GV are sat-
isfied and for each lV = (sV , tV ) ∈ LV there exists a path
p(sP , tP ) ∈ PP with M(sV ) = sP and M(tV ) = tP . The
VNM can be decomposed into node and link mapping as fol-
lows:

Node mapping : MN : NV −→ NP

Link mapping : ML : LV −→ PP

As an example consider GV and GP of Figure 1. Each node
is associated with a CPU- and each link with a data rate
constraint. The nodes a, b, c are mapped onto A,B,E and
the virtual links are mapped to the paths [A,D,E], [B,A]
and [B,E]. The mapping is valid, since the capacity con-
straints of the virtual network do not exceed the capacities
of the physical network.

To define the costs of a VNM we consider a constraint cost
function costi(M(GV )) for each constraint Ci ∈ CV . The
costs of a VNM are given by the sum of the cost functions
together with a tunable weight constant αi for each Ci which
allows to strike a balance between the different constraint
costs:

Definition 3 (Virtual Network Mapping Costs).
Suppose a VN GV with constraints CV = {CV

1 , ..., C
V
m}, a

PN GP with constraints CP = {CP
1 , ..., C

P
m} and a VNM

M(GV ) of GV onto GP . The total costs of M(GV ) are
given by

cost(M(GV )) =

nX
i=1

αi · costi(M(GV ))

The definition of the constraint cost functions can vary and
depends on the character of the corresponding constraint.
In case of additive constraint costs like data rate or delay
the constraint cost function could look like

costi(M(GV )) =
X

l∈LV

CV
i (l) · length(M(l)).

where M(l) is the path in GP to which the virtual link l
is mapped and length(M(l)) is the length of the path. For
multiplicative costs like error rate, the function would look
like

costi(M(GV )) = 1−
X

l∈LV

(CV
i (l))length(M(l)).

Consider the VNM of Figure 1. In addition to the con-
straints C1 =CPU and C2 =data rate we examine an C3 =
error rate of 0.1 for each physical link. Further the costs are
weighted equally with α1 = α2 = α3 = 1. The costs are
cost1(M(GV )) = 8 + 7 + 6 = 21 for the node mapping and
sum to cost2(M(GV )) = 3·2+4·1+5·1 = 15 for the data rate
and cost3(M(GV )) = 1− (0.12 + 0.11 + 0.11) = 0.79 for the
error rate. The total costs of the VNM are cost(M(GV ) =
36.79.

To handle multiple dynamicly arriving mapping requests
we next introduce the terms Virtual Network Request and
Residual Graph.

Definition 4 (Virtual Network Request (VNR)).
A VNR ri = (GV

i , ai, li) consists of a virtual network GV
i ,

an arrival time ai and a life time li. The arrival time is
the time a VNR should be mapped onto a PN and life time
denotes the time period a VN should last on the PN.

Definition 5 (Residual Graph). Given a physical Net-
work GP , a virtual network GV and a VNM of GV onto GP .
We get the residual graph GP

res of GP by subtracting the ca-
pacities of each virtual node and link of GV from the capac-
ities of the physical nodes and links of GP to which they are
mapped.

Again consider the mapping of Figure 1. Node a is mapped
to nodeA and the residual CPU capacity is CP

1 (A)−CV
1 (a) =

0. The link [a, c] is mapped to path [A,D,E] which results
in a residual capacity of 1 for the links [A,D] and [D,E].

3. THE ALGORITHM
The NP-complete Subgraph Isomorphism Detection prob-

lem [7] can be reduced to the VNM problem by assigning a
single delay constraint of 1 to each physical and virtual link.
The delay constraint is satisfied if the delay of a physical
path does not exceed the delay of the virtual link that is
mapped to it. A VNM of GV onto GP maps each node
nV ∈ NV to a node nP ∈ NP and each virtual link lV ∈ LV

to a path p in PP . To get a valid VNM the delay con-
straint has to be satisfied. That means that each lV must
be mapped onto a path of length ≤ 1 and therefore the re-
sulting VNM is a subgraph isomorphism of GV in GP since
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Algorithm 1 vnmFlib(GV
sub, M(GV

sub), GV , GP )

