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Abstract 
 

This paper describes a virtual networking approach for 

Grids called ViNe. It enables symmetric connectivity 

among Grid resources and allows existing applications to 

run unmodified. Novel features of the ViNe architecture 

include: easy virtual networking administration; support 

for physical private networks and support for multiple 

independent virtual networks in the same infrastructure. 

The requirements of an application-friendly virtual 

network environment are presented and it is shown how 

the proposed solution meets them. Qualitative arguments 

are provided to justify all design decisions. Also presented 

is an experimental evaluation of the round-trip latencies 

and bandwidths achieved by a reference implementation. 

Measurements are reported for WAN-scenarios involving 

three different institutions. Under favorable conditions, 

ViNe bandwidths are within 90 to 100% of the available 

physical network bandwidth. 

 

 

1. Introduction 
 

A fundamental goal of Grid computing is to share 

resources, distributed across wide area networks, among 

users [1]. In most cases, collaboration among resources is 

necessary and symmetric network connectivity becomes 

essential for a Grid-computing environment. However, the 

Internet is highly asymmetric: often communication 

between two processes A and B can only be established if 

it is initiated by process A. This paper describes a general 

solution to the problem of symmetrically connecting 

resources in different administrative domains. In addition 

to restoring symmetry, the approach allows, with low 

administration overhead, the inclusion of machines and 

networks in distinct computational grids. 

Two technologies contribute to the network asymmetry: 

private networks and firewalls. In order to allow clients in 

private networks to access servers in public networks, 

proxies and Network Address Translation (NAT) gateways 

were developed. However, due to the non-routability of 

private addresses, it is not possible to reach private servers 

from public networks. Firewalls were developed in order 

to protect resources against malicious attacks or bad use of 

network resources. Unfortunately, due to difficulties in 

isolating malicious applications, firewalls are often 

configured to block legitimate network traffic. 

When a resource provider configures a computer to be 

part of a Grid, requirements including public network 

connection and firewall openings need to be met. Those 

requirements get more complex when resources in a given 

private network need to be integrated into different Grids. 

If the requirements cannot be met, a Grid infrastructure is 

usually limited to a private network or a particular sub-

network [2]. 

A Grid-computing infrastructure, such as In-VIGO 

[3][4], aims to aggregate resources without imposing strict 

requirements on the networks to which they are connected, 

and also independently of the remote access mechanisms 

being used. For example, SSH [5], Grid Security 

Infrastructure (GSI) [6], Condor [7], Portable Batch 

System (PBS) [8] or any other mechanism can be used for 

remote job submission. In order to offer network 

environments that are customized for each computational 

Grid and compatible with application software 

expectations even in the presence of firewalls and NAT 

gateways between resources, the Virtual Network (ViNe) 

architecture must satisfy the following requirements: 

1. Symmetric communication between entities: Internet 

firewalls, NAT gateways and proxies are the main barriers. 

2. Undisrupted original network environment: ViNe 

must extend the existing network infrastructure without 

interfering with running services. 

3. Easy network configuration of resources joining the 

Grid: Resource configuration requiring administrative 

privileges must be minimal. 
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4. No impact on security policies implemented in 

providers’ domain: Keeping the security policies of 

organizations untouched is essential to minimize 

reluctance in sharing resources through the Grid. 

5. Availability of mechanisms to automate the 

definition and deployment of networks: Multiple 

independent and isolated virtual network environments are 

necessary when virtual computational Grids are created, so 

networks cannot be statically defined. 

6. Ability to run applications without modification: 

Many applications are already available and in many cases 

recompiling and/or reengineering is not possible. 

7. No change in the Operating System (OS) network 

stack: Resource OS changes are always problematic as 

they can cause applications to stop working. Also, such 

changes are typically not acceptable to system 

administrators. 

8. Undisrupted Internet infrastructure: Changes in the 

core components of the Internet such as routers and DNS 

servers are either impractical or limit the deployment of a 

solution. 

9. Platform independence: Grids are heterogeneous by 

nature, aggregating resources with different architectures 

running several OS variants. 

10. Scalability: It is not reasonable to utilize solutions 

that assume a small number of machines. 

To the best of our knowledge (see Section 2 and Table 

1) there is not a single solution satisfying all conditions, 

and combining solutions is not an easy task. The ViNe 

architecture described in this paper addresses all the 

above-listed requirements. The next section reviews 

existing techniques used to overcome Internet connectivity 

limitations and to implement virtual networks. In Section 3 

the ViNe architecture and a supporting design are 

presented. Section 4 discusses how ViNe meets the above-

stated requirements, and security considerations are 

presented in Section 5. Section 6 describes details of a 

ViNe implementation and reports bandwidth 

measurements of ViNe performance in several scenarios. 

