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Abstract

Multi- and many-core processors are becoming increasingly

popular in embedded systems. Many of these processors

now feature hardware virtualization capabilities, such as the

ARM Cortex A15, and x86 processors with Intel VT-x or

AMD-V support. Hardware virtualization offers opportu-

nities to partition physical resources, including processor

cores, memory and I/O devices amongst guest virtual ma-

chines. Mixed criticality systems and services can then co-

exist on the same platform in separate virtual machines.

However, traditional virtual machine systems are too ex-

pensive because of the costs of trapping into hypervisors to

multiplex and manage machine physical resources on behalf

of separate guests. For example, hypervisors are needed to

schedule separate VMs on physical processor cores. In this

paper, we discuss the design of the Quest-V separation ker-

nel, which partitions services of different criticalities in sep-

arate virtual machines, or sandboxes. Each sandbox encap-

sulates a subset of machine physical resources that it man-

ages without requiring intervention of a hypervisor. More-

over, a hypervisor is not needed for normal operation, except

to bootstrap the system and establish communication chan-

nels between sandboxes.

Categories and Subject Descriptors D.4.7 [Operating Sys-

tems]: Organization and Design

Keywords Separation kernel, chip-level distributed system

1. Introduction

Embedded systems are increasingly featuring multi- and

many-core processors, due in part to their power, perfor-

mance and price benefits. These processors offer new oppor-
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tunities for an increasingly significant class of mixed criti-

cality systems. In mixed criticality systems, there is a combi-

nation of application and system components with different

safety and timing requirements. For example, in an avionics

system, the in-flight entertainment system is considered less

critical than that of the flight control system. Similarly, in an

automotive system, infotainment services (navigation, audio

and so forth) would be considered less timing and safety crit-

ical than the vehicle management sub-systems for anti-lock

brakes and traction control.

A major challenge to mixed criticality systems is the safe

isolation of separate components with different levels of crit-

icality. Isolation has traditionally been achieved by partition-

ing components across distributed modules, which commu-

nicate over a network such as a CAN bus. For example, In-

tegrated Modular Avionics (IMA) [1] is used to describe a

distributed real-time computer network capable of support-

ing applications of differing criticality levels aboard an air-

craft. To implement such concepts on a multicore platform, a

software architecture that enforces the safe isolation of sys-

tem components is required.

Hardware-assisted virtualization provides an opportunity

to efficiently separate system components with different lev-

els of safety, security and criticality. Back in 2006, Intel

and AMD introduced their VT-x and AMD-V processors,

respectively, with support for hardware virtualization. More

recently, the ARM Cortex A15 was introduced with hard-

ware virtualization capabilities, for use in portable tablet

devices. Similarly, some Intel Atom chips now have VT-x

capabilities for use in automobile In-Vehicle Infotainment

(IVI) systems, and other embedded systems.

While modern hypervisor solutions such as Xen [2] and

Linux-KVM [3] leverage hardware virtualization to isolate

their guest systems, they are still required for CPU, memory,

and I/O resource management. Traps into the hypervisor

occur every time a guest system needs to be scheduled,

when a remapping of guest-to-machine physical memory is

needed, or when an I/O device interrupt is delivered to a

guest. This is both unnecessary and potentially too costly

for mixed criticality systems with real-time requirements.

In this paper we present an entirely new operating system

that uses hardware-assisted virtualization as an extra ring



of protection, to achieve efficient resource partitioning and

performance isolation for subsystem components. Our sys-

tem, called Quest-V, is a separation kernel [4] design, effec-

tively operating as a distributed system on a chip. The system

avoids traps into a hypervisor (a.k.a. virtual machine moni-

tor, or VMM) when making scheduling and I/O management

decisions. Instead, all resources are partitioned at boot-time

amongst system components that are capable of scheduling

themselves on available processor cores. Similarly, system

components are granted access to specific subsets of I/O de-

vices and memory so that devices can be managed without

involvement of a hypervisor.

Experiments show how Quest-V is able to make effi-

cient use of CPU, memory and I/O partitioning, using hard-

ware virtualization. We show how a Linux front-end (guest)

system can be supported with minimal modifications to its

source code. An mplayer benchmark for video decoding and

playback running on a Linux guest in Quest-V achieves al-

most identical performance compared to running on a non-

virtualized Linux system. Similarly, netperf running on a

Linux guest in Quest-V achieves better network bandwidth

performance than when running on Xen, for large packet

sizes. Quest-V guest services are able to maintain function-

ality in the presence of faults in other sandboxed guests, and

are also able to communicate with remote guest services us-

ing tunable bandwidth guarantees.

The next section briefly describes the rationale for our

system. The architecture is then explained in Section 3. Sec-

tion 4 details a series of experiments to evaluate the costs and

performance of using hardware virtualization for resource

partitioning in Quest-V. An overview of related work is pro-

vided in Section 5. Finally, conclusions and future work are

discussed in Section 6.

2. Design Rationale

Quest-V is centered around three main goals: safety, pre-

dictability and efficiency. Of particular interest is support

for safety-critical applications, where equipment and/or lives

are dependant on the operation of the underlying system.

With recent advances in fields such as cyber-physical sys-

tems, more sophisticated OSes beyond those traditionally

found in real-time and embedded computing are now re-

quired. Consider, for example, an automotive system with

services for engine, body, chassis, transmission, safety and

infotainment. These could be consolidated on the same mul-

ticore platform, with space-time partitioning to ensure mal-

functions do not propagate across services. Virtualization

technology can be used to separate different groups of ser-

vices, depending on their criticality (or importance) to over-

all system functionality.

