
A Virtual Network (ViNe) Architecture for Grid Computing

Maurício Tsugawa, and José A. B. Fortes

University of Florida

Dept. of Electrical and Computer Engineering, ACIS Laboratory

Gainesville, FL 32611-6200 USA

{tsugawa, fortes}@acis.ufl.edu

Abstract

This paper describes a virtual networking approach for

Grids called ViNe. It enables symmetric connectivity

among Grid resources and allows existing applications to

run unmodified. Novel features of the ViNe architecture

include: easy virtual networking administration; support

for physical private networks and support for multiple

independent virtual networks in the same infrastructure.

The requirements of an application-friendly virtual

network environment are presented and it is shown how

the proposed solution meets them. Qualitative arguments

are provided to justify all design decisions. Also presented

is an experimental evaluation of the round-trip latencies

and bandwidths achieved by a reference implementation.

Measurements are reported for WAN-scenarios involving

three different institutions. Under favorable conditions,

ViNe bandwidths are within 90 to 100% of the available

physical network bandwidth.

1. Introduction

A fundamental goal of Grid computing is to share

resources, distributed across wide area networks, among

users [1]. In most cases, collaboration among resources is

necessary and symmetric network connectivity becomes

essential for a Grid-computing environment. However, the

Internet is highly asymmetric: often communication

between two processes A and B can only be established if

it is initiated by process A. This paper describes a general

solution to the problem of symmetrically connecting

resources in different administrative domains. In addition

to restoring symmetry, the approach allows, with low

administration overhead, the inclusion of machines and

networks in distinct computational grids.

Two technologies contribute to the network asymmetry:

private networks and firewalls. In order to allow clients in

private networks to access servers in public networks,

proxies and Network Address Translation (NAT) gateways

were developed. However, due to the non-routability of

private addresses, it is not possible to reach private servers

from public networks. Firewalls were developed in order

to protect resources against malicious attacks or bad use of

network resources. Unfortunately, due to difficulties in

isolating malicious applications, firewalls are often

configured to block legitimate network traffic.

When a resource provider configures a computer to be

part of a Grid, requirements including public network

connection and firewall openings need to be met. Those

requirements get more complex when resources in a given

private network need to be integrated into different Grids.

If the requirements cannot be met, a Grid infrastructure is

usually limited to a private network or a particular sub-

network [2].

A Grid-computing infrastructure, such as In-VIGO

[3][4], aims to aggregate resources without imposing strict

requirements on the networks to which they are connected,

and also independently of the remote access mechanisms

being used. For example, SSH [5], Grid Security

Infrastructure (GSI) [6], Condor [7], Portable Batch

System (PBS) [8] or any other mechanism can be used for

remote job submission. In order to offer network

environments that are customized for each computational

Grid and compatible with application software

expectations even in the presence of firewalls and NAT

gateways between resources, the Virtual Network (ViNe)

architecture must satisfy the following requirements:

1. Symmetric communication between entities: Internet

firewalls, NAT gateways and proxies are the main barriers.

2. Undisrupted original network environment: ViNe

must extend the existing network infrastructure without

interfering with running services.

3. Easy network configuration of resources joining the

Grid: Resource configuration requiring administrative

privileges must be minimal.

1-4244-0054-6/06/$20.00 ©2006 IEEE

4. No impact on security policies implemented in

providers’ domain: Keeping the security policies of

organizations untouched is essential to minimize

reluctance in sharing resources through the Grid.

5. Availability of mechanisms to automate the

definition and deployment of networks: Multiple

independent and isolated virtual network environments are

necessary when virtual computational Grids are created, so

networks cannot be statically defined.

6. Ability to run applications without modification:

Many applications are already available and in many cases

recompiling and/or reengineering is not possible.

7. No change in the Operating System (OS) network

stack: Resource OS changes are always problematic as

they can cause applications to stop working. Also, such

changes are typically not acceptable to system

administrators.

8. Undisrupted Internet infrastructure: Changes in the

core components of the Internet such as routers and DNS

servers are either impractical or limit the deployment of a

solution.

9. Platform independence: Grids are heterogeneous by

nature, aggregating resources with different architectures

running several OS variants.

10. Scalability: It is not reasonable to utilize solutions

that assume a small number of machines.

To the best of our knowledge (see Section 2 and Table

1) there is not a single solution satisfying all conditions,

and combining solutions is not an easy task. The ViNe

architecture described in this paper addresses all the

above-listed requirements. The next section reviews

existing techniques used to overcome Internet connectivity

limitations and to implement virtual networks. In Section 3

the ViNe architecture and a supporting design are

presented. Section 4 discusses how ViNe meets the above-

stated requirements, and security considerations are

presented in Section 5. Section 6 describes details of a

ViNe implementation and reports bandwidth

measurements of ViNe performance in several scenarios.

Section 7 presents conclusions and future work.

2. Previous work

Table 1 summarizes existing and proposed solutions

which fall into three broad classes described below.

Solutions based on address/port translation need to deal

with two problems: how to dynamically create mappings

and how to enable end nodes to know about the existing

mappings. Some implementations require applications to

be aware of resource discovery protocols (e.g., SOCKS,

DPF and GCB). Application-transparent implementations

require changes in the OS kernel network stack and/or in

the Internet infrastructure (e.g., IPNL, RSIP and AVES).