Section 7 presents conclusions and future work. 

 

2. Previous work 
 

Table 1 summarizes existing and proposed solutions 

which fall into three broad classes described below. 

Solutions based on address/port translation need to deal 

with two problems: how to dynamically create mappings 

and how to enable end nodes to know about the existing 

mappings. Some implementations require applications to 

be aware of resource discovery protocols (e.g., SOCKS, 

DPF and GCB). Application-transparent implementations 

require changes in the OS kernel network stack and/or in 

the Internet infrastructure (e.g., IPNL, RSIP and AVES). 

Solutions that abstract networking complexity and 

expose a new API, work only for new applications (e.g., 

P2P networks and the Ibis Grid Programming 

Environment). 

Solutions based on tunneling assume that at least one 

host in each physical network has a public IP address 

without firewalls imposing limitations (e.g., VPN, VNET, 

VIOLIN and X-Bone). 

 

2.1. Tunneling 
 

Application transparent solutions that do not require 

changes in the Internet infrastructure use tunneling 

techniques (which is also the case for the ViNe approach 

described in this paper). 

The problems shared by existing tunneling-based 

solutions (Virtual Private Network [22], SSH tunneling, 

Generic Routing Encapsulation [29], etc), which make 

them not suitable for direct application on Grids are: 

1. No support for hosts using the same private IP 

address: 16-bit private IP space (see table 2) is very 

popular in small networks since it is used in default 

configuration of cable/DSL routers and Microsoft Internet 

connection sharing (ICS). In large networks, the 24-bit 

private IP space is preferred over 20-bit space. There is a 

high probability that two private networks use the same 

private IP subnet. This means that hosts in different private 

subnets may have the same IP address. 

2. High administration overhead: Every time a new 

subnet joins or leaves the system, each administrator of 

every participating subnet must be contacted to configure 

new tunnels. A new network configuration may take days, 

depending on response time of administrators. 

3. Lack of flexibility to configure independent virtual 

networks: The straight-forward configuration to enable 

communication between hosts is to establish tunnels from 

one subnet to all other subnets. However, in some cases, 

there is need for an isolated virtual network for a subset of 

hosts. Configuration of multiple virtual networks requires a 

considerable amount of effort from administrators. 

The next section details the architecture and design of 

ViNe and how the above-mentioned problems are solved. 

  

3. ViNe 
 

The primarily goal is to create virtual network 

environments with bi-directional communication capability 

between any pair of hosts. In order to support unmodified 

applications, the ViNe architecture is based on IP-overlay 

on top of the Internet. Components to be virtualized are 

network interfaces, routers and links between them. 

Hosts participating in a ViNe are configured with one 

or more additional IP addresses, as detailed in subsection 



 Purpose Approach Issues 

Internet Protocol 

version 6 (IPv6) [9] 
Solve IPv4 address shortage. Define a larger address space 

- cannot overcome firewall limitations. 

- slow adoption. 

IP Next Layer (IPNL) 

[10] 
Alternative to IPv6. 

Extend IPv4 space by adding a 

layer above IP. Identify hosts 

based on FQDNs, globally unique 

IP and private IP. 

- changes host network stack. 

- changes NAT gateways. 

Address Virtualization 

Enabling Service 

(AVES) [11] 

Connect hosts behind NAT 

gateways. 

Public addresses of proxies are 

dynamically allocated to machines 

in private networks 

- applications always need to contact 

AVES aware DNS servers. 

- changes NAT gateways. 

Peer-to-peer (P2P) 

first generation 

[12][13] 

File sharing without 

depending on servers. 

Peers communicate directly with 

each other. Peers behind NAT 

needs to always initiate the 

communication. 

- application specific (i.e. no socket API is 

exposed). 

P2P second generation 

[14][15][16] 

Self-organized overlay 

infrastructure 
Distributed Hash Tables (DHT) - application specific 

Project JXTA [17] 
Create a generic P2P 

infrastructure. 

User-level proxies 

handle.firewalls/NAT 

- applications need to be aware of 

protocols. 

SOCKS [18] 

Provide private-to-public and 

private-to-private 

communication. 

Application layer generic proxies 

relay packets. 

- requires application support in order to 

work. 

Realm Specific IP 

(RSIP) [19] 
Connect hosts behind NAT 

Clients in one realm (private) lease 

addresses in other realm (public) 

from RSIP servers 

- changes host network stack 

- changes NAT gateways 

Tunneling: VPN [22], 

IP in IP [28], GRE 

[29] 

Connect networks which 

cannot be routed in the 

Internet. 

