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ABSTRACT The key to network virtualization technology is virtual network mapping, which has been

proven to be an NP-hard problem. At present, the methods to solve the problem of virtual network mapping

still have the following defects. Most of the existing literature is limited to static virtual network (VN)

mapping and static linear resource pricing, which rely on peak allocation and don’t meet the user dynamic

resource requirements. Therefore, this paper proposes a virtual network resource allocation model based on

dynamic resource pricing namedGSO-RBFDM. Firstly, group search optimization (GSO) is used to optimize

the node mapping scheme during the network mapping process to reduce the cost of network mapping.

Secondly, a dynamic nonlinear resource pricing model is established, and genetic algorithm (GA) is used to

more accurately search a low-cost networkmapping path instead of the traditional Dijkstra algorithm. Finally,

virtual network dynamic modeling is performed according to the user dynamic resource requirements, and

radial basis function (RBF) is used to predict resource requirements to realize the dynamic resource allocation

to users. Simulation results show that, compared with traditional virtual network mapping algorithms, GSO-

RBFDM can not only realize dynamic resource allocation, but also show good performance in terms of

acceptance rate, network cost, link pressure and average network revenue.

INDEX TERMS Network virtualization, dynamic resource pricing, group search optimization (GSO),

genetic algorithm (GA), radial basis function (RBF), dynamic resource allocation.

I. INTRODUCTION

With the continuous development of the availability of

new technologies and practical applications, the problem of

resource allocation in the emerging decentralized commu-

nication environment has become a research focus [1], [2].

As an important resource allocation method, network vir-

tualization technology can customize personalized network

services according to users’ requirements [3], [4]. However,

most existing network mapping methods are static network

mapping methods, which rely on peak allocation [5]–[7].

As the users’ resource requirements change with the current

network load changes in reality, the static resource allocation

method will inevitably cause a lot of waste of resources.

In view of this, the dynamic network mapping method is

proposed to minimize the redundancy of resource allocation

without affecting network services [8]–[11]. Specifically, the
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dynamic network mapping method calculates the required

physical node resources and physical link resources before

any virtual network request (VNR) arrives, and then allocates

resources according to the user’s dynamic resource require-

ments. However, few literature studies have explored the real-

time resource requirements of users to complete dynamic

resource allocation. Therefore, this paper attempts to solve

the above problems, and finds a large number of litera-

tures shows that RBF algorithm, as a neural network algo-

rithm in machine learning, has good prediction, classification

and diagnosis functions. In the dynamic network mapping

problem mentioned above, the user’s resource requirements

change with the current network load. Therefore, it may be a

promising method to use RBF algorithm to predict resource

requirement and complete the dynamic allocation of network

resources [12]–[14].

In the modern competitive economic environment, the use

of price as a control mechanism to control network resource

allocation is very transparent to users, and the implementation
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process is simple and fast. It has been proved that dynamic

pricing is better than static pricing in theory [15], and its fea-

sibility has also been proved in practice [16], [17]. Therefore,

this paper proposes a dynamic nonlinear resource pricing

method to form a sense of resource competition among users.

In the traditional network model, the pricing of link resources

is static and does not consider the cost of physical nodes on

the mapping path. Therefore, it is undoubtedly the quickest

and most effective to use the Dijkstra algorithm to find the

shortest mapping path.

In this paper, on the one hand, the link and node unit prices

have changed over time, which is no longer a simple linear

relationship and increases the complexity of the problem.

On the other hand, when the mapped path passes through

a physical node, the node will allocate a service rate and

buffer space for it. Since the network service rate is related

to the average delay and the buffer space is related to the

packet loss rate, the cost of the node must be considered. The

GA algorithm transforms the problem-solving process into a

process similar to the crossover andmutation of chromosomal

genes in biological evolution. When solving more complex

combinatorial optimization problems, it is usually faster to

obtain better optimization results than some conventional

optimization algorithms. In summary, GA is superior to Dijk-

stra algorithm in terms of stability and expected effect in

solving the shortest path problem in this dynamic weight

system.

As far as we know, there is no research on the combination

of dynamic resource pricing, intelligent learning algorithm

and neural network algorithm to address the dynamic map-

ping problem of virtual network mapping. The main contri-

butions of this paper are as follows.