Quest-V uses hardware virtualization technology to par-

tition resources amongst separate sandboxes, each responsi-

ble for a subset of processor cores, memory regions, and I/O

devices. This leads to the following benefits:

(1) Improved Efficiency and Predictability – the separa-

tion of resources and services eliminates, or reduces, re-

source contention. This is similar to the share-nothing prin-

ciple of multi-kernels such as Barrelfish [5]. As system re-

sources are effectively distributed across cores, and each

core is managed separately, there is no need to have shared

structures such as a global scheduler queue. This, in turn, can

improve predictability by eliminating undue blocking delays

due to synchronization.

(2) Fault Isolation and Mixed Criticality Services – virtu-

alization provides a way to separate services and prevent

functional components from being adversely affected by

those that are faulty. This, in turn, increases system availabil-

ity when there are partial system failures. Similarly, services

of different criticalities can be isolated from one another, and

in some cases may be replicated to guarantee their operation.

(3) Highest Safe Privilege – Rather than adopting a prin-

ciple of least privilege for software services, as is done in

micro-kernels, a virtualized system can support the highest

safe privilege for different services. Virtualization provides

an extra logical ”ring of protection” that allows guests to

think they are working directly on the hardware. Thus, vir-

tualized services can be written with traditional kernel priv-

ileges, yet still be isolated from other equally privileged ser-

vices in other guest domains. This avoids the communica-

tion costs typically associated with micro-kernels, to request

services in different protection domains.

(4) Minimal Trusted Code Base – A micro-kernel at-

tempts to provide a minimal trusted code base for the ser-

vices it supports. However, it must still be accessed as part

of inter-process communication, and basic operations such

as coarse-grained memory management. Monitors form a

trusted code base in the Quest-V separation kernel. Access

to these can be avoided almost entirely, except to bootstrap

(guest) sandbox kernels, handle faults and manage guest-

to-machine physical memory mappings. This enables sand-

boxes to operate, for the most part, independently of any

other code base that requires trust. In turn, the trusted moni-

tors can be limited to a small memory footprint.

3. Quest-V Separation Kernel Architecture

A high-level overview of the Quest-V architecture is shown

in Figure 1. The current implementation works on Intel VT-

x platforms but plans are underway to port Quest-V to the

AMD-V and ARM architectures.

The system is partitioned into separate sandboxes, each

responsible for a subset of machine physical memory, I/O

devices and processor cores. Trusted monitor code is used

to launch guest services, which may include their own ker-

nels and user space programs. A monitor is responsible for

managing special extended page tables (EPTs) that translate

guest physical addresses (GPAs) to host physical addresses

(HPAs), as described later in Figure 2.



Figure 1. Example Quest-V Architecture Overview

We chose to have a separate monitor for each sandbox,

so that it manages only one set of EPT memory mappings

for a single guest environment. The amount of added over-

head of doing this is small, as each monitor’s code fits within

4KB 1. However, the benefits are that monitors are made

much simpler, since they know which sandbox they are serv-

ing rather than having to determine at runtime the guest that

needs their service. Typically, guests do not need interven-

tion of monitors, except to establish shared memory com-

munication channels with other sandboxes, which requires

updating EPTs. The monitor code needed after system ini-

tialization is about 400 lines.

Mixed-Criticality Example – Figure 1 shows an example

of three sandboxes, where two are configured with Quest-

native safety-critical services for command, control and sen-

sor data processing. These services might be appropriate

for a future automotive system that assists in vehicle con-

trol. Other less critical services could be assigned to vehicle

infotainment services, which are partitioned in a sandbox

that has access to a local display device. A non-real-time

Linux system could be used in this case, perhaps also man-

aging a network interface (NIC) to communicate with other

vehicles or the surrounding environment, via a vehicle-to-

vehicle (V2V) or vehicle-to-infrastructure (V2I) communi-

cation link.

3.1 Resource Partitioning

Quest-V supports configurable partitioning of CPU, memory

and I/O resources amongst guests. Resource partitioning is

mostly static, taking place at boot-time, with the exception of

some memory allocation at run-time for dynamically created

communication channels between sandboxes.

1 The EPTs take additional data space, but 12KB is enough for a 1GB

sandbox address space.

CPU Partitioning – In Quest-V, scheduling is performed

within each sandbox. Since processor cores are statically al-

located to sandboxes, there is no need for monitors to per-

form sandbox scheduling as is typically required with tra-

ditional hypervisors. This approach eliminates the monitor

traps otherwise necessary for sandbox context switches. It

also means there is no notion of a global scheduler to man-

age the allocation of processor cores amongst guests. Each

sandbox’s local scheduler is free to implement its own pol-

icy, simplifying resource management. This approach also

distributes contention amongst separate scheduling queues,

without requiring synchronization on one global queue.

Memory Partitioning – Quest-V relies on hardware as-

sisted virtualization support to perform memory partitioning.

Figure 2 shows how address translation works for Quest-V

sandboxes using Intel’s extended page tables. Each sand-

box kernel uses its own internal paging structures to trans-

late guest virtual addresses to guest physical addresses. EPT

structures are then walked by the hardware to complete the

translation to host physical addresses.

