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ABSTRACT
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This paper, which is the first of two in a series, provides an h scalar hardening function dependent on the inclastic

overview of a viscoplastic constitutive model that accounts for state variable

time-dependent material deformation (e.g, creep, stess 11, J5 J3 invariants associated with the Willlam-Warnke
relaxation, etc) in monolithic ceramics. Using contimmum threshold function F

principles of engineering mechanics the complete theory is 4, |, pp  invariants associated with the scalar function G
denived from a scalar dissipative potential function first proposed K octahedral threshold shear stress

by Robinson (1978), and later utilized by Duffy (1988). m,n  unitless exponents

Derivations based on a flow potential function provide an R recovery constant

assurance that the inelastic boundary value problem is well posed, r position vector in /Zplane representing deviatoric
and solutions obtained are unique. The specific formulation used component of a stress state
here for the threshold function (a component of the flow potential S'-j deviatoric component of applied stress tensor
function) was originally proposed by Willam and Warnke (1975) w, v component of position vector r

in order 1o formulate constiutive equations for time-independent Y normalized threshold stress

classical plasticity behavior observed in cement and unrinforced & internal state variable tensor

concrete. Here constitutive equations formulated for the flow law &y state variable evolutionary law

(strain rate) and evolutionary law employ stress invariants to &y Kronecker delta

define the functional dependence on the Cauchy stress and a &y flow law (inelastic strain rate)

tensorial state vaniable, This particular formulation of the i effective stress tensar

viscoplastic mode} exhibits a sensitivity to hydrostatic stress, and A scalarfunction in general polynomial form of F;
allows different behavior in tensicn and compression. dependent on J; through the angle of slmilimde’ P

u viscosity constant
NOMENCLATURE 7 pla'ne perpendicular to the hyMc stress line in the
a;; deviatoric component of the state variable tensor Haigh-Westergaard stress space (i.c., the [Fplane)
B constant (in general polynomial form of F) £ M1 .
evolutionary laws Zij effective deviatoric stress tensor

F Bingham-Prager threshold function o threshold stress

G scalar state function a;j appliedCauchysuastensor

H hardening constant e angle of similitude measured in the /Zplane

: Q scalar dissipative potential function
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Subscripts:
be equal biaxial compressive
c compressive

i,j,k  tensorial components
m,n  tensorial components
g 4 v tensorial components
t tensile

Overstrike Characters:

-~ denotes parameters associated with scalar function F
n denotes parameters associated with scalar function G
) ate

INTRODUCTION

With increasing use of ceramic materials in high
temperature applications, the need arises to accurately predict
thermomechanical behavior. This paper will focus on inelastic
deformation behavior associated with these service conditions. A
number of constitutive theories for materials that exhibit
sensitivity to the hydrostatic component of ‘stress have been
proposed that characterize deformation using time-independent
classical plasticity as a foundation. Corapcioglu and Uz (1978)
reviewed several of these theories by focusing on the proposed
form of the individual yield fanction The review includes the
works of Kuhn and Downey (1971), Shima and Oyane (1976)
and Green (1972). Not included is the work by Gurson (1977)
who not only developed a yield criteria and flow rule, but also
discussed the role of void nucleation. Subsequent work by Mear
and Hutchinson (1985) extended Gurson's work to include
kinematic hardening of the yield surfaces. Although the
previously mentioned theories admit a dependence on the
hydrostatic component of stress, none of these theories allow
different behavior in tension and compression. Willam and
Warnke (1975) proposed a yield criterion for concrete that admits
a dependence on the hydrostatic component of stress and
explicitly allows different material responses in tension and
compression. Several formulations of their model exdst, ie., a
three-parameter formulation and a five-parameter formulation.
For simplicity the work presented here builds on the three-
parameter formulation,