Encapsulate packets such that it is 

possible to transport transparently 

using the Internet. 

- 1 server per network w/ public address. 

- high administrative overhead. 

- not scalable w/ nr. of networks (each 

network needs tunnels to all others) 

Dynamic Port 

Forwarding (DPF) and 

Generic Connection 

Brokering (GCB) [20] 

Recover Internet connectivity 

for distributed computing. 

Dynamically set Source and 

Destination NAT (SNAT and 

DNAT) rules in firewalls or use 

GCB servers as proxies. 

- applications need to be aware of 

protocols or may require recompilation/re-

linking to communication libraries 

(dynamic linking is not always possible). 

Cooperative On-

Demand Opening 

(CODO) [21] and 

Semantic Firewall [2] 

Deal with limitations 

imposed by firewalls 

Communication between 

applications and firewalls to 

establish opening rules. 

- applications need to be aware of 

protocols or may require recompilation/re-

linking to communication libraries 

(dynamic linking is not always possible). 

X-Bone [30][31] 
Deploy and manage Internet 

overlays. 

Two levels of IP encapsulation is 

used for each overlay. 

- assumes symmetric connectivity between 

peers (resources). 

- requires control (privileged processes) in 

each resource (hosts and routers) 

VNET [23] 

Connect VMware [24] virtual 

machines spread over wide 

area to a LAN. 

Layer 2 tunneling. 

- assumes symmetric connectivity between 

hosts of virtual machines. 

- layer 2 broadcasts can flood the network 

when nr. of hosts increases. 

- possible VMware dependencies. 

VIOLIN [25] 

Create virtual isolated 

network environments on top 

of an overlay infrastructure. 

Create, configure and deploy 

virtual entities (hosts, LANs and 

routers) as User Mode Linux 

virtual machines. 

- assumes symmetric connectivity in the 

overlay infrastructure. 

- possible UML [26] dependencies. 

Ibis Grid 

Programming 

Environment [27] 

Environment that handles 

firewall, NAT, security and 

TCP bandwidth problems. 

Runtime system abstracts lower 

layer communication. TCP 

splicing is used to cross firewalls. 

- existing applications cannot run without 

modification. 

- TCP splicing may not work with all NAT 

 

Table 1: Existing and proposed solutions to the Internet asymmetric-connectivity problem 

3.2. The additional IP addresses – so-called virtual 

addresses – imply the definition of a virtual address space 

– an IP address space without conflicts with physical 

networks, as detailed in subsection 3.3. Internet routers do 

not handle ViNe traffic, so each physical network joining 

the Grid needs one host running ViNe routing software, 

which is called a Virtual Router (VR). Hosts are 

configured to direct ViNe traffic to VRs and do not need 

additional software. Subsection 3.5 describes how ViNe 

packets are routed. Inter-VR communication uses the 

Internet infrastructure, so if a host behind a firewall or 

NAT acts as a VR, its communication ability is 



compromised. The problem is addressed using techniques 

described in subsection 3.4. 

 

3.1. Overall Architecture 
 

Figure 1 illustrates the overall architecture of ViNe. For 

each physical network joining the Grid, a virtual address 

space, to identify new virtual hosts, is allocated. A VR is 

configured to manage that virtual address space. Hosts are 

configured with new network interface(s), to be used for 

the ViNe traffic. VR and hosts “physical” setup for ViNe 

operation is a “one-time” process. Virtual networks 

deployments and destructions are handled dynamically by 

ViNe without administrative intervention. VRs are 

connected together through tunnels in the physical space. 

Since VRs use the Internet routing infrastructure to 

tunnel packets, there are as many virtual links (dashed 

lines in Figure 1) as routes supported by the Internet. 

Communication problems to/from limited-VRs (i.e., VRs 

behind firewalls and/or NAT gateways) are addressed in 

the next subsections. 

 

3.2. Hosts: Virtual Network Interface 
 

Hosts may have their connectivity limited by firewalls 

and/or NAT gateways, and the use of real network 

identifiers is not possible when symmetric communication 

or unique addresses are required. New network 

identification (i.e., IP address) is necessary in each 

participating host – this is achieved by properly 

configuring a virtual network interface. 

There are several ways to virtualize a network interface. 

One method is to intercept packets before the physical 

routing infrastructure is reached. Intercepted packets can 

then be modified and routed according to virtual 

networking needs. The best place to intercept packets is 

the OS kernel network stack; however kernel programming 

would make the software hard to port. Another idea is to 

intercept OS networking calls and modify the behavior of 

those calls for ViNe activity. This approach can potentially 

degrade the performance of the whole machine and also 

has portability issues. The use of communication libraries 

may require application reengineering. 

