
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A VIRTUAL OPERATING SYSTEM

Permalink
https://escholarship.org/uc/item/1wh9130z

Author
Hall, Dennis E.

Publication Date
1980-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wh9130z
https://escholarship.org
http://www.cdlib.org/

Submitted to Communi cations
Computing. Machinery

A.VIRTUAL.OPERATING.SYSTEM

the Ass.ociation for

L. Hall, Debora.h K. Scherrer, and Joseph s. Sventek

TWO-WEEK LOAN COPY

LBL-10677..,
Preprint""'

This is a Ubrar~ Circulating Cop~

which rna~ be borrowed for two weeks.

For a personal retention cop~, call

Tech. Info. Dioision, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W~74os.:ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain conect information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any wananty, express or implied, or

assumes any legal responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by its trade name, trademark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government or any agency thereof, or the Regents of the University of

Califomia. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof or the Regents of the

University of California.

Abstract

A Virtual Operating System

Dennis E. Hall

Deborah K. Scherrer

Joseph s. Sventek

Lawrence Berkeley Laboratory

May 1980

Significant progress toward disentangling computing

environments from their under lying operating sys tern has been

made. An approach is presented that achieves inter~system

uniformity at all three levels of user interface ~ virtual

machine, utilities, and command language. Under specifiable

conditions, complete uniformity is achievable without dis~

turbing the underlying operating system. The approach per:~

mits accurate computation of the cost to move both people

and software to a new system. The cost of moving people is

zero, and the cost of moving software is equal to the cost

of implementing a virtual machine. Efficiency is achieved

through optimization of the primitive functions.

Key Words ses

Computing environments, operating systems, virtual

machines, system utilities, command languages, functional

equivalence of operating systems, user mobility, user inter~

face, moving costs.

CR Categories: 4.35, 4.40, 4.6

Funding

This work was supported by the Applied Mathematical Sci

ences Program of the Office of Energy Research, of the u. s.

Department of Energy under Contract ~'J-7405-ENG-48.

Reprints are available from Lawrence Berkeley Laboratory as

LBL report 10677.

"One complication you probably have no control over· is your

local computing environment. But even if it's horrible, as

many are, you don't have to suffer stoically. Even a modest

improvement of frequently used parts, like your programming

and job control languages, is well worthwhile, and there's

no excuse for not trying to conceal the worst aspects. 11 [8]

1 .. Introduc

Associated with each computer system is a "local comput

ing environmentn or operating system interface. 'l'oday's

computer marketplace offers a wide variety of such environ

ments, each inextricably entwined with its own peculiar set

hardware components. Because of this, acquiring a new

system usually requires that customers spend considerable

time and effort moving both software and people to a new

computing environment.

Under present conditions, even estimating the organiza

tional impact of such a move can be extremely difficult. As

a rule, moving to a new system is costly and error prone.

Therefore, many organizations have elected to stay with a

single computer vendor in spite of an increasingly competi

ve hardware marketplace.

Although computer manufacturers have been effective in

developing highly reliable operating systems, their comput

ing environments are not usually examples of good human

engineering. Customers, in an effort to minimize the cost

of moving to new systems, have insisted that vendors remain

compatible with historical precedent. This has tended to

discourage removal of poor interfaces and inhibited develop-

rnent of improved ones. As a result, bad inter ces seem to

live forever.

For many computer users there is no need to distinguish

between the interface to an operating stern and the operat-

ing system itself. We will show that under certain condi-

tions a uniform system interface can be provided across

machine boundar s without disturbing vendor software. The

method consists of creating a virtual operating system.

2@ The Virtual Operating tem Approach

A real operating system presents three principal inter-

faces to its users [6]: the virtual machine or operating

system primitives accessable through programming languages,

the utili programs such as compilers, linkers, and edi-

tors, and the command language or means by which users

access system resources from a terminal. Most system ser-

vices are available through one or more of these interfaces

(see fig. 1).