The aforementioned theories are somewhat lacking in that
they are unable to capture crecp, relaxation and rate-sensitive
phenomena exhibited by ceramic materials at high temperature.
A noted exception is the recent work by Ding et al. (1994), as
well as the work by White and Hazime (1995). Another exception
is an article by Liu et al. (1995) which is an extension of the work
presented by Ding and coworkers. As these authors point out,
when subjected to elevated service temperatures, ceramic
materials exhibit complex thermo-mechanical behavior that is
inherently time dependent, and hereditary in the sense that

current behavior depends not only on current conditions, but also
on thermo-mechanical history. This paper ~presents the
formulation of a macroscopic continuum theory that captures
these time dependent phenomena Specifically, the overview
contained in this paper focuses on the complete multiaxial
derivation of the constitutive model, and examines the attending
geometrical implications when the Willam-Warnke (1975) yicld
function is utilized as a scalar threshold function. A second
article, which will appear shortly, examines specific time-
dependent stress-strain behavior that can be modeled with the
constitutive relationship presented in this article, No attempt is
made here to assess the accuracy of the model in comparison to
experiment. A quantitative assessment is reserved for a later date,
after the material constants have been suitably characterized for a
specific ceramic material. The quantitative assessment could
easily dovetail with the nascent efforts of White and coworkers.

FLOW POTENTIAL

Early work in the field of metal plasticity indicated that
inelastic deformations are essentially unaffected by hydrostatic
stress, This is not the case for ceramic based material systems,
unless the ceramic is fully dense. The theory presented here
allows for fully dense material behavior as a limiting case. In
addition, as Chuang and Duffy (1994) point out, ceramic
materials exhibit different time-dependent behavior in tension
2nd compression. Thus inclastic deformation models for ceramics
must be constructed in a fashion that admits sensitivity to
hydrostatic stress and differing behavior in tension and
compression. This will be accomplished here by developing an
extension of a J; model first proposed by Robinson (1975) and
later extended to sintered powder metals by Duffy (1988).
Although the viscoplastic model presented by Duffy (1988)
admitted a sensitivity to hydrostatic stress, it did not allow for
different material behavior in tension and compression.

The complete theory is derivable from a scalar dissipative
potential function identified here as Q. Under isothermal
conditions this function is dependent upon the applied stress (oy )
and internal state variable (ay), i.e.,

Q = Q(cr,-j a,-j) (1)

The stress dependence for a J; plasticity model or a J;
viscoplasticity model is usually stipulated in terms of the
deviatoric components of the applied stress, i.e.,

S. = 0a

ij - (113)0}1' ij (2)

ij

and a deviatoric state variable

-
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Gy = ay - 1 3ay 6, @

For the viscoplasticity model presented here these deviatoric
ny =0y - ay @
and an effective deviatoric stress, identified as

Eu = Su - Gy )

Both tensors, ie, n; and Z;, are utilized for notational |

convenience.

The potential nature of () is exhibited by the manner in
which the flow and evolutionary laws are derived. The flow law is
derived from Q by taking the partial derivative with respect to the
applied stress, ie,

a0

éu = ? (6)
L

The adoption of a flow potential and the concept of normality, as
expressed in equation {6), were introduced by Rice (1970). In his
work . the above relationship was established using
thermodynamic arguments. The authors wish to point out that
equation (6) holds for each individual inelastic state.

The evolutionary law is similarly derived from the flow
potential. The rate of change of the internal stress is expressed as

. -4 o]
e, =- '&_' Y
Ly

where h is a scalar function of the inelastic state variable (i.e., the
internal stress) only. Using arguments similar to Rice's, Ponter
and Leckie (1976) have demonstrated the appropriateness of this
type of evolutionary law,

To give the flow potential a specific form, the following
integral format proposed by Robinson (1978) is adopted

n=x’[( JIF“dF+( )J‘G"dc] ()

where & R, H, and K are material constants. In this formulation
A is a viscosity constant, H is a hardening constant, # and m are
uniticss exponents, and R is associated with recovery. The
octahedral threshold shear stress K appearing in equation (8) is

generally considered a scalar state variable which accounts for
isotropic hardening (or softening). However, since isotropic
hardening is ofien nepligible at high bomologous temperatures (>
0.5), to a first approximation X is taken to be a constant for
metals. This assumption will be adopted in the present work
regarding ceramic materials, The reader is directed to the work
by Janosik (1996) for specific details regarding the experimental

test matrix needed to characterize these parameters.