A complete virtual network interface card (NIC) can 

also be implemented. Virtual NICs are software 

components that emulate hardware NICs, and in general 

they are implemented as OS kernel modules. The use of 

universal devices such as TUN or TAP drivers [33] is a 

possibility, but this requires the installation of TUN/TAP 

packages in all hosts. 

The alternative of choice for ViNe is that of using IP 

aliasing, which is the capability of binding multiple IP 

addresses in one physical NIC. The configuration of a 

static route for the virtual address space would redirect 

ViNe packets to VRs. In this way, hosts do not require any 

additional software installation in order to be ready for 

virtual networking. 

 

3.3. Virtual Address Space 
 

It is possible to virtualize the whole IP address space, 

making independent virtual 32-bit address spaces available 

for each application. However, resources should also be 

able to access the regular Internet services even if they are 

participating in one or more virtual networks. In order not 

to disturb the Internet, ViNe uses the space reserved for 

private addressing [32], which is shown in Table 2. 

The use of the private addresses as virtual identities 

could be a problem when configuring a network that is 

already private. In order to avoid overlapping address 

spaces between networks, a global address space, 

partitioned into non-overlapping spaces, is needed. 

Deciding which private space to use is difficult, as 

typically the resources joining a Grid belong to (physical) 

private networks that are already deployed. The less-

frequently-used 20-bit space is a good candidate for virtual 

identifiers. However, the architecture must allow 

organizations utilizing the 20-bit private space to also join 

ViNe. This can be done by making VRs mirror the 20-bit 

space in a region of the 24-bit space. For example, the 

172.16.0.0 – 172.31.255.255 range can be mirrored in the 

10.116.0.0 – 10.131.255.255 range. VRs will deliver 

packets destined to 172.17.0.10 and 10.117.0.10 to the 

same machine. Organizations having conflicts with the 20-

bit space would need a VR configured to work with a 20-

Figure 1: ViNe architecture – in each 

network in physical space, a machine 

(physical or virtual) is allocated to be a 

router in virtual space. ViNe traffic is 

directed to virtual routers which deliver 

packets using the Internet routing 

infrastructure. 

Table 2: Private IP address space 
 

10.0.0.0 – 10.255.255.255 24-bit 

172.16.0.0 – 172.31.255.255 20-bit 

192.168.0.0 – 192.168.255.255 16-bit 



bit range mirrored in some region of the 24-bit space, and 

use that space for virtual networking. It is unlikely for an 

organization to both use the 20-bit and 24-bit private 

spaces in their entirety. 

The ViNe approach allocates a portion of the 20-bit 

space (using mirroring if necessary) for each organization 

joining the Grid. For example, 4096 organizations can be 

supported if the space is partitioned into blocks of up to 

255 addresses. Blocks do not need to be of equal size, so 

organizations with more resources can receive larger 

partitions. Multiple networks can be defined, and 

participating entities are configured per host, i.e. each host 

in an organization is allowed to be connected to a different 

network. The same block can be allocated to different 

organizations if they participate in different networks or if 

it is possible to establish that they are not active 

simultaneously.  

 

3.4. Firewalls and NAT 
 

When it is not possible for an organization to configure 

one publicly accessible machine as a VR, the VR is not 

able to receive packets directly from peer VRs. However, 

sending packets (i.e., initiating the communication) is in 

general possible. Once a packet is sent, receiving the 

response packet is always possible. ViNe takes advantage 

of this fact to overcome connectivity problems. 

When direct delivery of packets is not possible, an 

intermediate VR, connected to the public network, is 

assigned as a queue server where packets destined to 

limited-VRs are forwarded. Limited-VRs establish 

communication channels to the VR assigned as a queue 

server (hereon called a queue-VR). A communication 

channel can be a TCP connection initiated by a limited-VR 

and kept alive. When a packet is routed to the queue-VR, it 

can be forwarded immediately to the destination VR 

through the established TCP channel. Packets only need to 

be queued when the TCP channel is closed. Packets are 

kept in the queue until the TCP channel between the 

queue-VR and the limited-VR is re-established. With this 

approach, it is possible to have all VRs communicating 

with each other. 

 

3.5 Virtual Routing Infrastructure 
 

VRs are responsible for relaying ViNe packets. A 

packet destined to ViNe is directed to the VR (in the 

source node network), which examines the destination 

address and forwards it to the VR capable of delivering it. 

VRs are required to have access to the Internet but they 

do not need to be in the public network. VR-to-VR 

communication uses the Internet routing infrastructure, and 

it is possible to assume that VRs are fully connected (see 

Section 3.4). 