Figure 2. Extended Page Table Mapping

On modern Intel x86 processors with EPT support, ad-

dress mappings can be manipulated at 4KB page granular-

ity. For each 4KB page we have the ability to set read, write

and even execute permissions. Consequently, attempts by

one sandbox to access illegitimate memory regions of an-

other sandbox will incur an EPT violation, causing a trap to

the local monitor. The EPT data structures are, themselves,

restricted to access by the monitors, thereby preventing tam-

pering by sandbox kernels.

EPT mappings are cached by hardware TLBs, expediting

the cost of address translation. Only on returning to a guest

after trapping into a monitor are these TLBs flushed. Conse-

quently, by avoiding exits into monitor code, each sandbox

operates with similar performance to that of systems with

conventional page-based virtual address spaces.

Cache Partitioning – Microarchitectural resources such

as caches and memory buses provide a source of contention

on multicore platforms. Using hardware performance coun-



ters we are able to establish cache occupancies for differ-

ent sandboxes [6]. Also, memory page coloring can be used

to partition shared caches [7] between sandboxes. Most of

these features are under active development in Quest-V.

I/O Partitioning – In Quest-V, device management is

performed within each sandbox directly. Device interrupts

are delivered to a sandbox kernel without monitor interven-

tion. This differs from the “split driver” model of systems

such as Xen, which have a special domain to handle inter-

rupts before they are directed into a guest. Allowing sand-

boxes to have direct access to I/O devices avoids the over-

head of monitor traps to handle interrupts.

To partition I/O devices, Quest-V first has to restrict ac-

cess to device specific hardware registers. Device registers

are usually either memory mapped or accessed through a

special I/O address space (e.g. I/O ports). For the x86, both

approaches are used. For memory mapped registers, EPTs

are used to prevent their accesses from unauthorized sand-

boxes. For port-addressed registers, special hardware sup-

port is necessary. On Intel processors with VT-x, all vari-

ants of in and out instructions can be configured to cause

a monitor trap if access to a certain port address is attempted.

As a result, an I/O bitmap can be used to partition the whole

I/O address space amongst different sandboxes. Unautho-

rized access to a certain register can thus be ignored or trig-

ger a fault recovery event.

Any sandbox attempting access to a PCI device must use

memory-mapped or port-based registers identified in a spe-

cial PCI configuration space [8]. Quest-V intercepts access

to this configuration space, which is accessed via both an

address (0xCF8) and data (0xCFC) I/O port. A trap to the

local sandbox monitor occurs when there is a PCI data port

access. The monitor then determines which device’s config-

uration space is to be accessed by the trapped instruction. A

device blacklist for each sandbox containing the Bus, Device

and Function numbers of restricted PCI devices is used by

the monitor to control actual device access.

A simplified control flow of the handling of PCI config-

uration space protection in a Quest-V monitor is given in

Figure 3. Notice that simply allowing access to a PCI data

port is not sufficient because we only want to allow the sin-

gle I/O instruction that caused the monitor trap, and which

passed the monitor check, to be correctly executed. Once this

is done, the monitor should immediately restrict access to the

PCI data port again. This behavior is achieved by setting the

trap flag (TF) bit in the sandbox kernel system flags to cause

a single step debug exception after it executes the next in-

struction. By configuring the processor to generate a monitor

trap on debug exception, the system can immediately return

to the monitor after executing the I/O instruction. After this,

the monitor is able to mask the PCI data port again for the

sandbox kernel, thereby mediating future device access.

In addition to direct access to device registers, interrupts

from I/O devices also need to be partitioned amongst sand-

Figure 3. PCI Configuration Space Protection

boxes. In modern multicore platforms, an external interrupt

controller is almost always present to allow configuration of

interrupt delivery behaviors. On modern Intel x86 proces-

sors, this is done through an I/O Advanced Programmable

Interrupt Controller (IOAPIC). Each IOAPIC has an I/O

redirection table that can be programmed to deliver device

interrupts to all, or a subset of, sandboxes. Each entry in the

I/O redirection table corresponds to a certain interrupt re-

quest from an I/O device on the PCI bus.

Figure 4. APIC Configuration

Figure 4 shows the hardware APIC configuration. Quest-

V uses EPT entries to restrict access to memory regions used

to access IOAPIC registers. Though IOAPIC registers are

memory mapped, two special registers are programmed to

access other registers similar to that of PCI configuration

space access. As a result, an approach similar to the one

shown in Figure 3 is used in the Quest-V monitor code for

access control. Attempts by a sandbox to access the IOAPIC

space cause a trap to the local monitor as a result of an EPT

violation. The monitor then checks to see if the sandbox

has authorization to update the table before allowing any

changes to be made. Consequently, device interrupts are

safely partitioned amongst sandboxes.



This approach is efficient because device management

and interrupt handling are all carried out in the sandbox

kernel with direct access to hardware. The monitor traps

necessary for the partitioning strategy are only needed for

device enumeration during system initialization.

3.2 Native Quest Sandbox Support

We have developed a native Quest kernel for real-time and

embedded systems. The kernel code has been implemented

from scratch for the IA-32 architecture, and is approximately

10,000 lines of C and assembly, discounting drivers and

network stack. Each monitor is given access to a native Quest

kernel address space so that direct manipulation of kernel

objects during monitor traps are possible.

Real-Time VCPU Scheduling. Native Quest kernels fea-

ture a novel virtual CPU (VCPU) scheduling framework, to

guarantee that one task, or thread, does not interfere with the

timely execution of others [9]. VCPUs form the fundamental

abstraction for scheduling and temporal isolation of threads.