' The idea of a virtual operating system is to provide

standard versions of these interfaces based on organiza-

tional requirements. Possible applications include data

management environments, f in mation environments,

real-time process control environments, and program deve

ment environments, to name a few.

Command Interface

Utilities

Virtual
Machin

Vendor
Suppli d
Syst m

Fig. 1

A virtual operating system provides standardized
the three outermost system layers. Installation
interfacing the standardized virtual machine to
supplied sys tern.

XBL 806-1 0-LH

versions of
consists of
the vendor

Once the three interfaces are specified, implementation

consists of:

* choosing one or more programming languages;

* developing run time libraries or extending the selected

programming languages to supper t the chosen virtual

machine on each t:.arget system;

* implementing the utili ties and. command language in one

or more of the selected programming languages, relying

on the virtual machine to interface to the target

operating sys terns:

* writing the necessary documentation.

A virtual operating system becomes a real operating

system when the assoc ted virtual machine corresponds to a

physical machine. However, the emphasis in building a vir

tual operating system is on the interface presented to the

user. The virtual machine is a highly idealized set of

primitive functions geared to organizational programming

requirements. It bears almost no functional resemblance to

the unoerlying hardware which actually performs the work.

In general, a virtual operating system is restricted to

those parts of an ordinary operating system which an organ

za tion finds important in getting its work done. Obviously

a sing real operating system can support many virtual

operating systems.

To achieve the full benefit of the approach, the vir

tual machine must be implemen table without changing the ven

dor software. This implies a functional equivalence between

the chosen virtual machine and the tar t systems. Hence, a

bootstrapping design procedure is required. Each candidate

virtual machine func on must be tested on each target sys

tem before it can be finally adopted.

The virtual operating system approach reduces the prob

lem of moving to a new system to the (non-trivial) problem

of implementing a virtual machine. All u lities and user

programs are completely portable since their interface to

any particular opera ng system is through the virtual

machine. Similarly, higher level procedures written for a

portable utility are themselves portable. For example, a

file containing editor commands will work on any machine

supporting the editor utility. Finally, command language

procedures are also portable, since the command language

program is por~~ble. The availability of the entire virtual

operating system (virtual machine, utilities, and command

language) makes it easy for users and programs to move from

one vendor sys tern to another.

We emphasize that this approach reduces the cost of

moving both people and software to zero. The overhead is

-7-

the cost of implementing the virtual machine on the candi

date system. This can be estimated by any knowledgable sys

tem programmer, and it is completely independent of the

number of people and the amount of software to be moved.

3® When is a Virtual Operating System Approach Desirable?

The advantages and disadvantages of a virtual operating

system are much the same as those for a real operating sys

tem. However, the effort to develop and maintain a virtual

operating system is usually r less than for a real operat

ing system: the most difficult problem is in specifying a

virtual machine which can peacefully coexist with the

desired target systems.

In some respects, the approach makes sense for any

software development project. The identification of clear

cut interfaces is a standard structured programming tech

nique, which (in theory at least) reduces software mainte

nance costs. The only controversy might be over the partic

ular choice of structure (i. e. the virtual machine). In

general, whenever organizational software is likely to

outlive its hardware, the approach warrants consideration.

This is because of the high redevelopment costs.

4® One realization of a Virtual Operating System

To test the approach, a uniform program development

-8-

environment was instal on several distinct systems. A

program development environment consists of resources which

assist programmers in the development and maintenance of

computer programs, such as text itors, programming

language processors, and file systems. The types of system

resources with which such a virtual machine concerned

(files, directories, processes, and the' user environment)

require a general~purpose operating system interface.

Since the primary goal was to achieve some prac 1

results, the sys tern was to be modelled after an existing

real operating system. The major criteria for the selection

of this real system were the popularity of it within its

user community and the estimated relevance of it to the pro-

grarnming needs within the organization. After an extensive

survey of existing systems, the Un l operating system [4]

red to be a good candidate for emulation.