VRs maintain a set of routing tables: one Local 

Network Description Table (LNDT) and a Global Network 

Description Tables (GNDTs) for each active ViNe. 

The LNDT stores information about hosts connected to 

the same physical network of a VR – an entry indicates 

which network a host is participating in. GNDT stores 

information about the structure of a virtual network – an 

entry indicates the physical IP address of the destination 

VR to where a packet needs to be forwarded if the 

destination address falls in the listed range. When a host-

generated packet destined to a particular network reaches 

the VR, first the virtual network ID is verified in LNDT. 

Then using the corresponding GNDT the packet is 

tunneled to the destination VR where it will be delivered.  

Figure 2 illustrates an example where two networks are 

defined. Virtual Network 1 (V.Net.ID1) connects 

participating hosts (represented by circles) in sub-networks 

VNa and VNc while Virtual Network 2 (V.Net.ID2) 

connects participating hosts in sub-networks VNb and 

VNc. All VRs (shown as diamond shapes) receive a copy 

of the GNDTs of every ViNe deployed (GNDT-V.Net.ID1 

and GNDT-V.Net.ID2 in this example). When a packet is 

sent from 172.16.0.10 to 172.16.10.11, LNDT-VNc is 

checked to find out that the source host (172.16.0.10) is a 

member of Virtual Network 1. Then 172.16.0.1 (the 

Virtual Router handling this packet) consults GNDT-

V.Net.ID1 and forwards the packet to pub.a.110. Finally, 

pub.a.110 delivers the packet. 

 Packets destined to 172.16.0.0/24 (which has a Virtual 

Router behind a NAT gateway in physical space) are 

forwarded to pub.a.110. 192.168.0.3, the VR of VNc, 

opens a TCP channel to pub.a.110 from where it will 

receive all messages destined to VNc. 

If a host in VNa tries to communicate to a host in VNb, 

Figure 2: Virtual routing example - for each 

physical network (Na, Nb and Nc), a 

partition of the virtual network space (VNa, 

VNb and VNc) is allocated. All Virtual 

Routers receive copies of GNDTs. Each 

Virtual Router maintains the LNDT 

corresponding to its subspace. 



packets will be dropped by VRs, as there is no matching 

entry in GNDT-V.Net.ID1 and GNDT-V.Net.ID2. 

 

3.6. Multiple Isolated Virtual Networks 
 

VRs act as routers and firewalls in virtual network 

space, and following the rules defined by routing tables it 

can forward, deliver or drop packets. This functionality is 

essential to support isolated virtual networks. 

The information in the LNDT enables a VR to support 

the participation of hosts in different virtual networks. 

GNDTs define the structures of independent virtual 

networks. 

When a VR receives a packet for routing, the source 

host address is verified – if it is not listed in LNDT the 

packet is immediately dropped. The corresponding LNDT 

entry will point to the GNDT that should be used for 

routing. The packet is then forwarded to the VR described 

in the GNDT. The destination VR verifies whether the 

destination host of the packet is in its LNDT, and whether 

the destination host is part of the ViNe. 

 Inter-VR communication is used not only for 

forwarding packets but also to exchange routing 

information. When a new virtual network is defined or 

when structural changes are necessary in the already 

existing virtual network, VRs exchange information to 

update LNDTs and GNDTs, without the need for local 

administrator intervention. For example, when a group of 

computers are needed to execute a parallel job, the Grid 

middleware can contact a VR to initiate the process of 

creating a new ViNe. When the job is done, the ViNe can 

be removed from the system. Details on inter-VR 

messaging are beyond the scope of this paper. 

 

3.7. ViNe Address Allocation 
 

The virtual address space allocation for each joining 

organization follows the Internet model. As such, ViNe 

requires an entity playing the role of the Internet Assigned 

Numbers Authority (IANA). 

Inter-VR communication is secured based on the Public 

Key Infrastructure (PKI) model, and VRs are identified by 

their public keys. Only VRs with a valid certificate (signed 

by a trusted Certificate Authority) is allowed to join ViNe. 

Since VRs can be identified and authenticated, address 

assignment can be fully automated. The virtual address 

space allocation service can be implemented as a 

centralized service or utilizing distributed mechanisms. 

 

4 Analysis 
 

This section discusses the ViNe architecture in regard 

to all requirements listed in Section 1. 

1. Symmetric end-to-end communication: The 

presented routing infrastructure, based on VRs, offers end-

to-end connectivity between hosts by defining queue-VRs 

capable of queuing packets, when target VRs cannot be 

reached directly. The implication is that at least one VR 

needs to be placed on public network, and that hosts that 

depend on limited-VRs will potentially experience lower 

network performance than those connected to public VRs.  