The concept of a VCPU is similar to that in traditional vir-

tual machines [2, 10], where a hypervisor provides the il-

lusion of multiple physical CPUs (PCPUs) 2 represented as

VCPUs to each of the guests. VCPUs exist as kernel rather

than monitor abstractions, to simplify the management of re-

source budgets for potentially many software threads. We

use a hierarchical approach in which VCPUs are scheduled

on PCPUs and threads are scheduled on VCPUs.

A VCPU acts as a resource container [11] for scheduling

and accounting decisions on behalf of software threads. It

serves no other purpose to virtualize the underlying physical

CPUs, since our sandbox kernels and their applications exe-

cute directly on the hardware. In particular, a VCPU does not

need to act as a container for cached instruction blocks that

have been generated to emulate the effects of guest code, as

in some trap-and-emulate virtualized systems.

In common with bandwidth preserving servers [12][13][14],

each VCPU, V , has a maximum compute time budget, CV ,

available in a time period, TV . V is constrained to use no

more than the fraction UV =
CV

TV

of a physical processor

(PCPU) in any window of real-time, TV , while running at

its normal (foreground) priority. To avoid situations where

PCPUs are idle when there are threads awaiting service, a

VCPU that has expired its budget may operate at a lower

(background) priority. All background priorities are set be-

low foreground priorities to ensure VCPUs with expired

budgets do not adversely affect those with available budgets.

A native Quest kernel defines two classes of VCPUs as

shown in Figure 5: (1) Main VCPUs are used to schedule

and track the PCPU usage of conventional software threads,

while (2) I/O VCPUs are used to account for, and schedule

the execution of, interrupt handlers for I/O devices. This dis-

tinction allows for interrupts from I/O devices to be sched-

2 We define a PCPU to be either a conventional CPU, a processing core, or

a hardware thread.

Figure 5. VCPU Scheduling Hierarchy

uled as threads, which may be deferred execution when

threads associated with higher priority VCPUs having avail-

able budgets are runnable. The whole approach enables I/O

VCPUs to be specified for certain devices, or for certain

tasks that issue I/O requests, thereby allowing interrupts to

be handled at different priorities and with different CPU

shares than conventional tasks associated with Main VCPUs.

By default, Main VCPUs act like Sporadic Servers [15,

16], while each I/O VCPU acts as a bandwidth preserving

server with a dynamically-calculated period, TIO, and bud-

get, CIO [9]. Each I/O VCPU is specified a certain utiliza-

tion factor, UIO, to limit its bandwidth. When a device in-

terrupt requires handling by an I/O VCPU, the system de-

termines the thread τ associated with a corresponding I/O

request 3. All events, including those related to I/O process-

ing are associated with threads running on Main VCPUs. In

this framework, CIO is calculated as TV ·UIO, while TIO is

set to TV for a Main VCPU, V , associated with τ .

Our native Quest kernel is designed for mission-critical

tasks in mixed-criticality systems. By sandboxing these

tasks in their own virtual machines, they are isolated from

the effects of other less critical tasks. By default, all Quest-V

sandboxes use native Quest kernels. Even for booting third

party systems such as Linux in a Quest-V sandbox, a native

Quest sandbox has to be started first.

3.3 Linux Sandbox Support

In addition to native Quest kernels, Quest-V is also designed

to support other third party sandbox systems such as Linux

and AUTOSAR OS [17]. Currently, we have successfully

ported a Puppy Linux [18] distribution with Linux 3.8.0 ker-

nel to serve as our system front-end, providing a window

manager and graphical user interface. In Quest-V, a Linux

sandbox can only be bootstrapped by a native Quest kernel.

This means a native Quest sandbox needs to be initialized

first and Linux will be started in the same sandbox via a boot-

loader kernel thread. To simplify the monitor logic, we par-

avirtualized the Linux kernel by patching the source code.

Quest-V exposes the maximum possible privileges of hard-

ware access to sandbox kernels. From Linux sandbox’s per-

spective, all processor capabilities are exposed except hard-

3 E.g., τ may have issued a prior read() request that caused it to block

on its Main VCPU, but which ultimately led to a device performing an I/O

operation.



ware virtualization support. On Intel VT-x processors, this

means a Linux sandbox does not see EPT or VMX features

when displaying /proc/cpuinfo. Consequently, the ac-

tual changes made to the original Linux 3.8.0 kernel are less

than 50 lines. These changes are mainly focused on limiting

Linux’s view of available physical memory and handling I/O

device DMA offsets caused by memory virtualization.

An example memory layout of Quest-V with a Linux

sandbox on a 4-core processor is shown in Figure 6. Even

though the Linux kernel’s view of (guest) physical memory

is contiguous from address 0x0, the kernel is actually loaded

after all native Quest kernels in machine physical memory.

Since Quest-V does not require hardware IOMMU support,

we patched the Linux kernel DMA layer to make it aware

of this offset between guest physical and machine physical

memory addresses during I/O device DMA.

In the current implementation, we limit Linux to manage

the last logical processor or core. As this is not the bootstrap

processing core, the Linux code that initializes a legacy 8253

Programmable Interval Timer (PIT) has to be removed. The

8253 PIT assumes interrupts are delivered to the bootstrap

processor but instead we program the IOAPIC to control

which interrupts are delivered to the Linux sandbox. In gen-

eral, our implementation can be extended to support Linux

running on a subset of cores (potentially more than one),

with access to a controlled and specific subset of devices.