Require: a VN GV , a PN GP and a subgraph GV
sub of GV

1: C = ← genneigh(GV
sub, GV , GP )

2: for each (nV , nP ) in C do
3: if valid(M(GV

sub), (nV , nP ), GP ) then
4: create GV

sub and M(GV
sub) by adding (nV , nP )

5: vnmFlib(GV
sub, M(GV

sub), GV , GP
res)

6: end if
7: if GV

sub == GV then
8: return M(GV

sub)
9: end if

10: end for

each virtual link is mapped to exactly one physical link.
Thus it seems to be a promising approach to use a subgraph
isomorphism detection algorithm to solve the VNM prob-
lem.

The vnmFlib algorithm (Algorithm 1) described in this
section is an extended version of the Vflib graph matching al-
gorithm [2]. The main difference of vnmFlib and Vflib is that
vnmFlib allows the mapping of links to paths shorter than a
predefined distance value ε (in terms of hops), whereas Vflib
is limited to link-on-link mappings. Note that if ε = 1 the
VNM of a VN GV onto a PN GP generated by vnmFlib is
also a subgraph isomorphism of GV in GP . Another dif-
ference is that vnmFlib checks network constraints at each
mapping step.

The algorithm tries to build a valid VNM solution by suc-
cessively adding nodes and links of GV to an initially empty
subgraph GV

sub of GV . During the mapping process the al-
gorithm ensures that M(GV

sub) is a valid VNM of GV
sub onto

GP . The algorithm terminates when GV
sub fully covers GV

and returns M(GV
sub), which is a valid VNM of GV on GP .

3.1 An Example
Figure 2 depicts the mapping process for the networks of

Figure 1 with ε = 2. In a first step a set C of node pairs
(nV , nP ) with nV ∈ NV and nP ∈ NP is generated by the
genneigh() function (Algorithm 1 line 1). The algorithm
adds nV to GV

sub and nP to M(GV
sub) respectively (Figure

2 (a)). Now the valid() function (line 3) checks whether
the resulting mapping M(GV

sub) is valid. If so the nodes are
added to GV

sub and M(GV
sub) and vnmFlib is called with the

corresponding residual graph GP
res and the new subgraphs

GV
sub and M(GV

sub) (line 5). Otherwise the termination con-
dition is checked (line 7) and if it fails the next node pair
of C is examined. Since the valid() function returns true
for our example, vnmFlib is called with the newly created
subgraph and mapping.

Again a vector of node pairs is generated and the first
node pair (c,B) is added to GV

sub and M(GV
sub) (Figure 2

(b)). Now for all virtual links connecting the newly added
node c with GV

sub a path in GP which satisfies all constraints
has to be found and added to the mapping. For our example
the only virtual link connecting node c with GV

sub is [a, c]
and the algorithm adds path [A,B] to the mapping, since it
satisfies the data rate constraint. The mapping is valid and
the algorithm proceeds with the generation of a new set of
node pairs.

Next the algorithm maps node b to node G. This time the
valid function fails because there exists no path from G to A

G
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Figure 2: vnmFlib mapping process

in GP with sufficient data rate capacity (Figure 2 (c)). Thus
the algorithm tries to map the next pair (b, E) and fails for
the same reason (Figure 2 (d)). As there is no node pair left
in C the algorithm checks the termination condition (line
7), fails, does a backtracking step to the last valid mapping
(Figure 2 (b)) and tries to map (c, E), which results in a
valid mapping (Figure 2 (e)).

Again the algorithm computes a set of node pairs and
maps the first one (Figure 2 (f)). This time the mapping is
valid and the algorithm returns it (line 8) since GV

sub fully
covers GV and the termination check of line 7 succeeds.