Solutions that abstract networking complexity and

expose a new API, work only for new applications (e.g.,

P2P networks and the Ibis Grid Programming

Environment).

Solutions based on tunneling assume that at least one

host in each physical network has a public IP address

without firewalls imposing limitations (e.g., VPN, VNET,

VIOLIN and X-Bone).

2.1. Tunneling

Application transparent solutions that do not require

changes in the Internet infrastructure use tunneling

techniques (which is also the case for the ViNe approach

described in this paper).

The problems shared by existing tunneling-based

solutions (Virtual Private Network [22], SSH tunneling,

Generic Routing Encapsulation [29], etc), which make

them not suitable for direct application on Grids are:

1. No support for hosts using the same private IP

address: 16-bit private IP space (see table 2) is very

popular in small networks since it is used in default

configuration of cable/DSL routers and Microsoft Internet

connection sharing (ICS). In large networks, the 24-bit

private IP space is preferred over 20-bit space. There is a

high probability that two private networks use the same

private IP subnet. This means that hosts in different private

subnets may have the same IP address.

2. High administration overhead: Every time a new

subnet joins or leaves the system, each administrator of

every participating subnet must be contacted to configure

new tunnels. A new network configuration may take days,

depending on response time of administrators.

3. Lack of flexibility to configure independent virtual

networks: The straight-forward configuration to enable

communication between hosts is to establish tunnels from

one subnet to all other subnets. However, in some cases,

there is need for an isolated virtual network for a subset of

hosts. Configuration of multiple virtual networks requires a

considerable amount of effort from administrators.

The next section details the architecture and design of

ViNe and how the above-mentioned problems are solved.

3. ViNe

The primarily goal is to create virtual network

environments with bi-directional communication capability

between any pair of hosts. In order to support unmodified

applications, the ViNe architecture is based on IP-overlay

on top of the Internet. Components to be virtualized are

network interfaces, routers and links between them.

Hosts participating in a ViNe are configured with one

or more additional IP addresses, as detailed in subsection

 Purpose Approach Issues

Internet Protocol

version 6 (IPv6) [9]
Solve IPv4 address shortage. Define a larger address space

- cannot overcome firewall limitations.

- slow adoption.

IP Next Layer (IPNL)

[10]
Alternative to IPv6.

Extend IPv4 space by adding a

layer above IP. Identify hosts

based on FQDNs, globally unique

IP and private IP.

- changes host network stack.

- changes NAT gateways.

Address Virtualization

Enabling Service

(AVES) [11]

Connect hosts behind NAT

gateways.

Public addresses of proxies are

dynamically allocated to machines

in private networks

- applications always need to contact

AVES aware DNS servers.

- changes NAT gateways.

Peer-to-peer (P2P)

first generation

[12][13]

File sharing without

depending on servers.

Peers communicate directly with

each other. Peers behind NAT

needs to always initiate the

communication.

- application specific (i.e. no socket API is

exposed).

P2P second generation

[14][15][16]

Self-organized overlay

infrastructure
Distributed Hash Tables (DHT) - application specific

Project JXTA [17]
Create a generic P2P

infrastructure.

User-level proxies

handle.firewalls/NAT

- applications need to be aware of

protocols.

SOCKS [18]

Provide private-to-public and

private-to-private

communication.

Application layer generic proxies

relay packets.

- requires application support in order to

work.

Realm Specific IP

(RSIP) [19]
Connect hosts behind NAT

Clients in one realm (private) lease

addresses in other realm (public)

from RSIP servers

- changes host network stack

- changes NAT gateways

Tunneling: VPN [22],

IP in IP [28], GRE

[29]

Connect networks which

cannot be routed in the

Internet.

Encapsulate packets such that it is

possible to transport transparently

using the Internet.

- 1 server per network w/ public address.

- high administrative overhead.

- not scalable w/ nr. of networks (each

network needs tunnels to all others)

Dynamic Port

Forwarding (DPF) and

Generic Connection

Brokering (GCB) [20]

Recover Internet connectivity

for distributed computing.

Dynamically set Source and

Destination NAT (SNAT and

DNAT) rules in firewalls or use

GCB servers as proxies.

- applications need to be aware of

protocols or may require recompilation/re-

linking to communication libraries

(dynamic linking is not always possible).

Cooperative On-

Demand Opening

(CODO) [21] and

Semantic Firewall [2]

Deal with limitations

imposed by firewalls

Communication between

applications and firewalls to

establish opening rules.

- applications need to be aware of

protocols or may require recompilation/re-

linking to communication libraries

(dynamic linking is not always possible).

X-Bone [30][31]
Deploy and manage Internet

overlays.

Two levels of IP encapsulation is

used for each overlay.

- assumes symmetric connectivity between

peers (resources).

- requires control (privileged processes) in

each resource (hosts and routers)

VNET [23]

Connect VMware [24] virtual

machines spread over wide

area to a LAN.

Layer 2 tunneling.

- assumes symmetric connectivity between

hosts of virtual machines.

- layer 2 broadcasts can flood the network

when nr. of hosts increases.

- possible VMware dependencies.

VIOLIN [25]

Create virtual isolated

network environments on top

of an overlay infrastructure.

Create, configure and deploy

virtual entities (hosts, LANs and

routers) as User Mode Linux

virtual machines.