Right now, the entire Linux sandbox runs in 512MB RAM,

including space for the root filesystem. This makes it useful

in situations where we want to prevent Linux having access

to persistent disk storage.

Figure 6. Quest-V Physical Memory Layout with Linux

Whenever a Linux sandbox is present, the VGA frame

buffer and GPU hardware are always assigned to it for exclu-

sive access. All the other sandboxes will have their default

terminal I/O tunneled through shared memory channels to

virtual terminals in the Linux front-end. We developed li-

braries, user space applications and a kernel module to sup-

port this redirection in Linux.

3.4 Shared Memory Communication Channels

Inter-sandbox communication in Quest-V relies on mes-

sage passing primitives built on shared memory, and asyn-

chronous event notification mechanisms using Inter-processor

Interrupts (IPIs). Monitors update EPT mappings as neces-

sary to establish message passing channels between specific

sandboxes. Only those sandboxes with mapped shared pages

are able to communicate with one another.

A mailbox data structure is set up within shared mem-

ory by each end of a communication channel. By default,

Quest-V supports asynchronous communication by polling

a mailbox status bit, instead of using IPIs, to determine mes-

sage arrival. Message passing threads are bound to VCPUs

with specific parameters to control the rate of exchange of

information in native Quest sandboxes. Likewise, sending

and receiving threads are assigned to higher priority VC-

PUs to reduce the latency of transfer of information across a

communication channel. This way, shared memory channels

can be prioritized and granted higher or lower throughput

as needed, while ensuring information is communicated in a

predictable manner. Quest-V supports real-time communica-

tion between native Quest sandboxes without compromising

the CPU shares allocated to non-communicating tasks.

A similar library is under development for communica-

tion between processes in Linux and native Quest sandboxes.

In the current implementation, a Linux process can only re-

quest a memory channel shared with all native Quest sand-

boxes for non-critical communication.

4. Experimental Evaluation

We conducted a series of experiments to investigate the

performance of the Quest-V resource partitioning scheme.

For all the experiments, we ran Quest-V on a mini-ITX

machine with a Core i5-2500K 4-core processor, featuring

4GB RAM and a Realtek 8111e NIC. In all the network

experiments where both a server and a client are required,

we also used a Dell PowerEdge T410 with an Intel Xeon

E5506 2.13GHz 4-core processor, featuring 4GB RAM and

a Broadcom NetXtreme II NIC. For all the experiments

involving a Xen hypervisor, Xen 4.2.3 was used with a

Fedora 18 64-bit domain 0 and Linux 3.6.0 kernel.

Monitor Intervention. To see the extent to which a mon-

itor was involved in system operation, we recorded the num-

ber of monitor traps during Quest-V Linux sandbox initial-

ization and normal operation. During normal operation, we

observed only one monitor trap every 3 to 5 minutes caused

by cpuid. In the x86 architecture, if a cpuid instruction

is executed within a guest it forces a trap (i.e., VM-exit or

hypercall) to the monitor. Table 1 shows the monitor traps



Exception CPUID VMCALL I/O Inst EPT Violation XSETBV

No I/O Partitioning 0 502 2 0 0 1

I/O Partitioning 10157 502 2 9769 388 1

I/O Partitioning (Block COM and NIC) 9785 497 2 11412 388 1

Table 1. Monitor Trap Count During Linux Sandbox Initialization

recorded during Linux sandbox initialization under three dif-

ferent configurations: (1) a Linux sandbox with control over

all I/O devices but with no I/O partitioning logic, (2) a Linux

sandbox with control over all I/O devices and support for

I/O partitioning logic, and (3) a Linux sandbox with control

over all devices except the serial port and network interface

card, while also supporting I/O partitioning logic. However,

again, during normal operation, no monitor traps were ob-

served other than by the occasional cpuid instruction.

Microbenchmarks. We evaluated the performance of

Quest-V using a series of microbenchmarks. The first, find-

primes, finds prime numbers in the set of integers from 1

to 10
6. CPU cycle times for findprimes are shown in Fig-

ure 7, for the configurations in Table 2. All Linux configura-

tions were limited to 512MB RAM. For Xen HVM and Xen
PVM, we pinned the Linux virtual machine (VM) to a single

core that differed from the one used by Xen’s Dom0. For

all 4VM configurations of Xen, we allowed Dom0 to make

scheduling decisions without pinning VMs to specific cores.

Configuration Description

Linux Standalone Linux (no virtualization)

Quest-V Linux One Linux sandbox hosted by Quest-V

Quest-V Linux 4SB One Linux sandbox co-existing with three

native Quest sandboxes

Xen HVM One Linux guest on Xen with hardware

virtualization

Xen HVM 4VM One Linux guest co-existing with three

native Quest guests

Xen PVM One paravirtualized Linux guest on Xen

Xen PVM 4VM One paravirtualized Linux guest co-existing with

three native Quest guests

Table 2. System Configurations
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Figure 7. findprimes CPU Benchmark

As can be seen in the figure, Quest-V Linux shows

no overhead compared to standalone Linux. Xen HVM and

Xen PVM actually outperform standalone Linux, and this

seems to be attributed to the way Xen virtualizes devices

and reduces the impact of events such as interrupts on thread

execution. The results show approximately 2% overhead

when running findprimes in a Linux sandbox on Quest-

V, in the presence of three native Quest sandboxes. We

believe this overhead is mostly due to memory bus and

shared cache contention. For the 4VM Xen configurations,

the performance degradation is slightly worse. This appears

to be because of the overheads of multiplexing 5 VMs (one

being Dom0) onto 4 cores.
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Figure 8. Page Fault Exception Handling Overhead

We evaluated the exception handling overheads for the

configurations in Table 2, by measuring the average CPU

cycles spent by Linux to handle a single user level page

fault. For the measurement, we developed a user program

that intentionally triggered a page fault and then skipped

the faulting instruction in the SIGSEGV signal handler. The

average cycle times were derived from 10
8 contiguous page

faults. The results in Figure 8 show that exception handling

in Quest-V Linux is much more efficient than Xen. This

is mainly because the monitor is not required for handling

almost all exceptions and interrupts in a Quest-V sandbox.

