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Abstract

The biological control of insect pests is based on the use of natural enemies.

However, the growing information on the molecular mechanisms underpinning the

interactions between insects and their natural antagonists can be exploited to

develop ‘‘bio-inspired’’ pest control strategies, mimicking suppression mechanisms

shaped by long co-evolutionary processes. Here we focus on a virulence factor

encoded by the polydnavirus associated with the braconid wasp Toxoneuron

nigriceps (TnBV), an endophagous parasitoid of noctuid moth larvae. This virulence

factor (TnBVANK1) is a member of the viral ankyrin (ANK) protein family, and

appears to be involved both in immunosuppression and endocrine alterations of the

host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity

and caused developmental delay in Spodoptera littoralis larvae feeding on them.

This effect was more evident in a transgenic line showing a higher number of

transcripts of the viral gene. However, this effect was not associated with evidence

of translocation into the haemocoel of the entire protein, where the receptors of

TnBVANK1 are putatively located. Indeed, immunolocalization experiments

evidenced the accumulation of this viral protein in the midgut, where it formed a

thick layer coating the brush border of epithelial cells. In vitro transport experiments

demonstrated that the presence of recombinant TnBVANK1 exerted a dose-
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dependent negative impact on amino acid transport. These results open new

perspectives for insect control and stimulate additional research efforts to pursue

the development of novel bioinsecticides, encoded by parasitoid-derived genes.

However, future work will have to carefully evaluate any effect that these molecules

may have on beneficial insects and on non-target organisms.

Introduction

The protection of crop plants and of their products against insects has old roots,

dating back to the origin of agriculture. Insect control has been for a long time

handled with little use of chemicals, until when a growing number of synthetic

molecules [1], often with neurotoxic properties, reached the market, providing

the illusory perception that all pest management problems would have been

solved just with the use of chemical pesticides. Indeed, the insecticides have been,

and still are, an important tool in intensive agriculture [2, 3], but the unfortunate

misuse of these substances has evidenced, over the years, the limits and the poor

sustainability of this simplistic approach. This has promoted research efforts

toward the development of more benign insecticide molecules of natural origin

[4] and of integrated pest management (IPM) strategies, more sustainable both

from an ecological/toxicological and economic point of view [5, 6], from field

level to a broader spatial scale [7]. Moreover, this trend has also boosted the

definition of control strategies based on the use of natural antagonists, which has

favored the successful consolidation of classical biological control [8].

The continuous growth of basic studies on the antagonistic associations

between insects and their natural enemies has generated background information

on the underpinning molecular interactions, which offers the opportunity to

develop ‘‘bio-inspired’’ pest control strategies, mimicking natural processes. There

are already very good examples of new pest control tools generated by this nature-

driven approach, which include, for example, the well consolidated use of the

entomopathogen Bacillus thuringiensis and its derived toxins, both for direct

application and for developing transgenic crops [9]. Similarly, molecules like

spinosyns [10, 11] are obvious examples of natural insecticides of wide use in

IPM, while a number of natural compounds, of plant origin [12] or produced by

predatory arthropods [13], are increasingly used or look particularly promising

for future developments.

There is no doubt that the impressive diversity of Hymenoptera, which

represent the largest group of insect antagonists and include nearly 10–20% of all

insects [14, 15], is the largest reservoir of molecular biodiversity, that can offer a

wide selection of virulence factors, having potential insecticide activity against a

number of insect species. The host-parasitoid associations in basal evolutionary

lineages are characterized by the presence of venom blends which contain active

components causing rapid and irreversible paralysis, used by idiobionts to block
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the development of their hosts, while more derived lineages, often showing

endophagy, are koinobionts that regulate a number of physiological traits of their

hosts, which continue to grow and are not paralyzed/suppressed [16]. Among

these latter, there is a group of ichneumonoids, endophagous parasitoids of

lepidopteran larvae, which harbor a symbiotic virus in the family Polydnaviridae

[17–19]. Polydnaviruses (PDV) are among the most potent viral immunosup-

pressors existing in nature and encode host regulation factors which are able to

modulate host physiology, by disrupting its vital functions, in order to create a

suitable environment for the development of parasitoid’s progeny [16]. Briefly,

these viruses are integrated as proviruses in the wasp genome, which into the

ovary generate free viral particles, injected in the host body along with the egg and

venom. Then, the virions infect host tissues, where they express several virulence

factors, without undergoing replication. The genome of PDV contains a selection

of sequences encoding molecules able to disrupt the physiology, development and

reproduction of insect hosts, and, therefore, represents a unique source of natural

molecules with potential insecticide activity.

This natural reservoir of putative bioinsecticide molecules remains largely

unexploited. Indeed, there are just a few examples in the literature of studies

focusing on the use of parasitoid-derived molecules to develop new pest control

strategies. Among these, we have the successful attempt of using the coding genes

of Cys-motif proteins to generate transgenic plants, which showed a significant

level of protection against lepidopteran larvae [20, 21]. These studies demon-

strated that molecules derived from parasitic wasps and their associated viral

symbionts are active when orally administered, despite of the fact that they are

expected to exert their activity on receptors located in the haemocoel, often at

intracellular level. Even though the absorption of large macromolecules by the gut

epithelium of insect is possible, and can be enhanced by different molecular

strategies [22], these pioneering studies did not provide any evidence on how and

where (i.e. in the gut or behind the gut barrier) the virulence factors used were

able to exert their activity.