3.2 Algorithm Details
In the following we describe the two key functions of the

vnmFlib algorithm, genneigh() and valid() in depth.
Before we can describe the procedure in more detail, we

have to introduce the node set FGsub(G):
LetG = (N,L) be a directed graph andGsub = (Nsub, Lsub)
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Algorithm 2 genneigh(GP , GV , GV
sub, M(GV

sub))

Require: GP , GV , GV
sub, M(GV

sub)
1: if FGV

sub
(GV ) = ∅ then

2: C = NV ×NP

3: else
4: C = FGV

sub
×GP \MN (GV

sub)

5: end if
6: optimize(C)
7: sort(C)
8: return(C)

be a subgraph of G. The set

FGsub(G) = F in
Gsub

(G) ∪ F out
Gsub

(G)

with

F in
Gsub

(G) = {ni|(ni, nj) ∈ L ∧ (nj ∈ Nsub ∧ ni 6∈ Nsub}

and

F out
Gsub

(G) = {nj |(ni, nj) ∈ L ∧ (ni ∈ Nsub ∧ nj 6∈ Nsub)}

is called the front of Gsub in relation to G. Thus the front
of Gsub in relation to G is the set of all nodes in Gsub that
are adjacent to a link connecting Gsub with G.

As an example consider the graphs of Figure 3 withNsub =
{A,B,C,D,E}. The set of links starting in G and end-
ing in Gsub are (H,D) and (H,C) and thus F in

Gsub
(G) =

{C,D}. All links from Gsub to G are (D, I), (E, J), (B,G)
and (C,G). Consequently F out

Gsub
(G) consists of the nodesets

{B,C,D,E} and FGsub(G) = {B,C,D,E}.

3.2.1 The genneigh() Function
The genneigh() function (Algorithm 2) takes four graphs

as its input arguments: a VNGV , a PNGP , a subgraphGV
sub

of GV and a VNM M(GV
sub) of GV

sub onto GP which can also
be seen as a graph. In a first step the function generates
the front of GV

sub relative to GV and checks if it is empty.
Again consider the example of Figure 2. In the initial step of
the vnmFlib algorithm GV

sub is empty and thus FGV
sub

(GV )

is empty too. The algorithm computes the candidates set C
as the cartesian product of all nodes in GV and all nodes in
GP (line 2). But as we can see in Figure 2 (a), C consists of
only one node pair (a,A). The reduction of the node pairs
is done in the optimize() function in line 6. The function
deletes all node pairs from C which do not satisfy the CPU

Rule Condition

R-node True iff nP satisfies all constraints CV of nV

R-pred True iff for each predecessor nV
p of nV in GV

sub

there exists a path of length ≤ ε from the
corresponding node nP

p inM(GV
sub) to nP that

satisfies all constraints CV of the virtual links
l = (nV

p , n
V ) in GP .

R-succ True iff for each successor nV
s of nV in GV

sub

there exists a path of length ≤ ε from nP in
M(GV

sub) to the corresponding node nV
s that

satisfies all constraints CV
l of the virtual links

l = (nV , nV
s ) in GP .

Table 1: Validity check conditions

constraint. Since node a of GV needs 8 CPU units and only
node A ofGP can serve this request, all remaining node pairs
are removed from C. Such optimizations can drastically
reduce the search space of the algorithm and lead to better
runtimes. Another optimization reducing the size of C is the
restriction of the length of paths to which virtual links are
mapped by the ε threshold. In the example of Figure 2 ε is
set to 2 and thus only paths with length ≤ 2 are allowed. As
a consequence in Figure 2 (b) mapping b onto F is forbidden.

A small ε-value can lead to better VNMs (in terms of map-
ping costs as described in Section 2) but could also increase
the number of rejected VNs if it is chosen too restrictive. If
ε = 1, the algorithm tries to find a subgraph isomorphism
of the VN in the PN. Such an isomorphism does often not
exist, especially for larger VNs. In this case the vnmFlib
algorithm would traverse the whole search tree which has
worst case complexity Θ(|NP |!|NV |) [3]. To avoid this we
introduce an upper bound ω on the number of mapping steps
and force the algorithm to stop its search if ω is exceeded.
Finding good ε and ω values is part of the evaluation process
and described in Section 4.