The last microbenchmark measures the CPU cycles spent

by Linux to perform a million fork-exec-wait system calls. A

test program forks and waits for a child while the child calls

execve() and exits immediately. The results are shown

in Figure 9. Quest-V Linux is almost as good as native

Linux and more than twice as fast as any Xen configuration.

mplayer HD Video Benchmark. We next evaluated the

performance of application benchmarks that focused on I/O

and memory usage. First, we ran mplayer with an x264

MPEG2 HD video clip at 1920x1080 resolution. The video

was about 2 minutes long and 102MB in file size. By invok-
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Figure 9. Fork-Exec-Wait Micro Benchmark

ing mplayer with -benchmark and -nosound, mplayer

decodes and displays each frame as fast as possible. With the

extra -vo=null argument, mplayer will further skip the

video output and try to decode as fast as possible. The real-

times spent in seconds in the video codec (VC) and video

output (VO) stages are shown in Table 3 for three different

configurations. In Quest-V, the Linux sandbox was given ex-

clusive control over an integrated HD Graphics 3000 GPU.

The results show that Quest-V incurs negligible overhead

for HD video decoding and playback in Linux. We also ob-

served (not shown) the same playback frame rate for all three

configurations.

VC (VO=NULL) VC VO

Linux 16.593s 29.853s 13.373s

Quest-V Linux 16.705s 29.915s 13.457s

Quest-V Linux 4SB 16.815s 29.986s 13.474s

Table 3. mplayer HD Video Benchmark
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Figure 10. netperf UDP Send with Different Packet Sizes

netperf UDP Bandwidth Benchmark. We next inves-

tigated the networking performance of Quest-V, using the

netperf UDP benchmark. The measured bandwidths of sep-

arate UDP send (running netperf) and receive (running net-
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Figure 11. netserver UDP Receive

server) experiments, on the mini-ITX machine, are shown in

Figures 10 and 11, respectively.

We have omitted the results for Xen HVM, since it did

not perform as well as Xen PVM. For Xen PVM and Xen
PVM 4VM, virtio [19] is enabled. It can be seen that this

helps dramatically improve the UDP bandwidth for small

size UDP packets. With 512B packet size, Xen PVM outper-

forms standalone Linux. In most other cases, Quest-V out-

performs Xen with bigger packet sizes and multiple VMs.

I/O Partitioning. We also tested the potential overhead

of the I/O partitioning strategy in Quest-V. For the group

of bars labelled as Quest-V Linux 4SB (IOP), we

enabled I/O partitioning logic in Quest-V and allowed all

devices except the serial port to be accessible to the Linux

sandbox. Notice that even though no PCI device has been

placed in the blacklist for the Linux sandbox, the logic that

traps PCI configuration space and IOAPIC access is still in

place. The results show that the I/O partitioning does not

impose any extra performance overhead on normal sandbox

execution. I/O resource partitioning-related monitor traps

only happen during system initialization and faults.

However, Quest-V does incur a network performance

penalty compared to standalone Linux. This is especially

noticeable for small size packets. To determine the cause of

this behavior, we ran the same experiments with the server

and client running on the same machine for standalone Linux

and Quest-V Linux. This eliminated the potential influence

from hardware device access and DMA. The results shown

in Figure 12 demonstrate that at least part of the overhead is

related to memory management rather than just I/O.

We believe that this overhead is caused by multiple fac-

tors, including the usage of shared caches and TLBs [20].

For instance, the fact that some of the virtual machine related

data structures (e.g. EPT tables) are cacheable could increase

the cache contention in a virtualized environment. Further

studies are needed to more precisely identify the overheads

of virtualization in Quest-V.

TLB Performance. We ran a series of experiments to

measure the effects of address translation using EPTs. A
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Figure 12. netperf UDP Local Host

TLB-walking thread in a native Quest kernel was bound to

a Main VCPU with a 45ms budget and 50ms period. This

thread made a series of instruction and data references to

consecutive 4KB memory pages, at 4160 bytes offsets to

avoid cache aliasing effects. The average time for the thread

to complete access to a working set of pages was measured

over 10 million iterations.

Figures 13 and 14 compare the performance of a native

Quest kernel running in a virtual machine (i.e., sandbox)

to when the same kernel code is running without virtual-

ization. Results prefixed with Quest do not use virtualiza-

tion, whereas the rest use EPTs to assist address translation.

Experiments involving a VM Exit or a TLB Flush per-

formed a trap into the monitor, or a TLB flush, respectively,

at the end of accessing the number of pages on the x-axis.

All other Base cases operated without involving a monitor

or performing a TLB flush.