'rhe actual virtual rna ine implementation permits the

manipulation of fi s, directories, processes and the user

environment. The complete list of primitives implemented

are given in Appendix A. Most of the file manipulation

primitives were adopted from the book Software Tools by Ker-

nighan and Plauger [8], since these primi ves already pro-

vided a virtual machine consistent with a subset of the Unix

system. This virtual machine could be used to implement

1 . . d k f lJ b . Un1x 1s a tra emar o Be _ La ora tor 1es.

most of the program development environments currently

available. In particular, it permit ted the implementation

of many of the text manipulation utilities of the Unix

tem 9 as well as a command line interpreter similar to the

Unix shell [3].

The primary requirements in the selection of a program

ming language for the virtual operating system were that the

resulting code be par table to a wide range of machine archi

tectures and that there be a substantial body of existing

code upon which to base the system. The language chosen was

RATFOR [7] (rational FORTRAN), a FORTRAN preprocessor which

includes a reasonable set of flow-control structures (if

else, while, for, and repeat-until). This choice meets the

two requirements, since ANSI-66 FORTRAN [1] compilers are

available for use in most vendor environments and since the

source code for the utilities in [8] is available in machine

readable form. (These were implementations of many of the

Unix text-processing utilities.) As an added incentive, RAT

FOR represented a reasonable way to encourage structured

programming, since FORTRAN was already the predominant pro

gramming language.

Although implementation of the utility programs was

greatly aided by the availability of the source code from

[8], a fair amount of effort was necessary to increase the

appeal of the tern to a wider user community. In particu-

-10-

lar, all the original utilities were substantially

enbanced, and new ones were written as their needs were per

ceived. To complete the implementation the virtual.

operating system, the command line interpreter was written,

again emulating that of Unix [3]. On-line documentation of

the system was provided [5], and a guide for installing the

package on new systems was written [9]. In all cases, the

system \vas offer in parallel with the existing environ

ment, allowing users to experiment with the virtual operat

ing system without giving up the familiar, vendor-supplied

environment. A complete list of the u lities in the system

is presented in Appendix B. A description of the command

interpreter is provided in Appendix C.

To encourage experimentation and to allev te user

frustration, the source code for the system was made avail

able to all interested parties, implicitly designating the

universe of users as the system-programming group. It was

felt that the resulting variation would compl te rna in te

nance initially, but that the eventual positive benefits

might outweigh the disadvantages.

5 .. Exper

5 .. 1 iev of Operating tems

The virtual operating system was implemented on the sys-

terns listed in Table I. A virtual operating system based

upon a restr ted set of the primitives of Appendix A was

implemented on a much wider variety of machine architectures

as shown in Appendix D. 'J'he implementations listed in Table

I indicate that these operating systems supply most of the

sys tern calls nece.ssary to implement the vir tua 1 machine.

Complete uniformity across the different vendors may

require modification of one or more of the host operating

sys terns. This usually invalidates vendor~sof tware rna in te

nance contracts. For tuna te ly, a knowledgeable sys tern pro~

grammer can often solve the problem through creative primi

tive implementation. But, regardless of the manner in which

the virtual machine is implemented on existing machines, the

mappability of the virtual machine may be used as a selec

tion criterion for prospective vendors.

As an example of an apparent non-uniformity, most

multi-programming operating systems supply a central portion

of the executive which handles the commun tion with user

terminals (the "terminal handler"). Certain keys on the

terminal keyboard have special meaning to the terminal

handler e.g. erase previous character, interrupt process

and suspend terminal output. Even though there is a stan

dard [2] for the in terpre ta tion of the character codes gen

erated by the terminals, most systems apply their own seman

tics to the non-printing ones, with the result that the key-

board interfaces to dif rent systems are extremely non

uniform. To complicate the situation, these semantics are

usually not under control of the user. User mobility in

this situation is thus severely hindered.

One solution to this problem is to modify the terminal

handler for each system to present a common keyboard inter

face on all systems, with the si ffect of invalidating

software maintenance contracts. Fortunately, most systems

also provide the capability of transmiting and receiving

characters with no interpretation by the terminal handler

e'raw terminal i/o"). If the virtual machine i/o primitives

transfer raw i/o to and from terminals, then a common t of

semantics may be applied to the character codes on all sys

~ms, thus creating a uniform keyboard interface. Systems

which do not allow user-applied semantics to the character

s, or do not permit raw terminal i/o can be avoided by

organizations wishing to preserve this common keyboard

inter face.