In a last step the node pairs are sorted. The sorting cri-
terion depends on the constraint set of the networks. It
is usually better to map expensive nodes prior to cheaper
nodes. By expensive nodes we mean nodes with a high re-
source consumption. For example the node a of the VN of
Figure 1 has a CPU capacity of 8 and is thus more expensive
than node b with capacity 6.

3.2.2 The valid() Function
The valid() function checks if the addition of node pairs

(nV , nP ) to a valid VNM again results in a valid VNM. The
necessary rules which have to be checked are listed in Table
1.

The first rule R-node checks whether any node constraints
are violated. In the example of Figure 1 CPU capacity is
chosen as the only node constraint. Consider the addition
of node pair (b, C). For this case the R-node rule would fail
since C cannot satisfy the CPU capacity of b (5 < 6) and
valid() returns false.

The remaining rules R-pred and R-succ check for broken
connections. As an example consider the addition of (c,B)
in Figure 2 (b). The set of predecessors of c in GV

sub is just
a and the corresponding node in M(GV

sub) is A. Because
there exists a path from A to B in GP with sufficient data
rate and it is shorter than ε (length([A,B]) = 1 ≤ 2)the rule
succeeds. The R-succ rule does the same for all successors
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Figure 5: Runtime in relation to ω value for different
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respectively. All three conditions are checked beginning with
the node rules. If one of the rules fails, valid() immediately
stops and returns false, since the violation of one rule suffices
to produce an invalid mapping.

4. EXPERIMENTAL RESULTS
In this section we first evaluate the runtime and output

quality of the vnmFlib algorithm for different ε and ω values
before we compare its performance to that of a two stage
VNM algorithm [15].

4.1 Evaluation Environment
The networks for our experimental evaluations are associ-

ated with two Constraints C1 and C2, where C1(n) denotes
the CPU-capacity of a node n and C2(l) the data rate ca-
pacity of a link l. The mapping costs (s. Section 2) are
defined by the constraint cost functions cost1(M(GV )) =P

n∈NV C1(n) and cost2(M(GV )) =
P

l∈LV C2(l)·length(M(l))
with α1 = α2 = 1. To express the quality of a VNM we in-
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Figure 6: R/C-Ratio in relation to ε value for differ-
ent n and β values.
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Figure 7: Runtime in relation to ε value for different
n and β values.

troduce the R/C-Ratio (Revenue-to-Cost-Ratio) as the ratio
of revenue to mapping costs R(GV )/cost(M(GV )) with the
Revenue of a VN defined as

R(GV ) = α1 ·
X

n∈NV

C1(n) + α2 ·
X

l∈LV

C2(l)

If a VN cannot be mapped the R/C-Ratio is set to 0. Note
that the R/C-Ratio takes on values between 0 and 1, where
1 is an optimal VNM.

Network Setup. We used the GT-ITM tool [16] to
generate the physical topologies. Like in [15] the physical
networks are configured to have 100 nodes and around 500
links, a scale that corresponds to a medium-size ISP. The
CPU constraints at nodes and the link data rates follow a
uniform distribution from 0 to 100 units.

The size n of a VN is expressed as the amount of its nodes:
n = |NV |. Each pair of virtual nodes is randomly connected
with probability 0.5. The CPU resources at nodes and the
link data rates follow a uniform distribution from 0 to β
units. For example, a β of 50 means that the CPU or data
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rate constraint of a virtual node or link is set to maximal 50
units. Thus VNs with large β values are potentially harder
to map than VNs with lower β values.

4.2 Evaluation Results
All results are evaluated at a confidence level of 95 percent.

The confidence intervals are not shown in the figures because
they got too small.