As can be seen, the Quest-V Base case refers to the

situation when the monitor is not involved. This yields ad-

dress translation costs similar to when the TLB walker runs

on a base system without virtualization (Quest Base) for

working sets with less than 512 pages. We believe this is ac-

ceptable for safety-critical services found in embedded sys-

tems, as they are likely to have relatively small working sets.

The cost of a VM-Exit is equivalent to a full TLB flush, but

entries will not be flushed in Quest-V sandboxes if they are

within the TLB reach. Note that without the use of TLBs

to cache address translations, the EPTs require 5 memory

accesses to perform a single guest-physical address (GPA)

to host-physical address (HPA) translation. The kernels run-

ning the TLB walker use two-level paging for 32-bit virtual

addresses, and in the worst-case this leads to 3 memory ac-

cesses for a GVA to GPA translation. However, with virtual-

ization, this causes 3×5 = 15 memory accesses for a GVA

to HPA translation.

Fault Isolation and Predictability. To demonstrate fault

isolation in Quest-V, we created a scenario that includes

both message passing and networking across 4 different na-

tive Quest sandboxes. Specifically, sandbox 1 has a kernel
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Figure 13. Data TLB Performance

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  100  200  300  400  500  600  700  800

T
im

e 
(C

P
U

 C
yc

le
s)

Number of Pages

Quest-V VM Exit
Quest-V TLB Flush

Quest TLB Flush
Quest-V Base

Quest Base

Figure 14. Instruction TLB Performance

thread that sends messages through private message pass-

ing channels to sandbox 0, 2 and 3. Each private channel is

shared only between the sender and specific receiver, and is

guarded by EPTs. In addition, sandbox 0 also has a network

service running that handles ICMP echo requests. After all

the services are up and running, we manually break the NIC

driver in sandbox 0, overwrite sandbox 0’s message passing

channel shared with sandbox 1, and try to corrupt the ker-

nel memory of other sandboxes to simulate a driver fault.

After the driver fault, sandbox 0 will try to recover the NIC

driver along with both network and message passing services

running in it. During the recovery, the whole system activ-

ity is plotted in terms of message reception rate and ICMP

echo reply rate in all available sandboxes, and the results are

shown in Figure 15.

In the experiment, sandbox 1 broadcasts messages to oth-

ers (SB0,2,3) at 50 millisecond intervals. Sandbox 0, 2

and 3 receive at 100, 800 and 1000 millisecond intervals.

Another machine sends ICMP echo requests at 500 millisec-

ond intervals to sandbox 0 (ICMP0). All message passing

threads are bound to Main VCPUs with 100ms periods and
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Figure 15. Sandbox Isolation

20% utilization. The network driver thread is bound to an

I/O VCPU with 10% utilization and 10ms period.

Results show that an interruption of both message passing

and packet processing occurred in sandbox 0, but all the

other sandboxes were unaffected. This is because of memory

isolation between sandboxes, enforced by EPTs.

Inter-Sandbox Communication. The message passing

mechanism in Quest-V is built on shared memory. Instead

of focusing on memory and cache optimization, we tried to

study the impact of scheduling on inter-sandbox communi-

cation in Quest-V.

We setup two kernel threads in two different sandbox

kernels and assigned a VCPU to each of them. One kernel

thread used a 4KB shared memory message passing chan-

nel to communicate with the other thread. In the first case,

the two VCPUs were the highest priority with their respec-

tive sandbox kernels. In the second case, the two VCPUs

were assigned lower utilizations and priorities, to identify

the effects of VCPU parameters (and scheduling) on the

message sending and receiving rates. In both cases, the time

to transfer messages of various sizes across the communica-

tion channel was measured. Note that the VCPU scheduling

framework ensures that all threads are guaranteed service as

long as the total utilization of all VCPUs is bounded accord-

ing to rate-monotonic theory [21]. Consequently, the impacts

of message passing on overall system predictability can be

controlled and isolated from the execution of other threads

in the system.

Figure 16 shows the time spent exchanging messages

of various sizes, plotted on a log scale. Quest-V Hi is

the plot for message exchanges involving high-priority VC-

PUs having 100ms periods and 50% utilizations for both the

sender and receiver. Quest-V Low is the plot for message

exchanges involving low-priority VCPUs having 100ms pe-

riods and 40% utilizations for both the sender and receiver.

In the latter case, a shell process was bound to a highest pri-

ority VCPU. As can be seen, VCPU parameter settings affect

message transfer times.

In our experiments, the time spent for each size of mes-

sage was averaged over a minimum of 5000 trials to normal-

ize the scheduling overhead. The communication costs grow
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Figure 16. Message Passing Microbenchmark

linearly with increasing message size, because they include

the time to access memory.

5. Related Work

Xen [2], Linux-KVM [3], XtratuM [22], the Wind River

Hypervisor, and Mentor Graphics Embedded Hypervisor all

use virtualization technologies to logically isolate and mul-

tiplex guest virtual machines on a shared set of physical re-

sources. LynxSecure [23] is another similar approach tar-

geted at safety-critical real-time systems. PikeOS [24] is

a separation micro-kernel [25] that supports multiple guest

VMs, and targets safety-critical domains such as Integrated

Modular Avionics. The micro-kernel supports a virtualiza-

tion layer that is required to manage the spatial and temporal

partitioning of resources amongst guests.

In contrast to the above systems, Quest-V statically parti-

tions machine resources into separate sandboxes. Services of

different criticalities can be mapped into separate sandboxes.