This is not the only example of the difficulties

encountered in such an endeavor, but it is indicative

because most problems can be solved without resorting to

modification of the vendor software.

In conclusion, the

operating sys terns is

functional equivalence of vendor

strongly dependent upon the virtual

machine specified. In the case outlined in section 4, the

virtual operating system primitives are implementable over a

wide range of machine architectures 1r1ithout modification to

the host operating system. A more general conclusion is

that if the virtual machine specification accurately

represents the needs of a particular organization, the

implementability of the virtual machine is the major cri~

terion in the selection of a new computer system.

There are two types of costs incurred when using a vir~

tual operating system approach:

i. The effort required to write the utilities: this is a

one~time cost, since these utilities are independent of

any real operating system. The program development

costs for the utilities will be similar to those for

any other software system designed for a specific

machine, since the virtual operating system utilities

are designed for the virtual machine.

ii. The costs to implement the virtual machine: these are

incurred once for each different host operating system

within the or<;<.:"'ization. It is important to note that

this is the only cost in moving all personnel and

software to the new computing environment.

-14-

It has been estimated2 that 8-10 r son months of

effort were required to implement the original u li es in

[8]. In addition, 6-8 person months were spent enhancing

these original utilities. The largest single investment in

new code was writing the command line interpreter, which

required 4 rson months. In all, approximately 2 person

years have been invested in the implementation of the utili-

ties of Appendix B.

The costs incurred in the implementation of the virtual

machine on several systems are given in Table I. It is not-

able that the average time necessary to port the en tire sys-

tern was approximately four person months. The dominance of

Digital Equipment Corporation systems should not be inter-

preted as a lack of rigorous testing of the concept, since

the operating systems on these machines are quite different.

2 . . h Br1an Kern1g an,
8-10 person months,
(Thats 4-5 months for

private communication:
.but we were writing
two people •) 11

-15-

Probably
the book too.

Table I

Vendor Machine Operating System Person Months

-===.,__,. <=i>_,..,....,.._,=.,..
~=~=~~-~=~~=-=~= ~"""""""""""'""""""",.,.,.,._,=""""=

CDC 6000 BKY 4

DEC 11/70 IAS 2

DEC 11/780 VMS 1

DEC 11/34 RSX-llM 3

DEC PDP-10 TEN EX 2

Modcomp IV ~1AX4 5

In cases such as this, where the effort requirecJ to

implement the virtual machine is small, an attempt in that

direction can be made as part of the evaluation of new sys-

terns. The decision to purchase can then be based upon

whether the virtual machine is implementable on the given

sys tern. Movement of personnel and software can be essen-

tially instantaneous.

5e3 Optimizing Machine Efficiency

The issue of machine efficiency (the ability to minimize

the demands of the software upon scarce hardware and

software resources) is addressed through design and imple-

mentation of the virtual machine. The virtual machine

selected indicates those resources which the utilities can

manipulate and outlines any possible bottlenecks in the

utilization of those resources.

The utili s of the virtual operating system described

here are primarily oriented towards text processi (source

code generation, documentation, inter-user commun tion,

etc.) •rhese types of utili es

bounded by input/output rates [8].

are characteristically

Since the inpu tjou tpu t

capabilities are isolated in the virtual machine, the effect

of this particular problem can be reduced through efficient

implementation of the i/o primi ves.

The ef t of the programming language on efficiency

can also be studied. Snow [11] has reported on the

automat translation of RATFOR to BCPL [10] which resulted

in substantial savings in memory requirements and enhanced

execution speeds. Preliminary investigations at LBL have

indica ted that a 50% reduction in object code size and a 30%

improvement in CPU utilization are attainable on a VAX~

11/780 running the VMS operating system by automatically

translating RATFOR to BLISS [12]. Table II summarizes code

size and execution speed for various language translation

alternatives. The example is nscopy", a frequently used

string copy routine.