- assumes symmetric connectivity in the

overlay infrastructure.

- possible UML [26] dependencies.

Ibis Grid

Programming

Environment [27]

Environment that handles

firewall, NAT, security and

TCP bandwidth problems.

Runtime system abstracts lower

layer communication. TCP

splicing is used to cross firewalls.

- existing applications cannot run without

modification.

- TCP splicing may not work with all NAT

Table 1: Existing and proposed solutions to the Internet asymmetric-connectivity problem

3.2. The additional IP addresses – so-called virtual

addresses – imply the definition of a virtual address space

– an IP address space without conflicts with physical

networks, as detailed in subsection 3.3. Internet routers do

not handle ViNe traffic, so each physical network joining

the Grid needs one host running ViNe routing software,

which is called a Virtual Router (VR). Hosts are

configured to direct ViNe traffic to VRs and do not need

additional software. Subsection 3.5 describes how ViNe

packets are routed. Inter-VR communication uses the

Internet infrastructure, so if a host behind a firewall or

NAT acts as a VR, its communication ability is

compromised. The problem is addressed using techniques

described in subsection 3.4.

3.1. Overall Architecture

Figure 1 illustrates the overall architecture of ViNe. For

each physical network joining the Grid, a virtual address

space, to identify new virtual hosts, is allocated. A VR is

configured to manage that virtual address space. Hosts are

configured with new network interface(s), to be used for

the ViNe traffic. VR and hosts “physical” setup for ViNe

operation is a “one-time” process. Virtual networks

deployments and destructions are handled dynamically by

ViNe without administrative intervention. VRs are

connected together through tunnels in the physical space.

Since VRs use the Internet routing infrastructure to

tunnel packets, there are as many virtual links (dashed

lines in Figure 1) as routes supported by the Internet.

Communication problems to/from limited-VRs (i.e., VRs

behind firewalls and/or NAT gateways) are addressed in

the next subsections.

3.2. Hosts: Virtual Network Interface

Hosts may have their connectivity limited by firewalls

and/or NAT gateways, and the use of real network

identifiers is not possible when symmetric communication

or unique addresses are required. New network

identification (i.e., IP address) is necessary in each

participating host – this is achieved by properly

configuring a virtual network interface.

There are several ways to virtualize a network interface.

One method is to intercept packets before the physical

routing infrastructure is reached. Intercepted packets can

then be modified and routed according to virtual

networking needs. The best place to intercept packets is

the OS kernel network stack; however kernel programming

would make the software hard to port. Another idea is to

intercept OS networking calls and modify the behavior of

those calls for ViNe activity. This approach can potentially

degrade the performance of the whole machine and also

has portability issues. The use of communication libraries

may require application reengineering.

A complete virtual network interface card (NIC) can

also be implemented. Virtual NICs are software

components that emulate hardware NICs, and in general

they are implemented as OS kernel modules. The use of

universal devices such as TUN or TAP drivers [33] is a

possibility, but this requires the installation of TUN/TAP

packages in all hosts.

The alternative of choice for ViNe is that of using IP

aliasing, which is the capability of binding multiple IP

addresses in one physical NIC. The configuration of a

static route for the virtual address space would redirect

ViNe packets to VRs. In this way, hosts do not require any

additional software installation in order to be ready for

virtual networking.

3.3. Virtual Address Space

It is possible to virtualize the whole IP address space,

making independent virtual 32-bit address spaces available

for each application. However, resources should also be

able to access the regular Internet services even if they are

participating in one or more virtual networks. In order not

to disturb the Internet, ViNe uses the space reserved for

private addressing [32], which is shown in Table 2.

The use of the private addresses as virtual identities

could be a problem when configuring a network that is

already private. In order to avoid overlapping address

spaces between networks, a global address space,

partitioned into non-overlapping spaces, is needed.

Deciding which private space to use is difficult, as

typically the resources joining a Grid belong to (physical)

private networks that are already deployed. The less-

frequently-used 20-bit space is a good candidate for virtual

identifiers. However, the architecture must allow

organizations utilizing the 20-bit private space to also join

ViNe. This can be done by making VRs mirror the 20-bit

space in a region of the 24-bit space. For example, the

172.16.0.0 – 172.31.255.255 range can be mirrored in the

10.116.0.0 – 10.131.255.255 range. VRs will deliver

packets destined to 172.17.0.10 and 10.117.0.10 to the

same machine. Organizations having conflicts with the 20-

bit space would need a VR configured to work with a 20-

Figure 1: ViNe architecture – in each

network in physical space, a machine

(physical or virtual) is allocated to be a

router in virtual space. ViNe traffic is

directed to virtual routers which deliver

packets using the Internet routing

infrastructure.

Table 2: Private IP address space

10.0.0.0 – 10.255.255.255 24-bit

172.16.0.0 – 172.31.255.255 20-bit

192.168.0.0 – 192.168.255.255 16-bit

bit range mirrored in some region of the 24-bit space, and

use that space for virtual networking. It is unlikely for an

organization to both use the 20-bit and 24-bit private

spaces in their entirety.

The ViNe approach allocates a portion of the 20-bit

space (using mirroring if necessary) for each organization

joining the Grid. For example, 4096 organizations can be

supported if the space is partitioned into blocks of up to

255 addresses. Blocks do not need to be of equal size, so

organizations with more resources can receive larger

partitions. Multiple networks can be defined, and

participating entities are configured per host, i.e. each host

in an organization is allowed to be connected to a different

network. The same block can be allocated to different

organizations if they participate in different networks or if

it is possible to establish that they are not active

simultaneously.