(1) GSO is applied to optimize the network mapping

scheme to reduce network costs. The individual in each pop-

ulation in GSO is defined as a mapping scheme, in which

each population update will produce a producer, 80% of the

scroungers and 20% of the rangers [18], [19]. In the network

mapping problem of this paper, the network mapping scheme

can be optimized to obtain a low-cost mapping scheme with

continuous iteration of the population.

(2) A dynamic and nonlinear resource pricing method is

proposed, and GA is used to find a low-cost mapping path.

Since the resource prices in dynamic nonlinear resource pric-

ing varies with the remaining quantity, the mapping path can

be optimized by selection, mating and mutation operators of

GA, thereby reducing network costs.

(3) Dynamical resource requirements of users are formu-

lated and supervised RBF is used to predict users’ real-time

resource requirements to complete dynamic resource alloca-

tion.Wefirst establish a dynamic resource requirementmodel

and collect previous data for training. After the user’s real-

time resource requirement is predicted, then the real- time

resource allocation is adjusted accordingly.

It is worth noting that we simply defined a nonlinear model

in terms of resource pricing, which may not be suitable for

any scenario in reality, so in practical applications, more

factors should be considered to dynamically set resource

pricing. In addition, it is well known that intelligent prediction

based on neural networks is an effective method to solve non-

linear prediction problems, but its disadvantage is the ‘‘black

box’’ nature, which means that you do not know how and

why the neural network will get a certain output. Therefore,

the predicted results of RBF may not be very accurate and

have a certain degree of uncertainty. In view of the above

problems, we hope that this dynamic resource pricing and

dynamic resource allocation ideas will provide inspiration for

future network mapping problems, which urgently need to

make more explorations and improvements later.

The rest of this paper is organized as follows. The

recent related research works about VN technology are

reviewed in Section 2. Section 3 presents the prob-

lem description, including network description, dynamic

resource requirement model and dynamic resource pric-

ing model; Section 4 describes GSO-RBFDM algorithm

and Section 5 details the experiments and analysis. Finally,

Section 6 concludes the paper and points out the future works.

II. RELATED WORK

As an important technology of information networks, VN

allocation technology includes two specific types of resource

allocation methods: static resource allocation and dynamic

resource allocation. The typical static network allocation

method allocates users sufficient resources to meet their peak

requirement, ignoring the limited number of resources or

other issues [20]–[23]. There are many literatures that used

different strategies to improve resource utilization, including

sub-graph isomorphism [24], path splitting and migration

[25], topology-aware node ranking [26] or other heuristics

[27]–[29]. Mosharaf NM, Chowdhury K designed D-ViNE

and R-ViNE mapping algorithms by using deterministic and

random rounding techniques respectively [30]. Wang and

Hamdi formulated the VN embedding problem as a new

multiple objective linear programming optimization program,

and proposed an efficient online heuristic VN embedding

algorithm Presto based on Blocking Island (BI) to maxi-

mize the revenue [31]. He and Zhuang et al. proposed to

apply spectral clustering based on field theory to extract

substrate network features and established a dynamic region

of interest to find embedding areas with energy-saving poten-

tial for virtual networks [32].Wang and Bi et al. modeled

the VNE problem as Markov Decision Process (MDP) and

developed a neural network to approximate the value func-

tion of VNE states [33]. Zhao and Parhami proposed to

use graph eigenspace notions for node mapping and con-

tributed an inexact algorithm which projects all nodes to a

2-D eigenspace to generate node mapping schemes [34]. Yan

and Ge et al. combined reinforcement learning with a novel

neural network structure and proposed a new virtual network

embedding algorithm to complete virtual network mapping

automatically [35]. Yuan and Tian et al. proposed a VNE

algorithm for data center topology based on the Q-learning

algorithm, in which an agent for each VN designed a reward
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function related to the effect of virtual link embedding [36].

In addition, some other studies have shown that intelligence

optimization algorithm is also an effective way to solve the

network mapping problem. Li and Yang et al. proposed an

optimization study of GA, including seed selection, mating

and mutation for solving network resource deployment [37].

Mijumbi, Gorricho and Serrat proposed a study using various

optimization results to avoid the singularity of the solution of

the differential evolution algorithm [38]. Yu, Yi and Rexford

used a redefined particle swarm optimization algorithm to

solve the problem of VN mapping which show superiority

to some extent [39].