4.3 Determining proper ε and ω values.
Figures 4 and 5 depict the impact of ω on mapping qual-

ity and runtime of vnmFlib for VNs of different size and β
values. One can see that the runtime converges fast and the
R/C-Ratio reaches its maximum around ω = n + 10. Since
our primary interest is mapping quality and overestimating
does not increase the runtime too much we set ω = 4n for
the rest of our experiments.

Figures 6 and 7 depict the impact of ε on mapping quality
and runtime. As in case of the ω values the runtimes con-
verge fast and thus an overestimation is not critical in this
context. But overestimating of ε can decrease the R/C-Ratio
as can be seen in Figure 6. The R/C-Ratios for the n = 10
VNs decline from over 0.65 for ε = 1 to around 0.5 for ε = 2
but the effect weakens for the n = 20 and n = 40 networks
and dissapears for the n = 60 and n = 80 networks. Thus
we chose two approaches for setting the ε value: A simple
approach with constant ε = 10 and a more advanced ap-
proach which tries to find a proper ε in the interval [1, 10].
The advanced vnmFlib starts with ε = 1. If it cannot find a
valid VNM ε is increased by one and the algorithm continues
with the mapping process. The algorithm stops either if it
finds a valid VNM or if ε > 10.

4.4 Single VNRs.
We next compare runtimes and R/C-Ratios of simple vn-

mFlib, advanced vnmFlib and the two stage approach (2stage)
of Ref. [15] for virtual network requests (VNRs) of various
size and various β values. For the 2stage algorithm we used
the implementation of Ref. [12]. Each VNR is mapped sep-
arately onto a PN such that the total resources of the PN
are available to this single VNR.

Figures 8 and 9 depict runtimes for VNRs of size n =
{10, 20, 30, 40}, β = {30, 90} and the corresponding R/C-
Ratios. For the smaller β = 30 value (solid lines) the run-
times and R/C-Ratios of 2stage (crosses) and simple vnm-
Flib (squares) are nearly equal while the advanced vnmFlib
approach (triangles) needs slightly more time but produces
better R/C-Ratios especially for VNs of size n = 10. For big-
ger β values (dashed lines) the runtime of 2stage increases
strongly while the R/C-ratio decreases. This effect strength-
ens with growing network size. To map a VN of 40 nodes
and β = 90 the 2stage approach takes nearly 11 seconds
and produces a R/C-Ratio of 0.15. The vnmFlib algorithm
reacts much more stable on increasing β values and VN size
(note that the runtimes of simple vnmFlib for β = 30 and
β = 90 overlap) and maps the same VNRs in about 1 second
with a R/C-Ratio of 0.3. The advanced vnmFlib reaches
a R/C-Ratio of 0.45 in less than 2 seconds. For smaller
VNs the R/C-Ratio of the advanced vnmFlib algorithm is
nearly twice as good compared to the R/C-Ratios of sim-
ple vnmFlib and 2stage. Note that for n = 10 and β = 30
the advanced vnmFlib algorithm achieves a nearly optimal
R/C-Ratio.
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Figure 8: Runtimes of vnmFlib and 2stage algo-
rithms for VNs of different size n and β values.
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Figure 9: R/C-Ratios of vnmFlib and 2stage algo-
rithms for VNs of different size n and β values.

4.5 Multiple VNRs and Path Splitting
To compare the performance of our algorithm with 2stage

for dynamicly arriving VNRs and mapping of multiple VNRs
onto the same PN at the same time we implemented the
environment of Ref. [15] as depicted in Figure 12.

The time axis is divided into a sequence of time windows
of equal size 4t. At each time t the vnmFlib algorithm tries
to map all virtual networks requests ri with arrival times
ai ≤ t +4t. All requests with ai + li > t are deleted and
there resources on the PN released.

Virtual Network Requests. In a VNR the number of
nodes is randomly determined by a uniform distribution be-
tween 20 and 40 following similar setups to previous work
[17, 15]. Each pair of virtual nodes is randomly connected
with probability 0.5. The arrivals of the VNRs are modeled
by a Poisson process with mean five requests per time win-
dow. The duration of the requests follows an exponential
distribution with 10 time windows on average.