We have contributed to the study of the functional and molecular interactions

between the braconid wasp Toxoneuron nigriceps and the larvae of its natural host,

Heliothis virescens, shedding light on the role played in the host regulation process

by the associated bracovirus (TnBV) (reviewed in [16]). Among the different

virulence factors encoded by TnBV, we have focused our attention, over the past

number of years, on the functional analysis of a gene family encoding viral

ankyrin proteins (ANK), which are largely shared by many PDV, both in the

bracoviruses and ichnoviruses [19]. In particular, we have studied the

immunosuppressive activity and the potential role as endocrine disrupter of

TnBVANK1 [23–25]. The wide distribution in different parasitoid lineages and

the pleiotropic effects of these ANK proteins stimulated the idea of exploring their

potential use as disrupters of lepidoteran larvae physiology, in order to identify

potential candidate molecules to be further developed as novel bioinsecticides.

Here we provide evidence showing that TnBVANK1, when expressed in

transgenic tobacco plants, has significant insecticide activity. To understand how

Candidate Bioinsecticide from a Polydnavirus

PLOS ONE | DOI:10.1371/journal.pone.0113988 December 1, 2014 3 / 21



this insecticide activity is exerted, we investigated the fate of the ingested molecule

and its possible mechanism of action.

Material and Methods

2.1 Molecular cloning

MycKDEL sequence was produced by annealing specific oligonucleotides (59-

CTAGAATGGAGCAAAAGCTCATTTCTGAAGAGGACTTGAAAGATGAACTG-

TAAG-39; 59-GATCCTTACAGTTCATCTTTCAAGTCCTCTTCAGAAATGAG-

CTTTTGCTCCATT-39). These oligonucleotides were mixed in equal concentra-

tions, boiled for 5 min and then allowed to reach room temperature. The

fragment obtained was inserted into pDE::SP vector, deriving from pAmy [26].

TnBVank1 cDNA (accession number AJ583457) was amplified using specific

primers: Forward: 59-GCTGGTACCAATGGAAAACTCATTACTCATTG-39;

Reverse: 59-CCTCGAGATATCATTATCATCACACTTAGCGC-39 (the underlined

sequences, containing KpnI and EcoRV restriction endonucleases targets

respectively, were added for the subsequent cloning), then cloned into pCR1.2

plasmid (TA cloning, Invitrogen), and later transferred into pDE::SP vector, along

with the MycKDEL sequence, in order to obtain the pDE::Sp-ank1-MycKDEL.

Escherichia coli DH5a cells were transformed via thermal shock and checked by

colony PCR. pDE::Sp-ank1-MycKDEL plasmid was digested, using EcoRI and

HindIII enzymes, in order to extract the expression cassette that was ligated into

PG0029 binary vector. Agrobacterium tumefaciens LBA4404 cells were trans-

formed, using 1 mg of PG0029::Sp-ank1-MycKDEL and 1 mg of the pHelper

plasmid pSOUP through thermal shock, and streaked on selective medium.

2.2 Plant transformation

For transformation experiments, Nicotiana tabacum ‘Samsun’ NN tobacco plants

were grown under sterile conditions from seeds. A. tumefaciens-mediated leaf disk

tobacco transformation and regeneration of antibiotic-resistant plants were

performed according to procedures described previously [27, 28]. Homozygous

progeny plants (T2) were identified, by successive rounds of selection in

kanamycin containing (50 mg/l) medium and molecular analysis..

2.3 Molecular characterization of transgenic plants

DNA was isolated from putative transgenic plants as described elsewhere [29], and

analyzed by PCR, with the same primer pair indicated in the previous section.

Reaction mixture was prepared using 10 pmol/ml of each primer, 0.2 mM dNTP,

1.5 mMMgCl2 and 2.5 U Taq (Invitrogen). The transgene expression was checked

by Reverse Transcriptase PCR (RT-PCR) and Western blot analysis. Total RNA

was prepared from transformed leaves by phenol/chloroform extraction, followed

by LiCl precipitation, and treated with RNase-free DNase I Amplification Grade

(Invitrogen) to remove residual genomic DNA. First-strand cDNA was
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synthesized using Superscript II (Invitrogen), according to manufacturer’s

protocol. The amplification of the cDNA region coding for EF-1a gene, an

ubiquitously expressed gene [30], was performed as control of cDNA synthesis.

For Western blot analysis, total proteins were isolated from 0.5 g of tobacco

leaves, finely powdered in liquid nitrogen and suspended in 300 ml of extraction

buffer (6 M urea, 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM EDTA pH 8).

Extracts were centrifuged at 18,8006g, at 4 C̊, for 20 min to separate the

supernatant, containing soluble proteins, from cell debris. Protein concentration

was determined by the Bradford method [31], using bovine serum albumin as

standard. Total soluble proteins extracted from transgenic and untransformed

plants were separated by SDS-PAGE on a Mini-Protein II mini-gel apparatus

(Bio-Rad), using 6% (w/v) stacking polyacrylamide gel and 12% (w/v) separation

gel. Separated proteins were transferred onto nitrocellulose membrane by

electroblotting, with Mini Trans-Blot Cell (Bio-Rad). The blot was probed with

the polyclonal antibody anti-c-Myc (A-14) (Santa Cruz Biotechnology), as a

primary antibody (dilution 1:500), and anti-rabbit IgG conjugated with

peroxidase (Santa Cruz Biotechnology) as a secondary antibody (dilution 1:2500).