Many existing literatures have analyzed and explored the

allocation of resources and management issues. However,

how to reduce network redundancy through dynamic resource

allocation has not been well solved. Dynamic network map-

ping is a way to study real-time resource allocation prob-

lems. This method can dynamically calculate the physical

node resources and physical link resources required for the

virtual request before the VNR arrives, and then allocate

the node and link resources according to the user’s real-

time resource requirements [40]. Li, Zou and Wei proposed

a new virtual network embedding algorithm to improve the

original subgraph isomorphism search process and overcome

the defects of existing virtual network embedding algo-

rithms [24]. Fickas and Feathe used the PageRank algorithm

to deal with network mapping problems to increase accep-

tance rates and revenues [41]. Oveis and Amjady described a

dynamic monitoring method to analyze the impact of related

environmental changes on performance [42]. Although the

previous work was to optimize the network mapping environ-

ment to reduce resource waste, we will have different work

in this paper. Our research focuses on using RBF to predict

user requirement and reduce resource allocation redundancy,

as well as dynamic pricing of resources and the use of GA

to optimize the mapping path. Moreover, as a feed-forward

neural network algorithm with good performance, although

RBF algorithm has become a widely accepted tool in in many

economic and management model fields [43]–[45], there are

few studies on the application of RBF algorithm in dynamic

network resource allocation. In the dynamic network map-

ping, the user’s resource requirements change dynamically

over time. Therefore, using the RBF algorithm to predict

user resource requirements and complete resource dynamic

allocation can reduce resource allocation redundancy and

improve resource utilization.

In view of the above research and application of intelligent

algorithms and neural network algorithms and the research

of VN mapping algorithm, we propose a virtual network

resource allocation model based on dynamic resource pricing

named GSO-RBFDM. It should be noted that our work is

different from the above research. This is the first time that an

intelligent learning algorithm and a neural network algorithm

have been combined to study the VN dynamic resource allo-

cation. Firstly, we use GSO to optimize the network mapping

scheme and complete the initial allocation. Secondly, the

supervised RBF is used to predict the user’s node resource

and link resource requirements, and then we adjust the allo-

cation of network resources based on the prediction results.

Finally, we establish a dynamic nonlinear resource pricing

model, and use GA instead of Dijkstra algorithm to optimize

the mapping path to find the low-cost network mapping path

more accurately.

III. NETWORK MODEL AND PROBLEM DESCRIPTION

A. NETWORK MODEL

Physical network is normally defined as a weighted undi-

rected graph Gs =
(

NS ,LS , Cn
s , C

l
s

)

, where represents

a set of the physical network nodes. The properties of a node

include its computing capability, memory, disk capacity, and

cache size, network I/O, forwarding delay, processing delay

and so on. represents a set of the physical network links.

The properties of a link include the amount of bandwidth,

transmission delay and bit error rate. It is unrealistic to fully

consider all the factors, and therefore, the node attributes in

this paper include the computing capability and geographic

location while the link attribute only includes bandwidth. rep-

resents the computing capability of each node and represents

the physical link bandwidth.

FIGURE 1. Physical network.

Similarly, a VNR can be defined as a weighted undirected

graph Gv =
(

Nv ,Lv, R
n
v, R

l
v

)

, where represents a set of

VNR nodes, represents a set of VNR links, is the comput-

ing capacity requirement of the nodes and is the bandwidth

requirements of the virtual links. When a VNR arrives, the

physical network allocates node and link resources to satisfy

the VNR. If the physical network can’t provide the qualified

node and link resources, the VNR request will be rejected.

Figure 1 shows an example of a physical network, where

the numbers in the rectangular boxes represent the available

and the total computing resources of each node, while the

numbers around the links represent the available and the total

bandwidth of the link. Figure 2 shows an example of a VN

with 3 nodes and 3 virtual links. Similarly, the numbers in
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FIGURE 2. Virtual network request.

the rectangle and around the links have the same meaning as

Figure 1.

The problem of virtual network mapping in this paper is

to solve the virtual request in Figure 2 to find the nodes and

links that meet the nodes and link constraints on the physical

network in Figure 1 to complete the virtual network mapping

process.

B. DYNAMIC RESOURCE REQUIREMENT MODEL

As the number of Internet users continues to rise, the way that

network users consume network resources is also changed a

lot. In order to construct the user’s dynamic network resource

requirement model, we refer to the recent research report of

network usage as shown in Figures 3.

FIGURE 3. Time distribution of user’s mobile phone access to the
Internet [46].