2. No interference with Internet services: In order not to 

disrupt the original Internet services in hosts joining ViNe, 

the 20-bit private address space (mirrored if necessary) is 

used to provide global virtual identities. Packets destined 

to the virtual range are redirected to VRs for routing in 

virtual space. Since redirection is done by defining static 

routes in hosts, there is no performance penalty for the 

regular Internet traffic. Also, there is no overhead in local 

communication between hosts. 

3. Easy configuration: Configuring a network to be part 

of a ViNe is equivalent to configuring a VR. A VR is a 

machine – which could be physical or virtual, dedicated or 

non-dedicated - placed in participating networks with Grid 

resources. Configuration of routing software can be made 

very simple, as creation and management of ViNe are 

automatically done through communication between VRs. 

Virtual machine technology can further help on 

deployment of VRs, allowing transfer and instantiation of 

pre-configured VRs into target networks. Configuration of 

hosts is even simpler. Hosts need a one-time very simple 

system administrator intervention: configuration of a 

virtual interface (IP aliasing) and definition of a static 

route to the ViNe address space. 

 4. Unchanged local security policies: The presented 

architecture leaves the Internet traffic untouched. There is 

no need to change security policies already in place. 

However, since the architecture adds a new network 

interface (private IP address for ViNe) in each 

participating host, network firewalls and/or host firewalls 

need to allow traffic from/to the ViNe private address 

space. The policies defined for the original LAN can be 

applied to the ViNe address space. ViNe traffic is only 

visible in the ViNe space, since the Internet does not route 

private addresses. 

5. Automated creation and maintenance of virtual 

networks: The presented architecture supports multiple 

independent and isolated virtual networks, and the 

definition, deployment and maintenance of ViNe can be 

fully automated. Resource allocation is under control of 

Grid middleware, so ViNe creation is triggered by the 

middleware, possibly (but not necessarily) in response to 

requests from hosts to join a virtual network. 

6. Existing applications run without modification: From 

the applications’ perspective, ViNe and physical networks 

are indistinguishable. It is even possible to aggregate 

machines in different private networks into a cluster and 



run parallel applications, for example based on MPI, 

without recompilation or reengineering of software. 

7. Unchanged OS network stack: The host 

configuration for ViNe does not involve any additional 

software installation. 

 8. Unmodified Internet infrastructure: The presented 

approach does not require any change to the Internet 

services. The unmodified Internet routing infrastructure is 

used to tunnel ViNe traffic between VRs. No other Internet 

service is required. When an Internet service (e.g., DNS) is 

needed in a ViNe, it needs to be configured in virtual 

space. Those services can be easily integrated since no 

software modification is required. 

9. Platform independence: The ViNe approach does not 

require software installation on participating hosts. 

Running OSes are only required to support the definition 

of multiple IP addresses per NIC and configuration of 

static routes (which are supported by most modern OSes). 

This fact makes the ViNe approach virtually compatible to 

any platform. 

10. Scalability: The maximum number of hosts 

simultaneously connected to a ViNe is limited due to the 

use of the 20-bit private IP space - not an architectural 

limit. The real limit is much larger considering the fact that 

two networks can share the same virtual address partition 

if it can be established that they are not active at the same 

time. It is even possible to have networks sharing 

addresses that could be active at the same time if they 

participate in different virtual networks. Looking forward 

to the possible adoption of IPv6, firewalls are likely to 

remain a problem with regard to asymmetric connectivity. 

Since the ViNe architecture is not tied to IPv4, the 

implementation described in Section 6 can be easily 

modified to support IPv6, in which case a much larger 

number of hosts can be supported. 

 

5. Security 
 

As ViNe creates connectivity between hosts without 

links in the physical space, many security issues can be 

raised, especially since connections might have been 

limited partially due to security concerns. The following 

are the main questions that need to be considered: 

1. Are security holes created in the physical network? 

No. The approach requires one host in the joining network 

to work as a VR. This host does not need to have a public 

IP address and firewall rules need not be changed to allow 

incoming connections. All original security policies are in 

effect after enabling virtual networking. The difference is 

that communication with new hosts will be possible in 

virtual space, but that was the intent when the organization 

decided to have some of its resources join ViNe and the 

Grid. 

2. Can attackers in the Internet access hosts through 

virtual addresses? No. Private IP addresses are used as 

virtual identifiers. Internet routers are configured to not 

route such addresses. The attack would only be possible if 

the organization’s physical router gets compromised. 