3.4. Firewalls and NAT

When it is not possible for an organization to configure

one publicly accessible machine as a VR, the VR is not

able to receive packets directly from peer VRs. However,

sending packets (i.e., initiating the communication) is in

general possible. Once a packet is sent, receiving the

response packet is always possible. ViNe takes advantage

of this fact to overcome connectivity problems.

When direct delivery of packets is not possible, an

intermediate VR, connected to the public network, is

assigned as a queue server where packets destined to

limited-VRs are forwarded. Limited-VRs establish

communication channels to the VR assigned as a queue

server (hereon called a queue-VR). A communication

channel can be a TCP connection initiated by a limited-VR

and kept alive. When a packet is routed to the queue-VR, it

can be forwarded immediately to the destination VR

through the established TCP channel. Packets only need to

be queued when the TCP channel is closed. Packets are

kept in the queue until the TCP channel between the

queue-VR and the limited-VR is re-established. With this

approach, it is possible to have all VRs communicating

with each other.

3.5 Virtual Routing Infrastructure

VRs are responsible for relaying ViNe packets. A

packet destined to ViNe is directed to the VR (in the

source node network), which examines the destination

address and forwards it to the VR capable of delivering it.

VRs are required to have access to the Internet but they

do not need to be in the public network. VR-to-VR

communication uses the Internet routing infrastructure, and

it is possible to assume that VRs are fully connected (see

Section 3.4).

VRs maintain a set of routing tables: one Local

Network Description Table (LNDT) and a Global Network

Description Tables (GNDTs) for each active ViNe.

The LNDT stores information about hosts connected to

the same physical network of a VR – an entry indicates

which network a host is participating in. GNDT stores

information about the structure of a virtual network – an

entry indicates the physical IP address of the destination

VR to where a packet needs to be forwarded if the

destination address falls in the listed range. When a host-

generated packet destined to a particular network reaches

the VR, first the virtual network ID is verified in LNDT.

Then using the corresponding GNDT the packet is

tunneled to the destination VR where it will be delivered.

Figure 2 illustrates an example where two networks are

defined. Virtual Network 1 (V.Net.ID1) connects

participating hosts (represented by circles) in sub-networks

VNa and VNc while Virtual Network 2 (V.Net.ID2)

connects participating hosts in sub-networks VNb and

VNc. All VRs (shown as diamond shapes) receive a copy

of the GNDTs of every ViNe deployed (GNDT-V.Net.ID1

and GNDT-V.Net.ID2 in this example). When a packet is

sent from 172.16.0.10 to 172.16.10.11, LNDT-VNc is

checked to find out that the source host (172.16.0.10) is a

member of Virtual Network 1. Then 172.16.0.1 (the

Virtual Router handling this packet) consults GNDT-

V.Net.ID1 and forwards the packet to pub.a.110. Finally,

pub.a.110 delivers the packet.

 Packets destined to 172.16.0.0/24 (which has a Virtual

Router behind a NAT gateway in physical space) are

forwarded to pub.a.110. 192.168.0.3, the VR of VNc,

opens a TCP channel to pub.a.110 from where it will

receive all messages destined to VNc.

If a host in VNa tries to communicate to a host in VNb,

Figure 2: Virtual routing example - for each

physical network (Na, Nb and Nc), a

partition of the virtual network space (VNa,

VNb and VNc) is allocated. All Virtual

Routers receive copies of GNDTs. Each

Virtual Router maintains the LNDT

corresponding to its subspace.

packets will be dropped by VRs, as there is no matching

entry in GNDT-V.Net.ID1 and GNDT-V.Net.ID2.

3.6. Multiple Isolated Virtual Networks

VRs act as routers and firewalls in virtual network

space, and following the rules defined by routing tables it

can forward, deliver or drop packets. This functionality is

essential to support isolated virtual networks.

The information in the LNDT enables a VR to support

the participation of hosts in different virtual networks.

GNDTs define the structures of independent virtual

networks.

When a VR receives a packet for routing, the source

host address is verified – if it is not listed in LNDT the

packet is immediately dropped. The corresponding LNDT

entry will point to the GNDT that should be used for

routing. The packet is then forwarded to the VR described

in the GNDT. The destination VR verifies whether the

destination host of the packet is in its LNDT, and whether

the destination host is part of the ViNe.

 Inter-VR communication is used not only for

forwarding packets but also to exchange routing

information. When a new virtual network is defined or

when structural changes are necessary in the already

existing virtual network, VRs exchange information to

update LNDTs and GNDTs, without the need for local

administrator intervention. For example, when a group of

computers are needed to execute a parallel job, the Grid

middleware can contact a VR to initiate the process of

creating a new ViNe. When the job is done, the ViNe can

be removed from the system. Details on inter-VR

messaging are beyond the scope of this paper.

3.7. ViNe Address Allocation

The virtual address space allocation for each joining

organization follows the Internet model. As such, ViNe

requires an entity playing the role of the Internet Assigned

Numbers Authority (IANA).