Immunopositive protein bands were visualized through a chemiluminescent

detection system (ECL, GE Healthcare), using Hyperfilm ECL (GE Healthcare),

and their molecular mass was estimated through comparison with PageRuler Plus

Prestained Protein Ladder (Fermentas). The number of transcripts of TnBVank1

gene was assessed by Quantitative Real Time PCR (qRT-PCR), targeting a small

cDNA region of 85 bp (Forward: 59-AATGCACCCAACCAAACT-39, Reverse: 59-

AGCACAGCCATTTCGCCA-39), and using the actin gene as endogenous control

(Forward: 59-AGGGTTTGCTGGAGATGATG-39, Reverse: 59-

CGGGTTAAGAGGTGCTTCAG-39). Reaction mixture was prepared with

300 mM of each primer and 1X Syber Green Master Mix (Qiagen), using the

following thermal cycle: 94 C̊ 10 min; 94 C̊ 30 sec, 58 C̊ 30 sec, 72 C̊ 20 sec,

repeated 40 times. Serial dilutions of pDE::SP-ank-Myc-KDEL plasmid were used

to obtain a standard curve. Fluorescence data were analyzed using Rotor Gene

6000 software Series 1.7.

2.4 S. littoralis rearing and feeding bioassay

S. littoralis larvae were reared on artificial diet [32], at 25¡1 C̊, 70¡5% R.H, and

under a 16:8 h light/dark period. The feeding bioassay was performed, under the

same environmental conditions, in trays with wells (Bio-Ba-32, Color-Dec, Italy)

covered by perforated plastic lids (Bio-Cv-4, Color-Dec Italy). In each well, 3 ml

of 1.5% agar agar (w/v), supplemented with 0.005% methyl-p-hydroxybenzoate,

were dispensed, to create a moist environment required to keep turgid the

experimental tobacco leaves, on which 150 newly hatched larvae were deposited

and allowed to develop up to fully grown 2nd instars. Then, soon after their

molting to 3rd instar, 64 larvae, for each transgenic line and control plants, were

singly transferred into new trays prepared as above, and offered with leaf disks

(1 cm2) obtained from sub-apical leaves of 4 weeks-old plants, which were daily
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replaced. At the beginning of the 5th instar, surviving larvae were singly transferred

into larger wells (Bio-Ba-8, Color-Dec, Italy) covered by perforated plastic lids

(Bio-Cv-1, Color-Dec Italy), and offered with leaf disks 5 cm2 in size, which were

daily replaced. The survival rate and weight of the larvae were assessed every 24 h,

until pupation.

2.5 In vivo immunodetection of TnBVANK1 and Western blot

analysis on insect haemolymph

5th instar S. littoralis larvae, reared on leaf disks of tobacco plants as indicated

above (section 2.4), were anesthetized by immersion in water, dried on filter paper

and cut transversally, to isolate the body segment between the 2nd pair of legs and

the 3rd pair of pseudo-legs. The samples were fixed in 4% paraformaldehyde in

phosphate buffered saline (PBS), at pH 7.4, for 3 h at room temperature, rinsed 3

times in PBS, dehydrated in an ethanol series and embedded in paraffin. Sections

(8 mm thick) were cut with a microtome, de-waxed, using xylene, and rehydrated

in an ethanol series.

Sections were rinsed 3 times in PBS, incubated for 30 min with a solution of

2% BSA, 0.1% Tween 20 in PBS (BT-PBS) and then treated with 3% H2O2 for

10 min, to inhibit endogenous peroxidases. Samples were incubated for 1 h with

the primary polyclonal antibody anti-c-Myc (A-14) (Santa Cruz Biotechnology),

diluted 1:50 in BT-PBS. After 3 rinses in PBS, sections were incubated with an

anti-rabbit peroxidase-conjugated secondary antibody (Jackson Immunoresearch)

(diluted 1:100 in BT-PBS), for 1 h, and rinsed again in PBS. A DAB (3,39-

diaminobenzidine tetrahydrochloride) substrate was then used to detect the

secondary antibody. Negative controls, in which the primary antibody was

omitted, did not show any signal. Reference sections were stained with

hematoxylin and eosin and examined under a light microscope.

For Western blot analysis of larval haemolymph, 5th instar larvae, reared on leaf

disks of tobacco plants as indicated above (section 2.4), were anesthetized by

immersion in water and dried on filter paper. Haemolymph was then sampled by

cutting off a leg and collecting the exuding haemolymph with a micropipet.

Haemolymph samples were mixed with equal volumes of MEAD Buffer (98 mM

NaOH, 145 mM NaCl, 17 mM EDTA, 41 mM citric acid, pH 4.5) to avoid

melanization. The samples were then centrifuged (1,5006g, 10 min at 4 C̊) and

supernatants stored at 280 C̊. Prior to use, samples of haemolymph were pooled

and concentrated as needed (Concentrator 5301, Eppendorf), dissolved in sample

buffer and separated on 12% SDS-PAGE gels. Proteins were transferred onto

nitrocellulose membranes with iBlot 2 Dry Blotting System (Life Technologies).

Membranes were left for 2 h at room temperature, in 150 mM NaCl, 50 mM

Tris?HCl at pH 7.4, 5% w/v nonfat dry milk, 0.1% v/v Tween 20, then were

subjected to three washings lasting 15 min each, in BT-PBS, and incubated over-

night at 4 C̊, for 1 h with the primary polyclonal antibody anti-c-Myc (A-14)

(Santa Cruz Biotechnology) diluted 1:1000 in BT-PBS. Membranes were then

washed three times (15 min for each washing), and the primary antibody was
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detected by the enhanced chemiluminescence method (Amersham Biosciences),

using peroxidase-conjugated goat anti-rabbit IgG as a secondary antibody

(Amersham Biosciences), diluted 1:16,000. Positope Control Protein (Invitrogen)

was used as positive control following manufacturer instructions. Protein

concentration of haemolymph samples was determined by the Bradford method

[31], using bovine serum albumin as standard.