Figure 3 shows the time comparison of six types of applica-

tions accessing the Internet from the ‘‘45th Statistical Report

on China’s Internet Development in 2020-Internet Access

Environment’’. It can be seen that the time distribution curves

used by the six types of applications are relatively close,

and the peaks of use all start between 8:00 and 10:00 and

end between 21:00 and 22:00. During the period, the length

of time occupied by Internet resources is relatively evenly

distributed, accounting for about 5% to 6%; Short video apps

have a peak usage period between 17:00 and 22:00, while the

use characteristics of online takeaway apps are more obvious,

and their peak periods appear between 11:00 and 12:00 and

17:00-19:00, and the usage time accounts for 20.5% and

24.3%, respectively.

In view of the above investigation, we maybe conclude

that users’ requirements for mobile network resources shows

a regular peak and valley, which actually forms a regular

pattern of long-term resource requests. Therefore, based on

the above characteristics of Internet user data statistics, we

constructed a dynamic resource requirement model as shown

in Figure 4.

FIGURE 4. Dynamic model of user resource requirement.

Since the use of the Internet in modern society is very

complicated, we cannot fully display it for our research.

Therefore, based on the above statistical report, we propose a

dynamic resource requirement model for resource dynamic

requirements of VN nodes and links. Figure 4 shows the

user’s dynamic resource requirement trend, where periodic

peaks and valleys appear at different points in time, repre-

senting the peaks and valleys of the number of Internet users

in reality, respectively.

C. DYNAMIC RESOURCE PRICING MODEL

Although the capacity of network links is kept enough with

the continuous development of technology, the oversupply of

the Internet is still considered to be ‘‘Economic luxury’’ [47].

In a highly competitive economic environment, resource pric-

ing can be used as a control mechanism for allocating network

resources. Since traditional static resource pricing is based

on a linear function, it does not lead to competition between

VN users and maximum profit of infrastructure providers.

In traditional static symmetric resource pricing, a long-term

bandwidth provisioning agreement is signed between the user

and the network provider. This agreement does not guarantee

the maximum value of resources in the process of resource

supply and requirements, and is gradually replaced by short-

term customization. In order to overcome the above short-

comings and maximize the value of resources, we propose a

dynamic resource asymmetric pricing method, in which the

price of unit resources varies with the percentage of resource

usage rather than fixed resource pricing throughout the net-

work supply and requirements. Figure 5 shows a pricing

comparison between dynamic asymmetry (D-asymmetry)

and static symmetry (S-symmetry).

As shown in Figure 5, S-symmetrical does not give rise to

competition when users rent resources, which easily leads to
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FIGURE 5. Dynamic model of user resource requirement.

overuse of some resources and reduces network acceptance.

While in the pricing of D-asymmetry, the unit price increases

as the percentage of resource occupancy increases. As the

resource pricing is an important factor in network mapping,

nodes and links with more remaining resources will be pre-

ferred when the unit price of some resources is high. For

network users, different physical resources have different unit

pricing, and form a competition mode which depends on the

ratio between users’ cost and revenue.

IV. GSO-RBFDM ALGORITHM

A. GSO ALGORITHM

GSO was originally used to solve the multi-mode problem

in the continuous domain. However, the optimization of the

node scheme in this paper is no longer a continuous thresh-

old problem. Therefore, GSO should be redefined to solve

discrete optimization problems. The individual members and

associated operations should be redefined in accordance with

the specific problems [48]. The specific optimization process

in this paper is shown in the Algorithm 1 below.

For any optimization algorithm, the formulation of the

objective function determines the purpose of our optimiza-

tion.Similarly,each individual in GSO refers to a feasible

mapping scheme, which includes node mapping and link

mapping. Moreover, when calculating the individual fitness

value during theGSO iteration process, both the node and link

costs are taken into account, and the final mapping scheme is

jointly determined by the node mapping and link mapping.

The resource pricing proposed in this paper is a dynamic

asymmetric pricing form as shown in Figure 5 and we define

the objective function of the GSO algorithm including node

and link cost as formula (1):

f (nv, lv)min = ω1

∑

nv∈N v

(

N (nv) × pcn
)

+ω2

∑

lv∈Lv





Hops
∑

hop=0

(

L(lv) × pcb
)



 (1)

Algorithm 1 Group Search Optimization Algorithm

Require:

Several feasible initial networkmapping schemes, virtual

request events with node and link constraints and physi-

cal network.

Ensure:

The network mapping scheme of VN on physical net-

work.