Inter-VR communication is secured based on the Public

Key Infrastructure (PKI) model, and VRs are identified by

their public keys. Only VRs with a valid certificate (signed

by a trusted Certificate Authority) is allowed to join ViNe.

Since VRs can be identified and authenticated, address

assignment can be fully automated. The virtual address

space allocation service can be implemented as a

centralized service or utilizing distributed mechanisms.

4 Analysis

This section discusses the ViNe architecture in regard

to all requirements listed in Section 1.

1. Symmetric end-to-end communication: The

presented routing infrastructure, based on VRs, offers end-

to-end connectivity between hosts by defining queue-VRs

capable of queuing packets, when target VRs cannot be

reached directly. The implication is that at least one VR

needs to be placed on public network, and that hosts that

depend on limited-VRs will potentially experience lower

network performance than those connected to public VRs.

2. No interference with Internet services: In order not to

disrupt the original Internet services in hosts joining ViNe,

the 20-bit private address space (mirrored if necessary) is

used to provide global virtual identities. Packets destined

to the virtual range are redirected to VRs for routing in

virtual space. Since redirection is done by defining static

routes in hosts, there is no performance penalty for the

regular Internet traffic. Also, there is no overhead in local

communication between hosts.

3. Easy configuration: Configuring a network to be part

of a ViNe is equivalent to configuring a VR. A VR is a

machine – which could be physical or virtual, dedicated or

non-dedicated - placed in participating networks with Grid

resources. Configuration of routing software can be made

very simple, as creation and management of ViNe are

automatically done through communication between VRs.

Virtual machine technology can further help on

deployment of VRs, allowing transfer and instantiation of

pre-configured VRs into target networks. Configuration of

hosts is even simpler. Hosts need a one-time very simple

system administrator intervention: configuration of a

virtual interface (IP aliasing) and definition of a static

route to the ViNe address space.

 4. Unchanged local security policies: The presented

architecture leaves the Internet traffic untouched. There is

no need to change security policies already in place.

However, since the architecture adds a new network

interface (private IP address for ViNe) in each

participating host, network firewalls and/or host firewalls

need to allow traffic from/to the ViNe private address

space. The policies defined for the original LAN can be

applied to the ViNe address space. ViNe traffic is only

visible in the ViNe space, since the Internet does not route

private addresses.

5. Automated creation and maintenance of virtual

networks: The presented architecture supports multiple

independent and isolated virtual networks, and the

definition, deployment and maintenance of ViNe can be

fully automated. Resource allocation is under control of

Grid middleware, so ViNe creation is triggered by the

middleware, possibly (but not necessarily) in response to

requests from hosts to join a virtual network.

6. Existing applications run without modification: From

the applications’ perspective, ViNe and physical networks

are indistinguishable. It is even possible to aggregate

machines in different private networks into a cluster and

run parallel applications, for example based on MPI,

without recompilation or reengineering of software.

7. Unchanged OS network stack: The host

configuration for ViNe does not involve any additional

software installation.

 8. Unmodified Internet infrastructure: The presented

approach does not require any change to the Internet

services. The unmodified Internet routing infrastructure is

used to tunnel ViNe traffic between VRs. No other Internet

service is required. When an Internet service (e.g., DNS) is

needed in a ViNe, it needs to be configured in virtual

space. Those services can be easily integrated since no

software modification is required.

9. Platform independence: The ViNe approach does not

require software installation on participating hosts.

Running OSes are only required to support the definition

of multiple IP addresses per NIC and configuration of

static routes (which are supported by most modern OSes).

This fact makes the ViNe approach virtually compatible to

any platform.

10. Scalability: The maximum number of hosts

simultaneously connected to a ViNe is limited due to the

use of the 20-bit private IP space - not an architectural

limit. The real limit is much larger considering the fact that

two networks can share the same virtual address partition

if it can be established that they are not active at the same

time. It is even possible to have networks sharing

addresses that could be active at the same time if they

participate in different virtual networks. Looking forward

to the possible adoption of IPv6, firewalls are likely to

remain a problem with regard to asymmetric connectivity.

Since the ViNe architecture is not tied to IPv4, the

implementation described in Section 6 can be easily

modified to support IPv6, in which case a much larger

number of hosts can be supported.

5. Security

As ViNe creates connectivity between hosts without

links in the physical space, many security issues can be

raised, especially since connections might have been

limited partially due to security concerns. The following

are the main questions that need to be considered:

1. Are security holes created in the physical network?

No. The approach requires one host in the joining network

to work as a VR. This host does not need to have a public

IP address and firewall rules need not be changed to allow

incoming connections. All original security policies are in

effect after enabling virtual networking. The difference is

that communication with new hosts will be possible in

virtual space, but that was the intent when the organization

decided to have some of its resources join ViNe and the

Grid.

2. Can attackers in the Internet access hosts through

virtual addresses? No. Private IP addresses are used as

virtual identifiers. Internet routers are configured to not

route such addresses. The attack would only be possible if

the organization’s physical router gets compromised.

3. Can hosts in the Internet be accessed? Yes, but

access to the Internet happens in physical space, following

original security policies. VRs do not route packets to the

Internet.

4. How secure are VRs? VRs are exposed to the same

level of security as any host connected to the same

physical network. VRs are assumed to be protected by

physical firewalls. In virtual space, VRs drop packets that

have its address as their destination, making it nearly

impossible to be compromised in virtual space.