2.6 Cloning expression and purification of TnBVANK1

TnBVank1 cDNA was PCR amplified and cloned in NdeI-XhoI site of pET-15b (a

kind gift from EMBL, Heidelberg) using site-specific primers: Forward: 59-

CGCGCGCATATGGAAAACTCATTACTCATTGAATTG-39 and Reverse: 59-

CGCGCGCTCGAGTTACTAATTATCATCACACTTAGCGCCA-39. The gener-

ated plasmid was checked by sequencing and appropriate digestion with

restriction enzymes. The recombinant construct was expressed in E. coli BL21

(DE3) cells, 16 h at 22 C̊, in presence of 0.1 mM IPTG (Isopropil-b-D-1-

tiogalattopiranoside). After centrifugation (20 min at 4 C̊ at 2,7956g), the pellet

was lysed in 20 mM sodium phosphate, 50 mM imidazole, 500 mM NaCl,

pH 7.4, 0.2% Triton X-100, in presence of 1 mM phenylmethanesulfonyl fluoride,

5 mg/ml DNaseI, 0.1 mg/ml lysozyme and 1X protease inhibitors (Sigma-Aldrich).

Cells were disrupted by sonication and after centrifugation (30 min at 4 C̊ at

21,9126g), protein was purified by FPLC, using an ÄKTA system on a 1 ml His

Trap FF column (GE Healthcare), by stepwise elution, according to manufac-

turer’s instruction (GE Healthcare). After elution, TnBVANK1 was dialyzed either

in buffer 20 mM sodium phosphate, 300 mM imidazole, 300 mM NaCl, 2 mM

DTT, 1 mM EDTA, pH 7.4 (phosphate buffer), or 20 mM piperazine, 20 mM

NaCl, 5 mM DTT, 2 mM EDTA, pH 9.8 (pip buffer). Protein purity was assessed

on 15% SDS-PAGE gels, using Biorad Precision Plus Protein All Blue Standards

(10–250 kDa) as molecular mass marker.

2.7 Circular dichroism

Circular dichroism (CD) spectra were acquired as previously described [33].

Briefly, CD spectra were recorded with a Jasco J-715 spectropolarimeter equipped

with a Peltier temperature control system [Model PTC-423-S]. Molar ellipticity

per mean residue, [h] in deg cm2
6 dmol21, was calculated from the

equation: h½ �~ h½ �
obs
|mrw=10|l|C, where h½ �

obs
is the ellipticity measured in

degrees, mrw is the mean residue molecular mass, C is the protein concentration

in mg/ml, and l is the optical path length of the cell in cm. Far-UV measurements

(190–260 nm) were carried out at 20 C̊, at time constant of 4 s, 2 nm band width,

scan rate of 20 nm/min, using a 0.1 cm optical path length cell and a protein

concentration of 5 mM diluting in water dialyzed samples. CD spectra were signal

averaged over at least three scans, and baseline was corrected by subtracting a

buffer spectrum.

Candidate Bioinsecticide from a Polydnavirus
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2.8 Dynamic light scattering

Dynamic light scattering (DLS) results were obtained using a Malvern nano

zetasizer (Malvern, UK). Samples (0.8–1.5 mg/ml) were placed in a disposable

cuvette and held at 25 C̊ during analysis. Each sample was recorded six times with

11 sub-runs using the multimodal mode. The Z average diameter was calculated

from the correlation function using the Malvern technology software.

2.9 Midgut isolation, preparation of BBMV and transport

experiments

The experimental larvae were reared on artificial diet under the environmental

condition indicated above (section 2.4). Midguts were isolated from actively

feeding 6th instar S. littoralis larvae and stored in liquid nitrogen until their use.

BBMV (brush border membrane vesicles) were prepared from midguts by Ca2+

precipitation and differential centrifugation [34]. The tissue was homogenated in

100 mM mannitol, 10 mM Hepes-Tris, pH 7.2 (10 ml/g tissue). Pellets obtained

after the second centrifugation and the final pellets were resuspended in pip buffer

(see 2.6) or phosphate buffer (see 2.6). The BBMV protein concentration,

estimated with the Coomassie Brilliant Blue G-250 (Thermo Scientific) protein

assay, with bovine serum albumin as standard, was adjusted to a final

concentration of 5.5 mg/ml. Prior to transport experiments, BBMV were pre-

incubated 30 min at room temperature with recombinant TnBVANK1 in the

same buffer in which BBMV were resuspended (pip or phosphate buffer), at

different experimental concentrations, while control vesicles were pre-incubated

with buffer only.

Arginine transport experiments were performed in triplicate at room

temperature by rapid filtration under vacuum [34]. The uptakes were measured at

1 min, by mixing 20 ml of the vesicle suspension to 20 ml of the radiolabeled

incubation medium, whose final composition was: (i) 20 mM piperazine, 20 mM

NaCl, 5 mM DTT, 2 mM EDTA, pH 9.8, 0.05 mM 3H-L-arginine 30 mCi/ml, for

the BBMV pre-incubated with TnBVANK1 in pip buffer, or with pip buffer only

as control; (ii) 20 mM sodium phosphate buffer, 300 mM NaCl, 300 mM

imidazole, 5 mM DTT, 2 mM EDTA, pH 7.4, 0.05 mM 3H-L-arginine 30 mCi/ml,

for the BBMV pre-incubated with TnBVANK1 in phosphate buffer, or with

phosphate buffer only as control. Samples were counted for radioactivity in a

scintillation spectrometer (Tri-Carb, Packard, model 300 C).