1: Set group size N, random initialization group and angle;

2: Set the maximum number of iterations MG;

3: Treat any feasible initial network mapping scheme as an

individual;

4: The objective function is used to calculate the fitness

value of each individual;

5: Save the current and the best individual fitness values;

6: while (The termination condition is not satisfied) do

7: for i = 0 to (Number of individuals-1) do

8: Select a best individual as the producer and then

search the space according to the behavior of pro-

ducer;

9: 80% percent of the members will be randomly

selected as scroungers, they will be updated accord-

ing to the scrounger’s behavior to get;

10: The remaining individual 20% percent of the mem-

bers will be rangers, they will be updated according

to the ranger’s behavior to get;

11: end for

12: Update the substrate network resources.

13: Calculate the current fitness of each individual value

with formula (1);

14: Record the current fitness value of each individual;

15: Select the best individual as a new producer and update

the other individuals;

16: end while

where N (nv) represents a collection of physical nodes where

virtual nodes are mapped on while L(lv) represents a collec-

tion of underlying network links the virtual links are mapped

on; pcn and pcb represent the current unit pricing of physical

node resources and link resources respectively; andω1 andω2

are balance parameters between the node cost and link cost.

B. NETWORK PATH MAPPING

Since resources and costs are linear and the cost of nodes

on the path is ignored in the traditional network model,

most algorithms use Dijkstra’s algorithm to find the shortest

mapping path. However, the price of resources in this paper is

dynamic, and considering that when the mapping path passes

through a physical node, the node will allocate a service rate

and buffer space for it, so the cost of the node should be

considered. Therefore, Dijkstra’s algorithm is no longer an

effective algorithm for finding low-cost paths in the network

mapping problem of this paper. Figure 6 shows an example
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where Dijkstra’s algorithm cannot find a low-cost network

mapping path.

FIGURE 6. Feasible physical mapping paths.

When themapping path passes through a physical node, the

node will allocate a service rate and buffer space for it. The

network service rate is related to the average delay, and the

buffer space is associated with the packet loss rate. Therefore,

in order to find a more reasonable physical mapping path

in the path optimization process, the cost of the node must

be considered, and the influence of the two on the selection

of the mapping path needs to be balanced by corresponding

parameters. Therefore, the smaller the sum of the nodes and

links passed, the lower the cost is in the path selection process.

As shown in Figure 6, the Dijkstra algorithm calculates the

shortest path by the hop-by-hop method, the shortest path

between the source node A and the destination node F is given

by ADEF, where the link cost is 2+2+2=6, and the node

cost is 2+5+2+5=14. In addition, the shortest path ACEF

between the source node A and destination node F with the

same hop count has a link cost of 3+2+2=7 and a node cost

is 2+3+2+5=12. Therefore, in this example, the Dijkstra

algorithm cannot find the low-cost shortest path.

For a given network, link cost, node cost, path cost function

and source and destination nodes, we hope to find a way to

minimize path cost. Therefore, in this paper, our goal is to

develop a GAmodel to find the best way to minimize the path

cost. First, we code the routing path, where the sequence in

the string represents the order of nodes in the routing path,

which is called chromosome in genetic algorithm. The first

site of the chromosome is the source node, while the last site

of the chromosome is the destination node of the path. Chro-

mosome lengths are less than or equal to the total number

of the largest nodes we have set up beforehand. The goal of

this paper is to find a low-cost path from the source node

to the destination node, including link cost and node cost on

the path. In GA algorithm, current chromosomes are evolved

by single-point crossover to obtain chromosomes with better

fitness. Figure 7 shows an example of single-point cross

evolution of a chromosome. In addition, we define the fitness

function for each chromosome as shown in formula (2).

f
(

nv, lv
)

min
= α

∑

lv∈(P(ns,nt ))

Cost
(

lv
)

+β
∑

nv∈(P(ns,nt ))

cost
(

nv
)

(2)

where P(ns, nt ) represents the path set between initial node A

and destination node B, L(P(ns, nt )) represents the collection

of links contained in the path P(ns, nt ), N (P(ns, nt )) repre-

sents the collection of nodes contained in the path P(ns, nt ),

and α and β are balance parameters between the node cost

and link cost.

The parental chromosomes were randomly selected for

mating and the probability of chromosome selection is pro-

portional to the fitness of the chromosome. Check the public

nodes of both parents, where the parents’ paths intersect, and

then randomly select a common node for cross-evolution.