5. How secure are VR daemon processes? The first

implementation runs a daemon listening to a TCP and/or

UDP connections in port ACIS (2247). Regular inter-VR

communication utilizes UDP messages, while limited-VRs

use TCP channels. There are many ways to secure this

communication: at lower layers, it is possible to configure

VRs to only accept packets from IP addresses belonging to

other VRs. At the application layer, PKI and digital

signatures can be used to authenticate packets. In fact, all

inter-VR messages, including encapsulated packets, are

authenticated using keyed-hashing message authentication

code (HMAC). Note that this is all done in physical space.

6. Are tunnels encrypted? No, however applications

that need end-to-end confidentiality can use traditional

mechanisms to secure their communication (e.g.,

SSL/TLS). Due to performance reasons, the current

reference implementation provides communication

channels between peers, not “secure channels”. However,

all VR-to-VR communication is authenticated using

HMAC mechanism.

7. Can network attacks be initiated in virtual space?

Only if an attacker has access to a host that is a member of

a virtual network. As virtual space cannot be reached from

physical space, an attack on virtual space can only happen

if a node in physical space is compromised. There is the

potential problem of not having a common security policy

shared among organizations, but the presented architecture

can restrict networks to only participate in certain virtual

networks. So, organizations can specify to which physical

networks they accept to communicate.

6. Implementation and Evaluation

A reference VR software has been implemented in Java,

with lower level networking handled by C code. Packets

are captured within the netfilter infrastructure [34], and

copied from kernel to user space for processing. Packet

injection is done by making use of libnet [35] library. A

much efficient implementation would be in the form of an

OS-kernel module but, initial research and assessment of

the ViNe approach and features are more conveniently

done through a user-level implementation.

Hosts willing to join ViNe are not required to install

any ViNe-related software. A one time administrative

intervention is needed to configure the virtual network

interface and the routes to virtual space. Binding a second

IP address to a network card is accomplished by running

“ifconfig” command in most of UNIX systems, while

Windows allows defining up to 5 additional IP addresses

in “advanced properties” of network interfaces. Static

routes are configured by making use of the “route”

command in most OSes.

The experimental setup has hosts in the University of

Florida (UF), Purdue University (PU) and Northwestern

University (NWU). Figure 3 shows the measured TCP

round-trip latency and unidirectional throughput of the

physical links involved. TCP round-trip latency and

unidirectional throughput between end-hosts were

measured using netperf [36] software.

There are three sources of overhead in the current

prototype. One is the insertion of VRs into the network

(increasing at least by two the number of hops between a

pair of hosts), the second is the user-level software in the

VR and the third is tunneling. Of these, as it will become

clear in Section 6.2, the first two are the dominant

overheads. VR performance can be best evaluated when

VRs are exposed to a good physical networking

environment (i.e., LAN) where VR throughput, not

network bandwidth (1 Gbit/s), determines communication

bandwidth. VR performance evaluation in a LAN is

presented in the next section, followed by a discussion in

Section 6.2 of the ViNe evaluation in a WAN

environment.

6.1. Virtual Router Performance

Figure 4 shows the TCP throughput and round-trip

latency between two hosts in different private networks

routed by VRs connected in a LAN for different CPU

configurations. The VR software is a multi-threaded

program, so it performs better in multi-processor

environments and when Hyper-Threading (HT) technology

is used. TCP throughput increases by approximately 50%

when HMAC is disabled. The current user-level

implementation of a VR on a Hyper-Threaded dual Xeon

with HMAC disabled can deliver a bandwidth of 80 Mbit/s

while introducing only a round-trip latency of 1 ms.

6.2. ViNe Performance

To evaluate the ViNe performance in WAN

environments the following scenarios were considered:

Case 1: all VRs have access to the public network,

without firewall limitations.

Case 2: as Case 1 but PU has a limited-VR which opens

a TCP channel to UF queue-VR.

Case 3: as Case 1 but PU has a limited-VR which opens

a TCP channel to NWU queue-VR.

Case 4: PU and NWU have limited-VRs which open

TCP channels to UF queue-VR.

Case 5: PU and UF have limited-VRs which open TCP

channels to the NWU queue-VR.

Table 3 summarizes the results. Case 0 represents the

available physical performance. Cases 1 to 5 represent

measurements with HMAC and Case 1a represents a

measurement without HMAC.

Case 1 is the most favorable scenario when all VRs are

connected to the public network. Insertion of the VRs in

the host-to-host route has a small impact on latency – it

increases by about 1~1.5 ms. Also it was possible to push

TCP packets at nearly the available throughput for UF-PU

and UF-NWU communication. This exemplifies the case

when network speed, not VR throughput, limits

0

0.5

1

1.5

2

2.5

3

3.5

PIII

1.13GHz

Dual PIII

933MHz

Xeon

2.40GHz

Dual Xeon

2.40GHz

Dual Xeon

2.40GHz

HT

R
o
u
n
d
-t
ri
p
 la

te
n
c
y
 (
m

s
)

w ith HMAC

w ithout HMAC

Figure 4: TCP throughput and round-trip

latency for different CPU configurations, in a

LAN environment (1 Gbit/s)