To determine the amount of arginine uptake due to unspecific binding of the

labeled substrate and/or to a non-carrier mediated uptake, 0.05 mM arginine

uptake into S. littoralis BBMV was measured at 11 min, in presence of a 100-fold

excess of the cold amino acid. The residual uptake was routinely subtracted from

total uptakes.

Candidate Bioinsecticide from a Polydnavirus
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2.10 Statistical analysis

Normality of data was checked with Shapiro-Wilk test and Kolmogorov-Smirnov

test, while homoscedasticity was tested with Levene’s test and Barlett’s test.

Survival curves of S. littoralis larvae fed on different diets, were compared by using

Kaplan-Meier and log-rank analysis. One-Way ANOVA test and Tukey’s posthoc

test were used to compare larval stage duration and pupal weight. Student’s t test

was used to compare ank1 transcript levels in transgenic plant tissues and to

evaluate the effect of recombinant TnBVANK1 on amino acid transport in

BBMVs. All data were analyzed using Prism software, v. 5.0c (GraphPad software;

San Diego, California, USA).

Results

3.1 Transgenic plant lines expressing different levels of

TnBVANK1

TnBVank1 gene, which codes for a 155 amino acid protein (17.5 kDa), carrying 3

ankyrin domains (amino acids 54–86; 91–121; 125–154), was cloned in the

expression cassette represented in Figure 1A. For the immunological detection of

the recombinant protein in transgenic plants, TnBVank1 cDNA was fused at 39end

to the c-Myc epitope sequence (EQKLISEEDL), that is recognized by a

commercially available polyclonal antibody [35]. Moreover, in order to localize

the transgenic product in the endoplasmic reticulum, the 59 end of the chimeric

sequence was fused to the Signal Peptide (SP) of the tobacco PR1a gene, and the

39end to the KDEL sequence [36]. The chimeric gene was engineered under the

control of CaMW 35S promoter and nos terminator, and the expression cassette

was used to transform N. tabacum cv Samsun, NN genotype, via A. tumefaciens.

Putative transformants were screened by PCR, and transgene expression was

verified by RT-PCR and western blot analysis (Figure 1B-D). Figure 1B shows

PCR amplification of a region of TnBVank1 gene, which produced the expected

amplicon (size 487 bp). The same pair of primers was used for RT-PCR,

normalized on EF-1a gene, which allowed to assess TnBVank1 transcription in all

transgenic lines considered (Figure 1C). Western blot analysis showed the

accumulation of TnBVANK1 recombinant protein in transgenic plants, while no

signal was detected in untransformed control plants, as expected (Figure 1D). The

molecular mass of the recombinant TnBVANK1 protein was around 20 kDa,

indicating that the signal peptide was removed from the mature protein. Two

lines producing different amounts of the recombinant protein (Figure 1 D, lanes 2

and 5) were designated as ANK1 Line 1 and ANK1 Line 2, respectively, and used

for the feeding bioassay with S. littoralis larvae. For these two lines, the absolute

number of TnBVank1 transcripts was assessed by qRT-PCR (Figure 2). Serial

dilutions of pDE:SP-ank-Myc-KDEL plasmid, containing the whole expression

cassette, were used to obtain a standard curve, whose linear equation is

y523.0257x+40.77 (R2
50.99) (Figure 2A). This curve was suitable to intersect

the Ct value obtained for each cDNA sample, to estimate the number of the
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molecules [37]. The two transgenic genotypes under investigation showed

different amounts of TnBVank1 transcripts, which were significantly higher in

ANK1 Line 1 (P,0.001; P50.00013, n510).

3.2 Insecticidal effect of transgenic lines on S. littoralis larvae

S. littoralis larvae, alimented with leaf disks obtained from leaves of 4 weeks-old

plants of ANK1 Line 1 and ANK1 Line 2, showed a significantly lower survival,

compared to controls (LogRank test, P,0.0001) (Figure 3A). Moreover,

experimental larvae fed on ANK1 Line 1, which more intensely transcribed the

viral transgene (Figure 2B), in agreement with the higher protein levels observed

Figure 1. Transgenic plant production and characterization. (A) Schematic representation of the

TnBVank1 expression cassette used for the stable genetic transformation. Cis-controlling elements are filled

in black and coding sequences are in grey. The restriction enzymes used for cloning are indicated. 35S pro:

35S RNA CaMV gene promoter; SP: sequence coding for the signal peptide of the tobacco PR1a gene;

TnBVank1 sequence of TnBV coding for the viral ankyrin protein used; Myc: c-Myc epitope; KDEL: sequence

coding for the endoplasmic reticulum retention signal; nos ter: nopaline synthase terminator sequence. (B)

agarose gel electrophoresis of TnBVank1 amplification products from DNA of putative transgenic plants. (C)

RT-PCR analysis of the transgenic lines: (a) agarose gel electrophoresis of total RNA; (b) agarose gel

electrophoresis of EF amplicon as quality control of synthesized cDNA; (c) agarose gel electrophoresis of the

RT-PCR TnBVank1 transcripts confirming the expression of the transgene. (D) Western blot analysis of the

proteins from transgenic plant leaves. Lane 1:control plants, lane 2–5: transgenic lines.

doi:10.1371/journal.pone.0113988.g001
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by Western blot analysis (Figure 1D), showed a significantly more pronounced

mortality compared to ANK1 Line 2 (LogRank test, P,0.0001) (Figure 3A). After

36 days of feeding, the survival rates were 9.4%, for ANK1 Line 1, 18.8% for

ANK1 Line 2 and 57.3% for control.