3. Can hosts in the Internet be accessed? Yes, but 

access to the Internet happens in physical space, following 

original security policies. VRs do not route packets to the 

Internet. 

4. How secure are VRs? VRs are exposed to the same 

level of security as any host connected to the same 

physical network. VRs are assumed to be protected by 

physical firewalls. In virtual space, VRs drop packets that 

have its address as their destination, making it nearly 

impossible to be compromised in virtual space. 

5. How secure are VR daemon processes? The first 

implementation runs a daemon listening to a TCP and/or 

UDP connections in port ACIS (2247). Regular inter-VR 

communication utilizes UDP messages, while limited-VRs 

use TCP channels. There are many ways to secure this 

communication: at lower layers, it is possible to configure 

VRs to only accept packets from IP addresses belonging to 

other VRs. At the application layer, PKI and digital 

signatures can be used to authenticate packets. In fact, all 

inter-VR messages, including encapsulated packets, are 

authenticated using keyed-hashing message authentication 

code (HMAC). Note that this is all done in physical space. 

6. Are tunnels encrypted? No, however applications 

that need end-to-end confidentiality can use traditional 

mechanisms to secure their communication (e.g., 

SSL/TLS). Due to performance reasons, the current 

reference implementation provides communication 

channels between peers, not “secure channels”. However, 

all VR-to-VR communication is authenticated using 

HMAC mechanism. 

7. Can network attacks be initiated in virtual space? 

Only if an attacker has access to a host that is a member of 

a virtual network. As virtual space cannot be reached from 

physical space, an attack on virtual space can only happen 

if a node in physical space is compromised. There is the 

potential problem of not having a common security policy 

shared among organizations, but the presented architecture 

can restrict networks to only participate in certain virtual 

networks. So, organizations can specify to which physical 

networks they accept to communicate. 

 

6. Implementation and Evaluation 
 

A reference VR software has been implemented in Java, 

with lower level networking handled by C code. Packets 

are captured within the netfilter infrastructure [34], and 

copied from kernel to user space for processing. Packet 

injection is done by making use of libnet [35] library. A 

much efficient implementation would be in the form of an 



OS-kernel module but, initial research and assessment of 

the ViNe approach and features are more conveniently 

done through a user-level implementation. 

Hosts willing to join ViNe are not required to install 

any ViNe-related software. A one time administrative 

intervention is needed to configure the virtual network 

interface and the routes to virtual space. Binding a second 

IP address to a network card is accomplished by running 

“ifconfig” command in most of UNIX systems, while 

Windows allows defining up to 5 additional IP addresses 

in “advanced properties” of network interfaces. Static 

routes are configured by making use of the “route” 

command in most OSes. 

The experimental setup has hosts in the University of 

Florida (UF), Purdue University (PU) and Northwestern 

University (NWU). Figure 3 shows the measured TCP 

round-trip latency and unidirectional throughput of the 

physical links involved. TCP round-trip latency and 

unidirectional throughput between end-hosts were 

measured using netperf [36] software. 

There are three sources of overhead in the current 

prototype. One is the insertion of VRs into the network 

(increasing at least by two the number of hops between a 

pair of hosts), the second is the user-level software in the 

VR and the third is tunneling. Of these, as it will become 

clear in Section 6.2, the first two are the dominant 

overheads. VR performance can be best evaluated when 

VRs are exposed to a good physical networking 

environment (i.e., LAN) where VR throughput, not 

network bandwidth (1 Gbit/s), determines communication 

bandwidth. VR performance evaluation in a LAN is 

presented in the next section, followed by a discussion in 

Section 6.2 of the ViNe evaluation in a WAN 

environment.  
 

6.1. Virtual Router Performance 
 

Figure 4 shows the TCP throughput and round-trip 

latency between two hosts in different private networks 

routed by VRs connected in a LAN for different CPU 

configurations. The VR software is a multi-threaded 

program, so it performs better in multi-processor 

environments and when Hyper-Threading (HT) technology 

is used. TCP throughput increases by approximately 50% 

when HMAC is disabled. The current user-level 

implementation of a VR on a Hyper-Threaded dual Xeon 

with HMAC disabled can deliver a bandwidth of 80 Mbit/s 

while introducing only a round-trip latency of 1 ms. 

 

 
 

6.2. ViNe Performance 
 

To evaluate the ViNe performance in WAN 

environments the following scenarios were considered: 

Case 1: all VRs have access to the public network, 

without firewall limitations. 

Case 2: as Case 1 but PU has a limited-VR which opens 

a TCP channel to UF queue-VR. 