0

10

20

30

40

50

60

70

80

90

PIII 1.13GHz Dual PIII

933MHz

Xeon

2.40GHz

Dual Xeon

2.40GHz

Dual Xeon

2.40GHz

HT

T
C
P
 t
h
ro

u
g
h
p
u
t
(M

b
it/
s
) w ith HMAC

w ithout HMAC

Figure 3: Experimental setup. Six

different cases are considered depending

on where firewalls are inserted in relation

to the virtual routers (See Section 6.2).

communication rates. The performance degradation in

NWU-PU communication exemplifies the case when VR

throughput, not network speed, determines bandwidth. By

referring to Figure 4 one can realize that the measured

bandwidth correspond to the processing limit of the

machine acting as VR in PU. With more processing power

(or lighter VR processing), it would be possible to achieve

closer to the available throughput. This is also confirmed

by Case 1a. It was possible to improve the throughput by

approximately 50% when HMAC computation was

disabled. For Case 1a, a UDP-datagram bandwidth of 90

Mbit/s, matching the available physical performance, was

measured (UDP measurements are not shown in Table 3).

As mentioned in Section 3.4, VRs behind a firewall

must contact a queue-VR to retrieve packets. Cases 2 and

3 illustrate how the allocation of the queue affects

performance. Case 2 assigns UF as the queue-VR for PU,

while in Case 3, NWU VR is the one assigned. Case 2

shows poor performance because, in addition to the

additional hops and queue-VR overhead, communication is

re-routed through the slowest of VR-to-VR routes (i.e. UF-

to-NWU). The Case 2 throughput of 12 Mbit/s between

PU and NWU VRs is not the result of VR overheads

degrading the physically available bandwidth of 63.1

Mbit/s between PU and NWU, but the effects of the lowest

of the bandwidths between PU and UF and UF and NWU

(i.e. 17.5 Mbit/s). In contrast, since PU has better

connectivity to NWU than to UF, using the NWU VR as

queue-VR enables Case 3 to achieve performance close to

that of Case 1 for all communication.

Cases 4 and 5 consider the scenario where only one VR

is publicly accessible. In this setup, allocating the NWU

VR as the queue-VR proved to be the best. Only UF-PU

communication degraded but it still exhibited reasonable

performance.

7. Conclusions

This paper described the ViNe approach to the

implementation of virtual networks that eliminate

asymmetric-communication problems in the Internet.

Among other advantages, ViNe can be implemented with

little administrative overheads and can be used to execute

existing unmodified applications. A network administrator

at an institution wishing to make resources available to the

Grid needs only to do a one-time set-up of Virtual Router

(which could be a cloned virtual machine or an existing

physical machine) and a very simple one-time

configuration of each resource’s network interface. ViNe

utilizing these resources can be automatically created by

middleware with routing information being exchanged by

VRs as needed. This is in contrast with other approaches

reviewed in this paper which either require repeated

extensive administrators’ interventions, resource OS

changes, application redesign/recompiling or changes in

the standard Internet infrastructure.

Virtualization overheads of the implementation were

quantified using a reference implementation of VRs. This

implementation does not focus on performance, as the goal

is to validate the design of ViNe. An implementation of

VR software as a kernel module (similar to firewall

software) or even as a firewall module is expected to offer

performance similar to existing routers and firewalls as the

ViNe processing requirement (packet header inspection,

checksum calculation, tunneling, etc) is closely related.

The measured performance confirms the potential

suitability of ViNe for many Grid applications with

moderate communication requirements. Currently,

extensions to the prototype are in progress to improve its

performance, to include all features of the design, and to

fully evaluate the approach in In-VIGO environment with

real applications and users. Virtual router improvements

include using faster machines and/or kernel-level

implementations. Such improvements can potentially make

the ViNe approach also viable for data-intensive Grid

applications that use high-performance networks.

8. Acknowledgements

This project is supported in part by the National

Science Foundation under Grants No. EIA-9975275, EIA-

0224442, ACI-0219925, EEC-0228390, EIA-0107686 and

EIA-0131886; NSF Middleware Initiative (NMI)

collaborative grants ANI-0301108/ANI-0222828, SCI-

0438246; and by the Army Research Office Defense

University Research Initiative in Nanotechnology. The

authors also acknowledge two SUR grants from IBM and

gifts from VMware Corporation and Cyberguard. Any

opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation, Army Research Office, IBM, or VMware. The

authors would also like to thank A. Sundararaj and Dr. P.

Dinda of Northwestern University and R. Kennell and Dr.

Table 3: Average round-trip latency (rtl – ms)

and throughput (tp – Mbit/s) measurements

for different cases of the WAN setup in Fig. 4

involving U. Florida (UF), Northwestern U.

(NWU) and Purdue U. (PU)

 UF � PU UF � NWU NWU � PU

 rtl tp rtl tp rtl tp

0 24.1 20.4 27.8 17.5 6.82 63.1

1 25.5 19.8 29.3 15.7 8.26 27.7

1a 25.6 20.4 29.1 15.7 8.13 39.1

2 27.0 15.3 29.3 15.8 31.1 12.0

3 32.5 14.1 29.5 15.5 8.11 27.1

4 25.6 19.6 29.3 15.6 54.9 6.46

5 37.5 11.8 29.8 15.2 8.32 26.9

S. Goasguen of Purdue University for providing the test

environment.

9. References

[1] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the

Grid: Enabling Scalable Virtual Organizations.

International J. Supercomputer Applications, 15(3), 2001.