Larvae and pupae did not show any significant difference in terms of weight

gain (Figure S1), however the larval development was significantly delayed for

both transgenic lines, compared to controls (control - n537, ANK1 Line 2 - n59,

ANK1 Line 1– n55; *P,0.001, One way ANOVA; P50.0001, F514.790, n551)

(Figure 3B); this indicates the occurrence of compensatory feeding on a sub-

optimal food source.

3.3 Immunodetection of TnBVANK1 in larvae alimented on

transgenic plants

To assess the presence of TnBVANK1 in the tissues of larvae fed with ANK1 Line 1

plants, immunostaining experiments were performed by using an anti-Myc

antibody. Although in the midgut of larvae alimented on control plants a faint

signal was present (Figure 4A, B), an unexpected strong immunopositivity was

detected in the midgut of larvae maintained on transgenic plants (Figure 4C, D).

Figure 2. TnBVank1 transcription in different transgenic plant lines. The absolute number of transcripts

was assessed by qRT-PCR. (A) Standard curve based on serial dilution of pDE::SP-ank-Myc-KDEL plasmid.

(B) Number of TnBVank1 transcripts in two transgenic genotypes, ANK1 Line 1 and ANK1 Line 2. Mean

values denoted with asterisks are significantly different (*P,0.0001).

doi:10.1371/journal.pone.0113988.g002
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In particular a clear signal was found in the microvillar region of both columnar

and goblet cells. No signal was detected on other organs localized in the

haemocoel (Figure S2). This evidence was complemented by the absence of

hybridization signals on Western blots of haemolymphatic proteins, extracted

from experimental larvae alimented with ANK1 Line 1 plants (Figure S3).

Collectively, these results indicate that the ingestion of TnBVANK1 is not followed

by its transepithelial transport across the midgut, and most of the protein and of

its tagged degradation products can be found only in the intestine lumen, where

they bind to the apical membranes of midgut cells.

3.4 Biochemical characterization of recombinant TnBVANK1

To carry out functional experiments aiming to define the possible effects of

TnBVANK1 on S. littoralis larvae, we produced the recombinant protein in E. coli.

Bacterial expression of TnBVANK1 and its purification by immobilized metal ion

affinity chromatography allowed us to obtain high yields of pure protein

Figure 3. Feeding bioassay with S. littoralis larvae. (A) The survival of S. littoralis control larvae was

significantly higher than in larvae fed on transgenic plant tissues, which displayed a significant difference,

positively associated with the transgene transcription level. (B) Duration of larval development for larvae

reared on control and transgenic plants. Average values were calculated for larvae surviving at the end of the

experiment (control n537, ANK1 Line 2 n59, ANK1 Line 1 n55; *P,0.001) (One way ANOVA; P50.0001,

F514.790, n551).

doi:10.1371/journal.pone.0113988.g003
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(Figure 5A). CD spectra recorded using dialyzed samples showed that

TnBVANK1 is in a folded state, displaying a predominant alpha-helix secondary

structure (Figure 5B), according to the variable selection method (CDSSTR),

using DICHROWEB [38]. The protein was characterized by means of DLS, which

allows the measurement of the apparent hydrodynamic diameter [39]. The results

showed the occurrence of a unique peak, representative of TnBVANK1 in

phosphate buffer (Figure 5C, green curve), which is indicative of a population

with a hydrodynamic radius of 5.8¡2.2 nm. On the contrary, a notable reduction

in intensity of the equivalent peak of TnBVANK1 in pip buffer was observed,

whilst the most intense peak shifted to the right, indicating an increase in particle

size (Figure 5C, red curve), due to a higher level of protein aggregation.

3.5 Effect of recombinant TnBVANK1 on amino acid transport in

BBMV

The immunolocalization results and the slower growth of the surviving larvae

prompted us to check whether the interaction of TnBVANK1 with brush border

membranes (BBM) may impair nutrient transport. Due to the pivotal role of

amino acids metabolism in lepidopteran larval midgut [40], these molecules were

chosen as model nutrients to study the effect of TnBVANK1 on the transport

capacity of columnar cells BBM. The essential amino acid arginine is efficiently

transported in lepidopteran midgut, and the functional properties of its

transporters, expressed in the apical membrane of columnar cells, have been well

characterized in BBMV [41–43]. TnBVANK1 in pip buffer, highly aggregated, did

not affect arginine transport in our experimental conditions (Figure 6A); on the

Figure 4. Immunolocalization of TnBVANK1 in the midgut of S. littoralis larvae. In samples obtained from

larvae fed on control plants, only a faint hybridization signal is visible (A and B), while an evident positive

signal is present on the brush border lining the larval midgut epithelium (C and D) of larvae fed on ANK1 Line

1 plants. Bars: A, C 20 mm; B, D 10 mm.

doi:10.1371/journal.pone.0113988.g004
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contrary the lower degree of aggregation observed in phosphate buffer was

associated with a dose-dependent inhibition of the amino acid transport

(Figure 6B). A significant inhibition of arginine transport was observed with all

doses tested and the percentages of inhibition ranged from 11%, in presence of

5 mg TnBVANK1/mg BBMV protein, to 48% with 71 mg TnBVANK1/mg BBMV

protein. Collectively, these results indicate that a reduction of the surface

interaction between TnBVANK1 and the midgut cells, due to the formation of

large molecular aggregates, limits the negative effects that this protein exerts on

transport capability of the absorbing epithelium.