Each sandbox manages its own resources independently of

an underlying hypervisor. Quest-V also avoids the need for a

split-driver model involving a special domain (e.g., Dom0 in

Xen) to handle device interrupts. Interrupts are delivered di-

rectly to the sandbox associated with the corresponding de-

vice, using I/O passthrough. Even though PCI passthrough is

supported in recent versions of Xen and KVM, guest virtual

machines can only directly access device registers. The hy-

pervisor is still responsible for initial interrupt handling and

interrupt acknowledgment. This potentially forces two hy-

pervisor traps for each interrupt. ELI [26] is a software-only

approach for handling interrupts within guest virtual ma-

chines directly with shadow IDTs. In combination with PCI

passthrough, this is similar to the approach Quest-V uses to

partition I/O resources. However, Quest-V allows a sandbox

to use its own IDT and eliminates monitor intervention on all

interrupts instead of only interrupts from a specific device.

IOAPIC redirection table access control is used to prevent

unauthorized interrupt redirection.

NoHype [27] is a secure system that uses a modified ver-

sion of Xen to bootstrap and then partition a guest, which is

granted dedicated access to a subset of hardware resources.



NoHype requires guests to be paravirtualized to avoid VM-

Exits into the hypervisor. VM-Exits are treated as errors

and will terminate the guest, whereas in Quest-V they are

avoided under normal operation, except to recover from a

fault or establish new communication channels. For safety-

critical applications it is necessary to handle faults without

simply terminating guests. Essentially Quest-V shares the

ideas of NoHype, while extending them into a fault tolerant,

mixed-criticality system on a chip.

Barrelfish[5] is a multi-kernel that replicates rather than

shares system state, to avoid the costs of synchronization

and management of shared data structures. As with Quest-

V, communication between kernels is via explicit mes-

sage passing, using shared memory channels to transfer

cacheline-sized messages. In contrast to Barrelfish, Quest-V

focuses on the use of virtualization techniques to efficiently

partition resources for mixed criticality applications.

Dune [28] uses hardware virtualization to create a sand-

box for safe user-level program execution. By allowing user-

level access to privileged CPU features, certain applications

(e.g. garbage collection) can be made more efficient. How-

ever, most system services are still redirected to the Linux

kernel running in VMX root mode. VirtuOS [29] uses virtu-

alization to partition existing operating system kernels into

service domains, each providing a subset of system calls.

Exceptionless system calls are used to request services from

remote domains. The system is built on top of Xen and re-

lies on both the shared memory facilities and event chan-

nels provided by the Xen VMM to facilitate communication

between different domains. The PCI passthrough capability

provided by the Xen VMM is also used to partition devices

amongst service domains. However, interrupt handling and

VM scheduling still requires VMM intervention.

Other systems that partition resources on many-core ar-

chitectures include Factored OS [30], Corey [31], Hive [32]

and Disco [33]. Unlike Quest-V, these systems are focused

on scalability rather than isolation and predictability.

6. Conclusions and Future Work

This paper introduces Quest-V, which is an open-source sep-

aration kernel built from the ground up. It uses hardware vir-

tualization to separate system components of different crit-

icalities. Consequently, less important services can be iso-

lated from those of higher criticality, and essential services

can be replicated across different sandboxes to ensure avail-

ability in the presence of faults.

Quest-V avoids traditional costs associated with hyper-

visor systems, by statically partitioning machine resources

across guest sandboxes, which perform their own schedul-

ing, memory and I/O management. Sandboxes can commu-

nicate via shared memory channels that are mapped to ex-

tended page table (EPT) entries. Only trusted monitors are

capable of changing entries in these EPTs, preventing guest

access to arbitrary memory regions in remote sandboxes.

This paper shows how multiple native Quest-V sandboxes

can be mapped to different cores of a multicore proces-

sor, while allowing a Linux front-end to co-exist and man-

age less safety-critical legacy applications. We describe the

method by which resources are partitioned amongst sand-

boxes, including I/O devices. Allowing interrupts to be de-

livered directly to the sandbox guests rather than monitors

reduces the overheads of I/O management. Similarly, allow-

ing sandbox guest kernels to perform local scheduling with-

out expensive hypercalls (VM-exits) to monitor code leads

to more efficient CPU usage. Quest-V manages CPU usage

using a novel hierarchy of VCPUs implemented as Sporadic

Servers, to ensure temporal isolation amongst real-time,

safety-critical threads. Since Quest-V attempts to avoid VM-

exits as much as possible, except to update EPTs for com-

munication channels, bootstrap the sandboxes and handle

faults, the TLBs caching EPT mappings are rarely flushed.

This benefit comes about due to the fact that multiple guests

are not multiplexed onto the same processor core, and in

the embedded systems we envision for this work, sandbox

working sets will fit within the TLB reach (at least for criti-

cal services in native Quest-V sandboxes).

Quest-V requires system monitors to be trusted. Although

these occupy a small memory footprint and are not involved

in normal system operation, the system can be compro-

mised if the monitors are corrupted. Future work will inves-

tigate real-time fault detection and recovery strategies simi-

lar to those in traditional distributed systems. We also plan

to investigate additional hardware features to enforce safety

and security. These include Intel’s trusted execution tech-

nology (TXT) to enforce safety of monitor code, IOMMUs

to restrict DMA memory ranges, and Interrupt Remapping

(IR) [34] to prevent delivery of unauthorized interrupts to

specific cores [35]. Protection of CPU model-specific reg-

isters (MSRs) will be similarly enforced using hardware-

managed bitmaps.

Please see www.questos.org for more details.
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