Table II

Hand coded assembly language

Code size

1.0

BLISS ~ simulated automatic translation

FORTRAN ~ hand coded

1.0

3.0

3.0 RATFOR

Speed

LO

4.6

4.6

6.0

As a rule, it is necessary to an tic ipa te bot necks in

resource utilization during the design phase of the virtual

machine. If manipulation of these resources is restricted

to the virtual machine, efficiency can be achieved through

optimization of the primitives alone. All utilities access

ing these resources receive the benefits of such optimiza

tion automatically.

iferation Var ts

Distribution of source code to users invites the proli

feration of variants. The existence of variants can destroy

uniformity provided by the approach. Traditional

methods of controlling this restrict development to a small

group of experts. However, this method tends to produce

user frustration and inhibit system growth.

Although such variants are bothersome and undesirable,

they are necessary for growth, like genetic variations in a

biological population. As itions change, software that

can be adapted to changing requirements will survive. The

abstract virtual machine and high~level language used in a

virtual opera ng system enable the software to be adapted

to changing conditions.

When software is used by many organizations, a user

group may perform the control functions necessary to limit

variation. To test this par cular scenario, a user group

was organized. Current activities of the group include the

establishment of a centrali distribution ili ty, dis-

tribution of a newsletter, organization of active special

interest groups on various topics and sponsorship of bi~

annual meetings. Standards the various utilities are

expected to result from the activities. In this manner, a

benign form of control over the variation of the code is

exercised.

6® Conclusions

Significant progress toward disentangling computing

environments from ir underlying ra ng system has been

made. Using the virtual operating system approach, uni

mity can be achieved at the three principal levels of user

interface - the virtual machine, the system utilities, and

the command language.

For at least one realization of the virtual machine

interface, functional equivalence of vendor operating sys

tems has been established. Complete uniformity of environ

ment is achievable without disturbing vendor software.

Although the effort to install a virtual operating sys

tem is large when compared to the effort to move a single

program, it is small when compared to the cost of moving

the entirity of an organization's software. Moreover, when

personnel retraining costs are considered, ins ta lla tion

costs are insignificant. The approach permits accurate

estimation of the cost of moving to a new system. The cost

of moving people is zero, and the cost of software is equal

to the cost of implementing the virtual machine.

The question of machine eff iency can also be

addressed. By anticipating bottlenecks in resource utiliza

tion, critical functions can be isolated and solutions

incorporated in the architecture of the virtual machine.

This permits the benefits to be shared by all software.

The proliferation of variants brought on by wide dis

tribution of source code does not appear to be a serious

problem. The formation of a user group has helped standard

ize both utilities and the virtual machine in a practical

application of the tecnique.

The authors gratefully acknowledge the

Brian Kernighan of Bell Labs, the Addison-Wesley Publishing

Company,_ and the many individual_s who implemented the pack

age on other systems. A project of this magnitude neces

sarily involves many persons from numerous sites. The fol

lowing provided especially helpful suggestions and comments:

Don Austin of LBL, Mark Bronson of LBL, Bob Calland of NOSC,

Doug Comer Purdue, Phil Enslow of Georgia Tech., Dave

Hanson of the University of Arizona, Terry Layman of IAC,

Dave JY1ar tin of Hughes Aircraft, Robert Munn of the Univer

sity of Maryland, Chris Petersen of ORINCON, Jim Pool of DOE

Headquarters, and Bob Upshaw of LBL.

Re

1. "American National Standard FORTRAN 10
, ANS X3.9-l966,

American National Standads Ins tute, New York, 1966.

Contains the ficial description of the ramming

language FORTRAN 66.

2. nAmer n Standard Code for In rma tion In terchange11
,

ANS X3.4-1977, available from the American National Stan

dards Institute, 1430 Broadway, New York, NY 10018.

Contains the official description of the data alphabet

called ASCII.