Discussion

The natural antagonism between parasitic wasps and their hosts has generated a

wealth of virulence factors used by these insects to overcome multiple defense

barriers and to subdue their victims, which are eventually killed [16]. Indeed,

Figure 5. Production and characterization of recombinant TnBVANK1. (A) TnBVANK1 purified by

immobilized metal ion affinity chromatography and visualized by Coomassie blue staining of 15% SDS-PAGE

gels; MM: molecular mass markers (10–250 kDa), lane 1 TnBVANK1. (B) CD spectra of TnBVANK1 in pip

buffer (continuous line) and in phosphate buffer (dashed line). (C) DLS spectra in phosphate buffer (green

line) and pip buffer (red line), which indicate the occurrence of different levels of protein aggregation.

doi:10.1371/journal.pone.0113988.g005
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these virulence factors originate from an intense co-evolutionary process among

an astonishing number of interacting species [14], which has produced one of the

largest reservoirs of natural compounds with potential bioinsecticide activity. This

molecular biodiversity of parasitic wasps provides an interesting opportunity to

develop alternative pest management strategies, based on the use of a new

category of natural bioinsecticides, which, so far, have been only limitedly

exploited (reviewed in [22]). Here we contribute to this research area, by

exploring the impact on lepidopteran larvae of a virulence factor, which is a

member of the ANK protein family of the bracovirus associated with T. nigriceps

[23]. The ank gene family is one of the most widely distributed in PDV, both in

bracoviruses and ichnoviruses [19]. Moreover, these virulence factors have

multiple roles in parasitism, as they disrupt both the immune response and

endocrine balance of the host, by interacting with different cellular targets, some

of which have been identified through detailed functional analyses [23–25, 44, 45].

The pleiotropic effects associated with different viral ANK proteins is likely due to

their capacity to establish a number of intense molecular interactions with

different targets, often mediated by the ankyrin repeats, typically involved in

protein-protein interactions [46]. Therefore, ANK proteins are ideal candidates

for the development of new natural bioinsecticides, as, in theory, they are

potentially able to impair multiple functions, by hitting different receptors.

We focused our attention on TnBVANK1, a virulence factor involved both in

the immune suppression and in the disruption of the ecdysone biosynthesis, when

the coding viral gene is expressed in the tissues of parasitized hosts, infected by

free virions delivered in the haemocoel at the parasitization, along with the egg

and venom [23–25]. The idea of testing its possible oral activity was stimulated by

previous work, which demonstrated that the expression in plant of Cys-motif

proteins, encoded by a polydnavirus or produced by parasitoid-derived cells of

embryonic origin (teratocytes), reduced the leaf damage by caterpillar feeding

activity [20, 21]. The evidence provided by these studies, however, did not take

into account the fate of the parasitoid-derived molecules ingested by the

experimental lepidopteran larvae, and did not shed light on how they exerted a

negative impact on insect feeding on transgenic plants. Indeed, there was no

evidence supporting possible effects on epithelial gut cells of the virulence factor

used and/or of its translocation across the gut barrier, to reach the cognate

receptors located in the haemocoel. Therefore, any observed biological response

induced by these molecules could have been due to their direct effects on the

midgut epithelium and/or to their absorption, or to the absorption of their

smaller domains resulting from protein digestion.

Here we wanted to assess how the transgenic tobacco plants exert their negative

impact on growth and survival of S. littoralis larvae and if the expression level of

the transgene has a measurable influence. The oral activity of TnBVANK1, which

resulted to be dose-dependent, was not associated with any evidence in support of

its gut absorption and transepithelial translocation without undergoing enzymatic

digestion. Indeed, TnBVANK1 and, possibly, tagged smaller fragments were

detected only on the luminal side of the epithelial cells lining the midgut of the

Candidate Bioinsecticide from a Polydnavirus
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experimental larvae alimented with transgenic leaf disks, while no signal was

evident in the haemocoel. Therefore, any duplication of parasitism-induced

alterations, as a consequence of direct interactions with specific haemocoelic

receptors of the entire functional protein, can be reasonably excluded.

The observed uniform and thick layer of immunoreactive material suggested

the possibility that the correct functioning of the absorbing epithelial cells of the

gut could have been impaired by the presence of this barrier, thus limiting the

absorption process and resulting in a kind of starvation effect. This hypothesis has

Figure 6. Effect of different doses of TnBVANK1 on arginine uptake in Spodoptera littoralis BBMV

(Brush Border Membrane Vesicles). (A) Different quantities of BBMV (expressed as mg of proteins)

resuspended in pip buffer (see section 2.9 for details) were pre-incubated for 30 min, without (control) or with

TnBVANK1, in the same buffer in which BBMV were resuspended. For transport experiments preincubated

BBMV were diluted 1:1 with a cocktail containing radiolabeled arginine, to obtain the final composition

reported in section 2.9. (B) BBMV resuspended in phosphate buffer (see section 2.9 for details) were pre-

incubated for 30 min, without (control) or with TnBVANK1, in the same buffer in which BBMV were

resuspended. For transport experiments pre-incubated BBMV were diluted 1:1 with a cocktail containing

radiolabeled arginine, to obtain the final composition reported in section 2.9. Values are means ¡ standard

error of a typical experiment performed in triplicate. *P,0.02, **P,0.001 (Student’s t test).

doi:10.1371/journal.pone.0113988.g006
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been corroborated by different pieces of experimental evidence we provide in the

present study. Indeed, the negative effects on growth and mortality observed were

positively associated with different levels of TnBVank1 gene expression, in the two

transgenic lines tested, suggesting the occurrence of a dose-dependent response.