Such as, in Figure 7, the common nodes of the parent chro-

mosome are D and F, and we obtain the child chromosome

by exchanging the substrings of the parent chromosome.

As shown in Figure 7, a single point exchange is performed

at the common node D, F in parental chromosome. Then,

we exchange substrings DEFHG and DFG to generate sub-

chromosomes OP1 and OP2, and exchange substrings FHG

and FG to generate OP3 and OP4, respectively.

It is worth noting that, for the simplicity of the path finding

process in this paper, if the parent chromosome does not

have a common node, no crossover will occur and the child’s

chromosome is an exact copy of the parent. Moreover, the

child’s chromosome may not be feasible due to node dupli-

cation or path disconnection. To solve this, we first remove

the duplicate nodes from the child’s chromosomes and then

check the child’s path connections and we don’t fix children

who are not feasible in our paper. A sub-chromosome is not

feasible if two adjacent nodes of a sub-chromosome are not

directly connected by a link. If the child is not feasible after

the crossover, we will discard the infeasible child and use an

exact copy of the parent as a new child.

C. SUPERVISED RBF

RBF is a three-layer feed forward neural network. The first

layer, which called the input layer, consists of signal nodes to

transmit information. The second layer is the hidden layer of

RBF neurons, inwhich an activation function is set up to solve

the linear inseparability problem of low-dimensional linear

separation in high-dimensional space. The last layer, output

layer is used to adjust the weight of the network through a lin-

ear optimization strategy. Figure 8 shows a specific network

structure.

Among, F(x) =
m
∑

i=1

wiϕ(‖x − ci‖) and we obtain the

width, the center of the training neuron and the associated

parameters of the supervised RBF through a specific predic-

tion method. The relevant parameters value as follow, initial

centers φi = 10, the value of width σ is between 0.1 and

0.3, width adjustment µ = 0.6, Learning rateη = 0.001,

target error ξ = 0.5, iteration number K = 2000 and initial

weights=1. Figure 9 shows the specific design process of the

resource prediction model in this paper.

In this paper, before a new VN event arrives, we pre-

collect the resource requirements of multiple users in a cycle

time as the training sample set of RBF units, and obtain
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FIGURE 7. New physical mapping path generated by GA.

FIGURE 8. RBF neural network structure.

the corresponding neural network structure through multiple

trainings. When a new VNR arrives, the GSO is used to

optimize the mapping scheme to complete the initial alloca-

tion, and then the trained RBF is used to predict the resource

requirement of the user, and finally reallocate the physical

resources according to the predicted result. We use functions

to model the volatility requirements of VNR resources and

manage the physical resources at each moment throughout

the lifecycle.

D. DESCRIPTION OF GSO-RBFDM

In order to better express the association of each part of

this paper, including dynamic network mapping, dynamic

pricing and the application of genetic algorithm, we give

the flowchart of GSO-RBFDM algorithm as shown in

Figure 10.

E. PSEUDO CODE OF GSO-RBFDM

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL SETTINGS

In this paper, the topologies of the physical networks and

VNRs are randomly generated by GT-ITM tool [49]. For any

VNR request event, the computing resource requirements of

each virtual node and bandwidth requirements of each virtual

link are randomly generated. Table 1 shows the parameters of

the simulation experiment in this paper.

TABLE 1. Simulation parameters.

B. EVALUATION INDICATORS

The main evaluation index of the network is defined as fol-

lows:

1) Network acceptance rate:

lim
T→∞

T
∑

t=0

VNR

/

T
∑

t=0

VNRs (3)

where
T
∑

t=0

VNR represents the number of virtual networks suc-

cessfully mapped from time t = 0 to time T and
T
∑

t=0

VNRs
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FIGURE 9. Dynamic resource requirement prediction process.

TABLE 2. Simulation parameters.

represents the total number of virtual network requests from

the time t = 0 to the time T.

2) Average network cost:

lim
T→∞

T
∑

t=0

Cost(Gv, t)
/

VNRs (4)

where
T
∑

t=0
Cost(Gv, t) represents the resource required to

successfully map a virtual network from t = 0 to T. 3) Node

pressure:

Node−Load
(

ns
)

=
∑

v∈Ev

Mapns
(

Cv
n

)

/Cs
n (5)

where Cs
n represents the node resource of physical

node,Mapns
(

Cv
n

)

represents the sum of the resources of all

the virtual nodes mapped on.