3. s. R. Bourne, nThe Unix Shell", The Bell System Techni

cal ,Journal, VoL 57 No. 6, July-August 1978, pp. 1971-1990.

Describes the official Unix command language.

4. The Bell System Technical Journal, VoL 57 No. 6, ,July

August, 1978.

Perhaps the best single source of Unix literature. The

entire issue is devoted to the Unix time-sharing operating

system.

5. D. Hall, D. Scherrer, J. Sventek, "The Software Tools

Progr~mmers Manual", LBL Internal Report, LBID 097, 1978.

A manual for the program development environment described

in this report. Describes the virtual machine, the utili

ties, and the command language in detail.

6. Per Brinch Hansen, "Operating System Principles",

Prentice~Hall, Inc., Englewood Cliffs, N.J., 1973.

Designed for readers with a background in programming and a

knowledge of elementary calculus and probability theory -

focuses on general concepts illustrated with algorithms,

techniques and performance figures from actual systems.

7. B. W. Kernighan, "RA'J:FOR ~ a Preprocessor for a Rational

FORTRAN", Software - Practice and Experience, VoL 5 (197 5) ,

pp. 395-406.

Discusses design criteria for a FORTRAN preprocessor, the

RATFOR language and its implementation, and user experience.

8. B. Kernighanu and P. Plauger, "Software Tools",

Addison-Wesley Publishing Company, ISBN 0~201-03669-X, 1976.

Presents the principles of good programming practice in the

context of actual working programs. The code is available

in machine-readable form as a supplement to the text.

9. D. Scherrer, "COOKBOOK, Instructions for Implementing

the LBL Software Tools Package", LBL Internal Report, LBID

098, 1978.

Provides guidelines for installing the software tools pro

gram development environment on new systems.

10. Martin Richards, "The Portability of the BCPL Com-

piler 11
, Software Practice and Experience, vol 1. no. 2

(April - June, 1971), pp. 135-146.

Describes a method for por ng a BCPL compiler which

includes the specif tion of OCODE, a language used as an

inter ce· be tween the machine independent and machine depen

dent parts of the compiler.

11. c. R. Snow, "The Software Tools Project"u Software

Practice and Experience, vol. 8, pp. 585-599 (1978).

Describes an implementation project on a Burroughs Bl700

computer using .an automatic code translation technique.

12. W. A. Wulf, D. B. Russellu A. N. Habermann, '1 BLISS: A

Language for Systems Programming," Communications of· the

ACJYl, Vol 14 No. 12 8 December l97i, pp. 780-790.

Describes BLISS, a language designed to be especially suit

able for use in writing production software systems for DEC

machines.

A tual

The llowing summarizes the primitive functions of the vir

tual machine chosen to test the virtual operating system

techniqe.

FILE ACCESS

open

create

close

remove

tty

gettyp

I/0

getch

putch

seek

markl

readf

wr i tef

flush

PROCESS CONTROL

spawn

psta t

kill

resume

suspnd

open a fi for reading, writing, or both

create a new fi (or overwrite an existing one)

close (detach} a file

remove a file from the f1le system

determine if file is a teletype/CRT device

determine if fi is character or binary

read character from file

write character to fi

move read/write pointer

pick up record position·. in file

read 'n' bytes from fi

write 'n' bytes to file

force flushing of I/O buffer

execute sub task

determine status of process

kill process

resume process after a suspend

suspend process

Appendix A Virtual

DIRECTORY MANIPULATION

open directory for reading

close directory

get next file name from directory

ine

opendr

closdr

gdrprm

gdraux

mkpa th

mklocl

get auxiliary file information from directory

generate full Unix pathname from local fi name

cwdir

generate local file specification from pathname

change current directory

gwdir

mkdir

rmdir

mvdir

J1.1I SCELLANEOUS

getarg

delarg

ini tr 4

endr4

c1a te

rna ilid

QUASI PRIMITIVES

get current working directory name

create a directory

delete a directory

move (rename) directory

get command line arguments

delete command line argument 1 n 1

initialize all standard I/0 and common blocks

close all open files and terminate program

get current date and time

get name of current user and home directory

Many of the following were defined as primitives in the ori~

ginal Kernighan~Plauger package. However, since it is pos~

sible to implement these in terms of previously d(?fined

primitives, or (in one case) to adjust the RATFOR preproces

sor to handle the problem, it was decided to move these

functions to the portable category. Never the less,

A tual Mach

optimization is usually advisable

or capability.