Several of the quantities identified as material constants in
the theory are strongly temperature dependent in a non-
isothermal environment. However, for simplicity, the present
wark is restricted to isothermal conditions. A paper by Robinson
and Swindeman (1982) provides the approach by which an
extension can be made to nonisothermat conditions. The present
article concentrates on representing the complexities associated
with establishing an inelastic constitutive model that will satisfy £
the assumptions stipulated herein for ceramic materials.

The dependence upon the cffective stress J; and the

deviatoric internal stress ay ammuoawedlhroughﬂwscalar
functions

F

F (,,7,) ©)

]

G G (a,-j,ai_,-) (10)
Inclusion of 7; and ay; will account for sensitivity to hydrostatic
stress. The concept of a threshold function was introduced by &
Bingham (1922) and later generalized by Hohenemser and
Prager (1932). Correspondingly, F will be referred to as a S
Bingham-Prager threshold function. Inelastic deformation occurs
only for those stress states where

F (Zjm;) > 0 (1)

For frame indifference, the scalar functions F and G (and
hence €2) must be form invariant under all proper orthogonal Z
transformations. This condition is ensured if the functions depend
only on the principal invariants of X; a; 77; and ay, that is

F=F(L, 7. 7) (12)
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G = G (/s )s) @3)
where
}; =Ty (14)
- I ' ]
J2 = [‘2') L; L (1s)
-~ 1
Ji = (3’) 2ij T Zy (16)
and
J 1 & &y Y]
' z
4= (3) e “
1
A= [3) @i G y; (19)

?hmesmhrqmnﬁﬁsmedemaﬂsofwhﬂisknmh
mvariant theory as an integrity basis for the functions Fand G.

A three parameter flow criterion proposed by Willam and
Warnke (1975) will serve as the Bingham-Prager threshold
function, F. The Willam-Warnke criterion uses the previously
mentioned stress invariants to define the functional dependence
on the Cauchy stress (o;) and internal state variable (a;). In
general, this flow criterion can be constructed from the following
general polynomial

F = A{—ﬁ + B[—Q-J -1 20)

where o, is the uniaxial threshold flow stress in compression and
B is a constant determined by considering homogeneousty
stressed elements in the virgin inelastic state, i.e.,

a, =0 1)
Note that a threshold flow stress is similar in nature to a yield
stress m classical plasticity. In addition, 2 is 2 function dependent
on the invariant J; and other threshold stress parameters that are
defined momentarily. The specific details in deriving the final

form of the function F can be found in Willam and Warnke
(1975), and this final formulation is stated here as

@)

for brevity. The function F is implicitly dependent an J; through
the function » which is characterized in the next section. This
function is dependent on the angle of similitude & which is
defined by the expression

cos(38) = (3(‘[:)5, @)

The invariant J; in equation (22) admits a seasitivity to
hydrostatic stress. The invariant J; in equation (23) accounts for
different behavior in tension and compression, since this
invariant changes sign when the direction of 2 stress component
is reversed The parameter p characterizes the tensile hydrostatic
threshold flow stress. This parameter will also be considered in
more detail in the next section.

A similar functional form is adopted for the scalar state
function G, i.e.,

G(Jl /2 /3)"0_ (9)[2/!] +3;:;‘ (u)

The function G stipulated in the expression above is implicitly
dependent on f; through a second angle of similitude, 8, which is
defined by the expression

eos(.?@) =

This formulation assumes a threshold does not exist for the scalar
function G, and follows the framework of previously proposed
constinxtive models based on Robinson’s (1978) viscoplastic law.

2( 4)

THRESHOLD PARAMETERS
For the Willam-Wamke three parameter formulation the
model parameters include o;, the tensile uniaxial threshold stress,
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4, the compressive wniaxial threshold stress, and o, the equal
biaxial compressive threshold stress. The function r(Z) appearing
meqmnon(n)andthcﬁmcunnr(a)appmmgmeqlmonm)
depend implicitly on these parameters. This is demonstrated later
in this section.

To explore the nanhrre of the potential fumction, level surfaces
of © are projected onto various stress subspaces for the virgin
implies surfaces of (O=constant are also surfaces of F=constant
As noted previously, F plays the role of a Bingham-Prager
threshold function. Since there are an infinite family of surfaces
F=constant, each associated with a particular magnitude of the
intlastic strain rate, we restrict the scope of this discussion to
threshald surfaces to gain an understanding of the physical
nature of the current model.