Note that we used the same experiment setup as in Ref.
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Figure 10: Runtime in relation to Splitting Ratio
for vnmFlib and 2stage

[15] but increased VN size. In Ref. [15] the sizes of the
VNs vary between 2 and 20 nodes. We evaluated VN sizes
between 20 and 40 nodes which seems to be a more realistic
VN size. For the setup of the 2stage algorithm we had to
adjust two parameters:

1. Ttry which is the number of rounds in node remapping
the algorithm does. Since our experiments showed
that higher values do not improve the output qual-
ity significantly but increase the runtime we chose to
set Ttry = 0. These results are consistent with Ref.
[15].

2. Allow path migration or not. Since we are primarily
interested in mapping quality and as shown by Ref.
[15] path migration improves mapping quality we al-
lowed path migration.

Path Splitting. So far we have only considered the map-
ping of virtual links onto physical links or paths. By path
splitting we mean that a virtual link can also be split up and
mapped onto a flow of sufficient data rate. For a detailed
discussion of path splitting see Ref. [15].

Figures 10 and 11 show the runtimes and percentage of
mapped revenue for different β-values and splitting ratios.
Splitting ratio denotes the percentage of VNRs that allow
path splitting. By percentage of mapped revenue we mean
the ratio of the total revenue of all VNRs to the revenue of
all successfully mapped VNRs.

Mapping multiple VNRs onto the same PN at the same
time is a challenging task for a VNM algorithm. Here the
vnmFlib algorithm benefits from the high R/C-Ratios it
achieves for the single mappings. Note that a high R/C-
Ratio means that the physical resources consumed by a
VNM are small. Thus if a VNM algorithm achieves higher
R/C-Ratios he can map more VNRs onto the same PN at
the same time. This results in fewer rejected VNRs and
the algorithm obtains a higher revenue. This interrelation
is reflected by Figure 11.

For β = 40 (dashed lines) the simple vnmFlib approach
(squares) achieves around 20 percent more revenue for all
splitting ratios than the 2stage algorithm (crosses). The
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Figure 11: Percentage of total revenue in relation to
Splitting Ratio for vnmFlib and 2stage

advanced vnmFlib approach (triangles) is even better and
achieves at least 35 percent more revenue. For β = 80 (solid
lines) simple vnmFlib performs around 40 percent and ad-
vanced vnmFlib around 50 percent better than 2stage. This
is due to the better R/C-Ratios of the VNMs produced by
vnmFlib. As a consequence the VNMs of the vnmFlib al-
gorithm need less resources of the PN than the VNMs pro-
duced by 2stage. Thus the vnmFlib algorithm can map more
VNRs onto the same PN at the same time and achieves a
higher revenue.

In addition to the higher revenue the vnmFlib algorithm is
also faster than 2stage. For the β = 40 VNRs and 0 percent
splitting ratio it takes about 8 minutes to map all VNRs
with 2stage. This is due to the costly multi commodity flow
computations which take place in the link mapping stage
of 2stage. The simple vnmFlib can map all requests in 57
seconds and the advanced approach needs 90 seconds. This
effect strengthens with increasing splitting ratio. For β = 80
VNRs and a splitting ratio of 60 percent 2stage needs about
167 minutes to map all VNRs while simple vnmFlib needs
2 minutes and the advanced approach 6 minutes.

time window   t

il

vnmFlib

a

VNR r  arrives VNR r  leaves

i

ii

Figure 12: Evaluation environment for dynamicly
arriving VNRs

5. CONCLUSION
In this paper we presented a virtual network mapping al-

gorithm based on subgraph isomorphism detection which is
able to handle multiple capacity constraints and dynamicly
arriving online requests. We implemented a prototype and
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compared its performance with the two stage algorithm pre-
sented in Ref. [15].

Our evaluation results show that our subgraph-isomorphism
based approach produces better mappings in less time than
the two stage method. In particular for large networks with
high capacity consumption our method performed better.
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