[2] M. Surridge and C. Upstill. Grid Security: Lessons for Peer-

to-Peer Systems. In Proc. 3rd IEEE Conference on P2P

Computing, pages 2-6, Sep. 2003.

[3] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,

I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L.

Zhu, and X. Zhu. From Virtualized Resources to Virtual

Computing Grids: The In-VIGO System. Future Generation

Computer Systems, 21(6):896-909, Jun. 2005.

[4] J. Fortes, R. Figueiredo and M. Lundstrom. Virtual

Computing Infrastructures for Nanoelectronics Simulation.

Proceedings of the IEEE, 93(10):1839-1847, Oct. 2005.

[5] C. Lonvick, editor. SSH Protocol Architecture. Internet-

Draft, Dec. 2004.

[6] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J.

Volmer, and V. Welch. Design and deployment of a

national scale authentication infrastructure. IEEE Computer,

33(12):60-66, 2000.

[7] M. Litzkow, M. Livny, and M. Mutka. Condor – A Hunter

of Idle Workstations. In Proc. 8th International Conference

on Distributed Computing Systems, pages 104-111, 1988.

[8] R. Henderson. Job Scheduling Under the Portable Batch

System. In Proc. Workshop on Job Scheduling Strategies

for Parallel Processing, pages 279-294, 1995.

[9] S. Deering and R. Hinden. Internet Protocol, Version 6

(IPv6) Specification. RFC2460, Dec. 1998.

[10] P. Francis and R. Gummadi. IPNL: A NAT-Extended

Internet Architecture. In Proc. of the ACM SIGCOMM,

2001, Aug. 2001.

[11] T. S. Eugene Ng, I. Stroica and H. Zhang. A Waypoint

Service Approach to Connect Heterogeneous Internet

Address Spaces. In Proc. USENIX 2001, pages 319-332,

June. 2001.

[12] T. Klingberg and R. Manfredi. Rfc-gnutella,

http://gnutella.sourceforge.net, June. 2002.

[13] Homepage, http://www.kazaa.com, Sep. 2005.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.

Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. In Proc. of the ACM

SIGCOMM 2001, Aug. 2001.

[15] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:

An infrastructure for fault-tolerant wide-area location and

routing. Techinical Report CSD-01-1141, U. C. Berkeley,

Apr. 2001.

[16] Homepage, http://brunet.ee.ucla.edu/brunet/, Jan. 2006.

[17] L. Gong. Project JXTA: A Technology Overview. Sun

Microsystems, Oct. 2002.

[18] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas and L.

Jones. SOCKS protocol version 5. RFC1928, Mar. 1996.

[19] M. Borella, J. Lo, D. Grabelsky and G. Montenegro. Realm

Specific IP: Framework. RFC3102, Jul. 2000.

[20] S. Son and M. Livny. Recovering Internet Symmetry in

Distributed Computing. In Proc. of the 3rd International

Symposium on Cluster Computing and the Grid, May 2003.

[21] S. Son, B. Allcock and M. Livny. CODO: Firewall

Traversal by Cooperative On-Demand Opening. In Proc. of

14th IEEE International Symposium on High Performance

Distributed Computing, Jun. 2005.

[22] B. Gleeson, A. Lin, J. Heinanen, G. Armitage and A. Malis.

A framework for IP-based virtual private networks.

RFC2764, Feb. 2000.

[23] A. Sundararaj and P. Dinda. Towards Virtual Networks for

Virtual Machine Grid Computing. In Proc. of the 3rd

USENIX Virtual Machine Research and Technology

Symposium, May 2004.

[24] Homepage, http://www.vmware.com, Jan. 2005.

[25] P. Ruth, X. Jiang, D. Xu and S. Goasguen. Towards Virtual

Distributed Environments in a Shared Infrastructure. IEEE

Computer, 38(5):63-69, 2005.

[26] Homepage, http://user-mode-linux.sourceforge.net/, Jan.

2005.

[27] A. Denis, O. Aumage, R. Hofman, K. Verstoep, T.

Kielmann and H. Bal. Wide-Area Communication for

Grids: An Integrated Solution to Connectivity, Performance

and Security Problems. In Proc. of 13th IEEE International

Symposium on High Performance Distributed Computing,

Jun. 2004.

[28] W. Simpson, “IP in IP Tunneling”, RFC1853, Oct. 1995.

[29] D. Farinacci, T. Li, S. Hanks, D. Meyer and P. Traina.

Generic Routing Encapsulation (GRE). RFC2784, Mar.

2000.

[30] J. Touch and S. Hotz. The X-Bone. In Proc. of Global

Internet Mini-Conference at Globecom, Nov. 1998.

[31] J. Touch. Dynamic Internet Overlay Deployment and

Management Using the X-Bone. In Proc. of International

Conference on Network Protocols, Nov. 2000.

[32] Y. Rekhter, B. Moskowitz, D. Karrengerg, G. de Groot and

E. Lear. Address Allocation for Private Internets. RFC1918,

Feb. 1996.

[33] Homepage, http://vtun.sourceforge.net, Jan. 2006.

[34] Homepage, http://www.netfilter.org, Jan. 2006.

[35] Homepage, http://www.packetfactory.net/libnet/, Jan. 2006.

[36] Homepage, http://www.netperf.org/netperf/, Jan. 2006.