3) Link pressure:

Link−Load
(

ls
)

=
∑

v∈Ev,p∈(p,v)

MaplsC
v
l (p, v) /Cs

l (6)

where Cs
l represents the physical link,MaplsC

v
l (p, v) repre-

sents the sum of resources used.

4) Average network revenue:

lim
T→∞

T
∑

t=0

Rev (Gv, t) /T (7)

where
∑T

t=0 Rev (Gv, t) represents the total income during

time t=0 to T as the virtual network are successfully mapped

on physical network.

C. ANALYSIS

In this section, we will evaluate the advantages of the

GSO-RBFDM proposed in our paper. GSO-RBFDM is a

dynamic virtual network mapping algorithm that combines

GSO and RBF. Firstly, GSO is used to optimize the network

mapping scheme and allocate the initial resource for the

virtual request. Then, as user resource requirements change,

a supervised RBF neural network is used to predict user’s

resource requirements. Finally, reallocate network resources

for users according to the predicted result and update the

physical resources. To explain the performance of GSO-

RBFDM, the four comparison algorithms in the paper are

briefly described as in Table 2.

We improve the traditional greedy algorithm and ran-

dom algorithm, such as applying genetic algorithm to link

mapping and combining RBF algorithm to complete net-

work mapping, so as to fit the simulation environment and

ensure the fairness of different algorithms in the simu-

lation experiment process. In addition, several evaluation

indexes were selected in the comparison simulation experi-

ment, including acceptance rate, average cost, link pressure

and average revenue. The experimental results are shown in

Figure 11- Figure 14.

As shown in Figure 11, GSO-RBFDM has the highest

acceptance rate, followed by GSO-STAC, while the accep-

tance rates of RANDOM-RBFDM and GREEDY-RBFDM

are higher than those of RANDOM-STAC and GREEDY-

STAC, respectively. Generally, the acceptance rate of random

algorithm and greedy algorithm will be different under dif-

ferent network resource settings and topologies. Moreover, it
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FIGURE 10. GSO-RBFDM flow chart.

can be seen that compared with the static mapping method,

the dynamic mapping method has a higher acceptance rate.

Because in the dynamic network mapping algorithm, RBF

is used to predict the resource requirements of virtual nodes

and links, and then reallocate resources according to the pre-

diction results, thereby reducing the redundancy of resource

allocation and saving network resources to a certain extent.

For this reason, compared with static network mapping
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Algorithm 2 Dynamic Mapping of GSO-RBFDM

Require:

virtual request events with node and link constraints and

physical network;

Ensure:

Event processing results and resource recycling results;

1: Generate a physical network and a series of virtual

request events.

2: The start time of the event is the arrival time of the first

event.

3: Save all the request termination time and the maximum

time in the last event;

4: for i = 0 to ( the Max moment of last event - 1) do

5: if (A new virtual network request arrives) then

6: if (Current moment== Request arrival time ) then

7: Take this VN from the event.

8: if (Satisfy constraints) then

9: Generate feasible initial network mapping

schemes Xi;

10: Use Algorithm 1 to find a better network map-

ping scheme;

11: Take Xi as the final node mapping scheme;

12: else

13: Reject this request.

14: end if

15: else

16: Record the actual requirements as input data.

17: if (Satisfy training needs) then

18: Use resource prediction model to predict

resource requirements of users;

19: Allocate the actual resource requirements

according to the prediction result;

20: else

21: Record the actual resource requirements and

allocate resources for this request according to

the last allocation scheme;

22: end if

23: end if

24: Release allocation resources at the last moment;

25: else

26: The network mapping process is completed;

27: end if

28: Turn to the next moment.

29: end for

algorithms, dynamic mapping algorithms have relatively suf-

ficient network resources to provide services for more virtual

network requests. In addition, the GSO algorithm selects a

better fitness function from a variety of possible mapping

schemes as the final mapping scheme, which can achieve

more reasonable network mapping than the greedy algorithm

and the random algorithm. Therefore, the acceptance rate of

GSO-RBFDM and GSO-STAC is higher than other compar-

ison algorithms.

FIGURE 11. Acceptance rate.

FIGURE 12. Average cost.

As shown in Figure 12, compared with the static mapping

algorithms GSO-STAC, RANDOM-STAC and GREEDY-

STAC, the dynamic mapping algorithms GSO-RBFDM,

RANDOM-RBFDM and GREEDY-RBFDM have lower

costs respectively. Because in the static network mapping

algorithm, a fixed peak resource is allocated in order to

cope with the occasional maximum network load of users.