However, more direct evidence in support of this surface interaction under-

pinning a reduced nutrient absorption is provided by our in vitro experiments,

where the amino acid transport by BBMV was significantly reduced, in a dose-

dependent manner, when incubations were performed in presence of increasing

doses of the recombinant TnBVANK1. It is worth noting that this response was

not observed when the recombinant protein was dissolved in the pip buffer, which

promoted the formation of very large molecular aggregates. This result can be

interpreted as a consequence of the fact that reduced surface/volume ratio in

larger molecular aggregates reduces the number of exposed interacting domains

and generates layers that could be more loosely packed and characterized by lower

clotting efficiency. In this case, the observed secondary structure recorded by CD

is likely due to the formation of structurally organized aggregates, stabilized by

intermolecular interaction [47]. On the contrary, in phosphate buffer TnBVANK1

is not present as a large molecular aggregate but generates smaller structured

oligomers, which likely result in a more extensive surface interaction with

unknown molecular components present on the apical membrane of absorbing

cells, and, thus, negatively affect the efficiency of transport proteins.

Collectively, the experimental data reported indicate that TnBVANK1 is orally

active when ingested by larvae of S. littoralis, which show slower growth and

increased mortality. This is likely induced by the formation of a clotting layer

lining the midgut epithelial cells, which reduces the absorption of nutrients, even

though we cannot rule out the possible transepithelial effect of untagged bioactive

domains, deriving from TnBVANK1 processing. Future studies will have to

include the identification of the midgut molecular domains interacting with

TnBVANK1, in order to shed light on the mechanisms underpinning the reduced

nutrient uptake. In addition, other effects might also contribute to the observed

insecticide activity, such as impairment of membrane-bound enzymes in the

insect midgut, or plant-mediated effects induced by the expression of the

transgene. Indeed, the expression in plants of exogenous proteins with ankyrin

domains, which may interact with a number of regulatory proteins, can have

unpredictable effects on plant performance and on its defense pathways. These are

possible concurring effects, which are worth of future research efforts.

A recent work on lectin mode of action [48] has shown that the ingestion by S.

littoralis larvae of a plant lectin, from Hippeastrum hybrid (Amaryllis) (HHA)

bulbs, does not have any toxic effect on isolated midgut cells in culture, but

interferes with absorption of nutrients. Circumstantial evidence provided by the

same paper indicates that the inhibition of development and the reduced weight

gain observed in vivo are due to a reduced nutrient absorption, caused by the tight

interaction between HHA and the brush border of the midgut epithelial cells. This

is fully compatible with growth retardation effects and appears to be quite similar

to what observed in S. littoralis larvae fed with transgenic plants expressing
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TnBVANK1. Therefore, in both cases, we may have a starvation-like effect, which,

at least in part, may account for the type of negative influence exerted on larval

growth and development. This likely hypothesis could be tested by assessing the

impact of these two unrelated molecules on gene expression, and by comparing

their effect with that induced by starvation. Previous work on Drosophila [49] has

already indicated that part of the complex transcriptional response elicited by the

oral administration of a lectin is similarly induced by starvation, with clear effects

on genes involved in carbohydrate metabolism, lipid transport and proteolysis.

Therefore, the possibility of making a comparative analysis of the gene expression

in S. littoralis larvae, as affected by TnBVANK1, HHA and starvation offers new

tools and opportunities to investigate the multifaceted entomotoxic effects of

lectins, which, to date, are not yet fully understood [50].

The possibility of using molecules of natural origin that do not cause a drastic

decline of the target populations has interesting implications from an applied

perspective. Indeed, reducing the fitness of phytophagous pests, with insecticide

molecules having a moderate impact on their population dynamics, allows to keep

in place their antagonists which are part of the higher trophic levels in the natural

food-webs. This peculiar aspect, in theory, might help in developing IPM

strategies more sustainable from an ecological point of view. However, a careful

evaluation of the possible effects that ANK proteins might have on natural

antagonists (parasitoids and predators), pollinators and non-target higher

organisms is essential to better substantiate their possible future use as novel

bioinsecticide molecules.

Supporting Information

Figure S1. Feeding bioassay with Spodoptera littoralis larvae. Larval growth

curves and pupal weight were not significantly affected by feeding on transgenic

plant tissues compared to controls.

doi:10.1371/journal.pone.0113988.s001 (TIF)

Figure S2. Immunolocalization of TnBVANK1 on transverse sections of

Spodoptera littoralis larvae. In transverse sections of larvae fed on ANK1 Line 1

plants, a positive signal is only visible at the brush border of the midgut

epithelium. Bar: 150 mm.

doi:10.1371/journal.pone.0113988.s002 (TIF)

Figure S3. Western blot analysis on Spodoptera littoralis haemolymph.

Haemolymph proteins (15 mg/lane) were separated by SDS-PAGE, on a 12% gel,

and analyzed by Western blotting, with polyclonal antibody anti-c-Myc. On the

left, nitrocellulose membrane with molecular mass standards (MM in kDa are

indicated on the left) and run samples visualized with ponceau dye. On the right,

the developed film shows that Myc signal was absent in all samples considered

(larvae fed on control tobacco plants - Lane 2, ANK1 Line 1- Lane 3). Tagged

Positope reference protein was used as positive control (Lane 1).

doi:10.1371/journal.pone.0113988.s003 (TIF)
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