increased eff iency

prompt

getlin

pu tlin

remark

sera tf

amove

putlin with carriage return/line~feed suppressed

read next line from fi

write a line to file

print single-line message

nerate unique (scratch) file name

move (rename) filel to file2

Appendix B

The following summarizes the utility functions which consti

tute one portion of the program development environment.

These emulate many of the utili ties found in the Unix

operating system.

ar

cat

cent

ch

cmp

comm

cpress

crt

crypt

cwd

date

de tab

echo

ed

en tab

expand

find

form

help

incl

kill

archive file maintainer

concatenate and print text files

character count

make changes in text files

compare two files

print lines common to two files

compress input fi

copy files to terminal

crypt and decrypt standard input

change working directory

print date and time

convert tabs to spaces

print command line arguments

text editor

convert spaces to tabs and spaces

uncompress input files

search a file for a pat tern

generate form letter

list on-line documentation

expand included fi s

kill process

ix:

kwic

lent

ls

macro

mail

man

mkdir

mv

rnvdir

OS

postmn

psta t

pwd

ra t4

roff

rmdir

resolve

resume

rm

sh

sort

spell

split

suspnd

tee

tr

uniq

B

make keyword in context index

line count

list contents of directory

process macro definitions

send or receive mail

run off section of users manual

create a directory

move (rename) a file

move (rename) a directory

u li

(overstrike) convert backspaces into multiple lines

see if user has mail

check process status

print working directory

RATFOR preprocessor

format text

remove directory

identify mail users

resume suspended process

remove files

shell (command line interpreter)

sort and/or merge text files

find spelling errors

split a file into eces

suspend running process

copy input to standard output and named files

character transliteration

strip adjacent repeated lines from a file

unrot

went

unrota te lines rota ted by kwic

(character) word count

ities

Appendix C Command

The Shell

The shell is a command interpreter: it provides a user

interface to the process~re ted facilities of the virtual

opera ng systems It executes commands that are read either

from a terminal or from a fi

Commands

Simple commands are written as sequences of 11 words"

separated by blanks. The first word is the name of the

command to be executed, and any remaining words are

passed as arguments to the invoked command. The com~

mand name actually specifies a file which should be

brought to memory and executed. If the file cannot

be found in the current directory or through its path~

name, the shell searches one or more specif direc

tories of commands intended to be available to shell

users in general.

Standard !/2

The utilities of the virtual operating system have

three standard fi s associated with them: standard

input, standard output, and standard error output. All

three are initially assigned to the user's terminal,

but may be redirected to a disk file for the dura

the command by preceeding the file name argument

with special characters:

"<name" cau Sf~ s the file "name" to be used as the

standard input file of the associated command.

00 >name" causes file "name" to be used as the stan~

dard output (">>name" appends to the end of the

file) •

"?name" causes the file "name" to be used as the

standard error output ("??name" appends to the end

of the file).

Most u lities also have the capability to read their

input from a series of files simply by having the files

listed as arguments to the command.

Filters and Pipes

The output from one command may be directed to the

input of another. A sequence of commands separated by

vertical bars (i) or carets (""'8
) causes the shell to

arrange that the standard output of each command be

delivered to the standard input of the next command in

sequence. For example, the command 1 ine:

tr <name A-Z a-z I sort I uniq

translates all the upper case cbarD.cters in file nname"

to lower case, sorts them, and tben strips out multiple

occurrences of lines.

The vertical bar is called a 11 pipe". Programs such as

c Command

tr, sort, and uniq, which copy standard input to stan

dard output (making some changes along the way}, are

called filters.