In the dynamic network mapping algorithm, the user’s

resource requirement is allocated based on the RBF pre-

diction result, and the prediction result is usually lower

than the user’s fixed peak requirement due to dynamically

changing network load. Therefore, the resource occupancy

rate of the dynamic network mapping algorithm is lower

than that of the static network mapping algorithm, which

results in lower network costs. In addition, compared with

RANDOM-STAC, RANDOM-RBFDM, GREEDY-RBFDM

and GREEDY-STAC, the average network cost of GSO-

RBFDM and GSO-STACND is lower. We know that the

average network cost includes node cost and link cost.When a

new virtual virtual request arrives, theGSO algorithm updates
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FIGURE 13. Link pressure.

each individual (i.e. network mapping scheme) through the

transformation between the producer, the scrounger and the

ranger, which is different from the one-time adaptation net-

work of the greedy algorithm and the random algorithmMap-

ping. At the same time, the GA algorithm is used to optimize

the physical mapping path in multiple individual iterations of

GSO, which reduces the cost of link mapping and thereby

reduces the average network cost.

As shown in Figure 13, the link pressures ofGSO-RBFDM,

RANDO-RBFDM and GREEDY-RBFDM are lower than

those ofGSO-STAC,RANDOM-STAC andGREEDY-STAC,

respectively. Because the static network mapping algorithm

allocates network resources according to the user’s origi-

nal link resource requirements, and no longer adjusts the

resource allocation when the user’s resource requirements

change due to network load. In the dynamic networkmapping

algorithm, RBF is used to predict the resource requirements

of virtual requests and dynamically adjust resource allocation

for users after the initial resource allocation is completed.

The dynamic resource allocation method essentially saves

some network resources and meets the user’s basic resource

requirements. Therefore, the dynamic networkmapping algo-

rithm has higher link resource utilization and lower link

cost than static network mapping.In addition, the link pres-

sure is affected by the acceptance rate and the mapping

method. The link pressure of GREEDY-RBFDM is higher

than RANDOM-RBFDM and lower than RANDOM-STAC.

As GSO-RBFDM and GSO-STACND use GSO to optimize

network mapping schemes to improve resource utilization,

the link pressures are lower than the other algorithms respec-

tively. It is worth noting that in the process of running

the RANDOM-STAC algorithm, there are fewer events that

happen to be processed in the time period of 5000-6000,

so the average link pressure trend is smoother than other

algorithms, which is normal and has a certain chance.

As shown in Figure 14, GSO-RBFDM and GSO-STACND

have the highest average revenue, followed by RANDOM-

RBFDM and GREEDY-RBFDM, RANDOM-STAC, and

FIGURE 14. Average revenue.

GREEDY-STAC has the lowest average revenue. Since the

network revenue comes from the network fees paid by the

network users, the network average revenue comparison

results are similar to the acceptance rates in Figure 11.

In the same physical network environment, the more vir-

tual requests are accepted, the higher the network average

revenue will be. In general, based on the above analysis

of the cost, node pressure and link pressure factors of the

algorithm, the GSO-RBFDM proposed in this paper not only

satisfies the user’s dynamic resource requirements, but also

improves the network utilization and average revenue. These

results also reflect the effectiveness of the proposed algorithm

GSO-RBFDM.

VI. CONCLUSION AND FUTURE WORK

By summarizing the limitations of existing static resource

pricing and the defects of static resource allocation, this

paper proposes a virtual network resource allocation model

based on dynamic resource pricing named GSO-RBFDM.

In the network mapping, the GSO is used to optimize the

node mapping scheme and supervise the RBF to predict

the users’ resource requirements. GSO-RBFDM can realize

dynamic resource allocation and improve resource utilization

efficiency by adjusting the allocated network resources. Sim-

ulation results show that, compared with the static network

mapping algorithm, the dynamic network mapping algorithm

shows good performance in terms of acceptance rate, average

cost, link pressure and average revenue.

Further work includes the following three aspects: 1) Study

the adaptability of GSO-RBFDM in different physical net-

work environments and the impact of the number of resources

on the performance of the algorithm. 2) Optimize the resource

requirement training data set to improve the prediction accu-

racy of node and link resource requirements and reduce the

network cost.
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