Case 3: as Case 1 but PU has a limited-VR which opens 

a TCP channel to NWU queue-VR. 

Case 4: PU and NWU have limited-VRs which open 

TCP channels to UF queue-VR. 

Case 5: PU and UF have limited-VRs which open TCP 

channels to the NWU queue-VR. 

Table 3 summarizes the results. Case 0 represents the 

available physical performance. Cases 1 to 5 represent 

measurements with HMAC and Case 1a represents a 

measurement without HMAC. 

Case 1 is the most favorable scenario when all VRs are 

connected to the public network. Insertion of the VRs in 

the host-to-host route has a small impact on latency – it 

increases by about 1~1.5 ms. Also it was possible to push 

TCP packets at nearly the available throughput for UF-PU 

and UF-NWU communication. This exemplifies the case 

when network speed, not VR throughput, limits 
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Figure 4: TCP throughput and round-trip 

latency for different CPU configurations, in a 

LAN environment (1 Gbit/s) 
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Figure 3: Experimental setup.  Six 

different cases are considered depending 

on where firewalls are inserted in relation 

to the virtual routers (See Section 6.2). 



communication rates. The performance degradation in 

NWU-PU communication exemplifies the case when VR 

throughput, not network speed, determines bandwidth. By 

referring to Figure 4 one can realize that the measured 

bandwidth correspond to the processing limit of the 

machine acting as VR in PU. With more processing power 

(or lighter VR processing), it would be possible to achieve 

closer to the available throughput. This is also confirmed 

by Case 1a. It was possible to improve the throughput by 

approximately 50% when HMAC computation was 

disabled. For Case 1a, a UDP-datagram bandwidth of 90 

Mbit/s, matching the available physical performance, was 

measured (UDP measurements are not shown in Table 3). 

As mentioned in Section 3.4, VRs behind a firewall 

must contact a queue-VR to retrieve packets. Cases 2 and 

3 illustrate how the allocation of the queue affects 

performance.  Case 2 assigns UF as the queue-VR for PU, 

while in Case 3, NWU VR is the one assigned. Case 2 

shows poor performance because, in addition to the 

additional hops and queue-VR overhead, communication is 

re-routed through the slowest of VR-to-VR routes (i.e. UF-

to-NWU).  The Case 2 throughput of 12 Mbit/s between 

PU and NWU VRs is not the result of VR overheads 

degrading the physically available bandwidth of 63.1 

Mbit/s between PU and NWU, but the effects of the lowest 

of the bandwidths between PU and UF and UF and NWU 

(i.e. 17.5 Mbit/s). In contrast, since PU has better 

connectivity to NWU than to UF, using the NWU VR as 

queue-VR enables Case 3 to achieve performance close to 

that of Case 1 for all communication. 

Cases 4 and 5 consider the scenario where only one VR 

is publicly accessible. In this setup, allocating the NWU 

VR as the queue-VR proved to be the best. Only UF-PU 

communication degraded but it still exhibited reasonable 

performance. 

 

7. Conclusions 
 

This paper described the ViNe approach to the 

implementation of virtual networks that eliminate 

asymmetric-communication problems in the Internet. 

Among other advantages, ViNe can be implemented with 

little administrative overheads and can be used to execute 

existing unmodified applications. A network administrator 

at an institution wishing to make resources available to the 

Grid needs only to do a one-time set-up of Virtual Router 

(which could be a cloned virtual machine or an existing 

physical machine) and a very simple one-time 

configuration of each resource’s network interface. ViNe 

utilizing these resources can be automatically created by 

middleware with routing information being exchanged by 

VRs as needed. This is in contrast with other approaches 

reviewed in this paper which either require repeated 

extensive administrators’ interventions, resource OS 

changes, application redesign/recompiling or changes in 

the standard Internet infrastructure.  

Virtualization overheads of the implementation were 

quantified using a reference implementation of VRs. This 

implementation does not focus on performance, as the goal 

is to validate the design of ViNe. An implementation of 

VR software as a kernel module (similar to firewall 

software) or even as a firewall module is expected to offer 

performance similar to existing routers and firewalls as the 

ViNe processing requirement (packet header inspection, 

checksum calculation, tunneling, etc) is closely related. 

The measured performance confirms the potential 

suitability of ViNe for many Grid applications with 

moderate communication requirements. Currently, 

extensions to the prototype are in progress to improve its 

performance, to include all features of the design, and to 

fully evaluate the approach in In-VIGO environment with 

real applications and users. Virtual router improvements 

include using faster machines and/or kernel-level 

implementations. Such improvements can potentially make 

the ViNe approach also viable for data-intensive Grid 

applications that use high-performance networks. 
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