Command separators and groupings

Commands need not be on differ·ent lines; instead they

may be se rated by semicolons.

The shell also allows commands to be grouped together

with parentheses, where the group can then be used as a

filter. For example,

(find <filel this; find <file2 that) I sort

locates all lines containing nthis 11 in filel 8 plus all

lines containing 11 that" in file2, and sorts them

together.

Multitasking

On many systems the shell also allows processes to be

executed in the background. That is, the shell will

not wait for the command to finish executing before

prompting again. Any command may be run in the back~

ground by following it with the operator "&".

Scr t files

The shell may ·be used to read and execute commands con

tained in a file. Such a file is called a 10 Script

file 91
• It can be used any place a regular command can

-33-

be issued. Arguments supplied with the call are

referred to within the shell procedure using the posi-

tional parameters $1, $2, etc.

Script files sometimes require in-line data to be

available to them. A special input redirection nota-

tion "<<" is used to achieve this effect. For example,

the editor normally takes its commands from the stan-

dard input. However, within a script file commands

could be embedded this way:

ed fi <<!

editing requests

The lines between <<! and ! are called a "here" docu-

ment; they are read by the shell and made available as

the standard input. The character "!" is arbitrary,

the document being terminated by a line which consists

of whatever character followed the <<.

11 Fla s

The shell accepts several spec 1 arguments when it is

invoked: causing it to print each line of a script file

as it is read and/or executed, suppress execution of

the command entirely, or read the remaining arguments

and execute them as a shell command.

Mach tems

The following summarizes the machines and systems used

by members the software tools user group. Most sup~

port at least the RATFOR preprocessor and the prim

itives.

Burroughs Bl700

CDC 1784

CDC 6000s, Cybers

CDC 7600

CDC MP~32

Cray

Data.General Eclipse

(C & S series)

Da ta.General Nova

Da taGeneral MP-100

ROLM 1602

GEC 4070

Honeywell 6000S

Honeywell Level 6

Mul tics

ACOS 700

AN/UYK-20

local

local

KRONOS, UT-LD, local, DUAL-MACE, SCOPE3, NOS

LTSS, SCOPE II, local

MPX/OS

CPSS

AOS, RDOS

RDOS

MP/OS

RDOS

OS 4000

GCOS-3

MOD 6 OS

Mul tics

GCOS

Level 2

-35-

D

HP 1000, 3000

HP 21MX

IBM S/360, S/370, 30

IBM 1130

FACOM M-200, M-190

HITAC 8700, 8800

Ml70

In te 1 8080

In tel 8086

In terda ta 70

Inter ta 8/32

Modcomp

PDP 10

PDP Lls

<;p 1 ~)

PDP 20

VAX

LSI lls

Prime

Mach s

RTE-IVB, MPE-III

RTE III, RTE IV

tems

OS/MVT, VM/CMS, MVS, TS0 1 Wilbur

DM2

OS IV/F4

OS7

VOS3

ISIS

UCSD Pascal

DOS

OS/32MT

MAX

0, TYMCOM-X, TENEX

RSX-llM, RSX-llS, RSX-llD, IAS, RT-11,

RSTS, Un , DOS, S

XVM/RSX

TOPS20

VMS

UCSD Pascal, RT-11, DOS-2

PRIMOS

Appendix D

SEL 32/77

SIEMANS 4004

TELEFUNKEN TR440

Univac 1100s

Univac 90/70

Xerox Sigma

Zi1og zao

J\1PX

TST

BS19

EXEC 8

VS/9

RBivl, CP-V

CP/M, Oasis

tems

Legal Notice

This report was prepared as an account of work

sponsored by the United States Government. Nei

ther the United States nor the United States

Department of Energy, nor any of their employ

ees, nor any of their contractors, subcontrac

tors, or their employees, makes any warranty,

express or implied, or assumes any legal liabil

ity or responsibility for the accuracy, com

pleteness or usefulness of any information,

apparatus, product or process disclosed, or

represents that its use would not infringe

privately owned rights.