The parameters o; and o, are depicted in Figure 1 where a
threshold surface (F=0) has been projected onto the ;02 stress
subspace. For illustration, a set of threshold flow stress values has
been adopted that roughly corresponds to values anticipated for
isotropic  monolithic ceramics Specifically, the compressive
uniaxial threshold stress value is o, = 2.00 MPa. The tensile
uniaxial threshold stress value is o; = 0.20 MPa, and the equal
biaxial compressive threshold stress valee is g = 2.32 MPa

4 ox (MPa)

on
i)

05

Figure 1 Threshold function projected onto the &;; - oz
stress plane,

Using these stress threshold values the flow fimction in Figure 1 -

defines a smooth flow surface for any combination of stresses.
States of stress lying within the How surface depicted in this
figure represent elastic states of stress. Inelastic flow occurs when
any load path reaches this surface, or other swifaces beyond (ie.,

surfaces where F>>0). It is readily discerned from this figure that
the constitutive model allows different fiow behavior in tension

The threshold parameter o, can be seen when a cutting
plane is passed through the flow surface (F=0) in the Haigh-
Westergaan] stress space. Specifically the cutting plane comtains
the hydrostatic stress line and it intersects the conic surfaceo
(F=0) along two lines (see Figure 2). By convention, these lines>
of intersection are termed meridians. The relative position of;
md:mmd:anxsdeﬁnedbyﬁ;eangleofsmulmdea(whxdnso
depicted in Figure 3). Far the tensile meridian #=0, andforthc:
cmnpzmmmmd:ankm'lhewnsleandmptmvem
mmmms.demcwdmﬁgmez,mlmwforﬂmthree-pmmm
Willam-Wargke criterion. Meridians are nonlinear for the five-S
parameter formulation, In Figure 2 all three parameters, i.e., &,

Ipo

@)

Tensile Meridian,8 = 0 4

\ok\ -

2
e //

Compressive Meridian,8 = n

+ =

Figure 2 Threshold fow stresses defined by the tensile and
. i
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g, and g_ are visible, 'I‘hesepamnetetsaredeﬁnedbythem
intersection of load paths with the flow surface. Thisg
cha:actmzanonofthethmsholdﬂowmxsdm'bedmv
detail in Palko (1992). A!saonotelh:e‘lthnst'r.'n:nul::\tu:nnofthc<
Bingham-Prager flow function introduces 3 dq:c:dcmconthcm
hydrostatic companent of the stress state. Combining views from S
F@mZandSmthe}hlgh-Wstagamdmwaoenddsa>
ﬂowsmfacem:h:shapeofapymmdwnhamangularbasnm‘“
arefe:mce,typxcalJ;plasuc:tymodelshaveyxeldanfaces:ha:o
are right circular cylinders in the Haigh-Westergaard stress”
space.



Cutting plane in
Figure 2

o3

Figure3 Flow surface projected onto the /Fplane in the Haigh-
Westergaard stress space.

In lieu of the previously mentioned three threshold stress

parameters, the threshold parameters
_ K L
P __“13: . (26)
6 2 ch}:
o=z s @7
5/ 2L +T,
and
n2
rc=(£) b 1 @8)

are utilized in order to simplify the expression presented later for
the function r, These alternative threshold stress parameters are
dependent on the parameters o, ¢, and o,. Specifically, the
normalized threshold stresses

¥ = — 29

Toe 30)

are introduced to simplify equations (26) through (28). Details of
the derivations for the parameters appearing in equations (26)
through (28) can be found in eitber Palko (1992) or Chen (1982).

The parameter p is depicted graphically in Figure 2. As
noted earlier this parameter is the tensile threshold hydrostatic
flow stress. Willam and Wamnke postulated that a single sector
(-3 £ 6 < #73) of the flow surface in the JZplane could be
represented as a segment of an ellipse. The major and minor axes
of the ellipse are formulated as functions of the intercepts r, and r,
(see Figure 3). The minor axis of the ellipse is assumed to
coincide with a tensile axis. However, the center of the ellipse
does not necessarily coincide with the hydrostatic axis, either for
a material in the virpin state, or for a material that has been
subjected to a service history. The reader should coasult Palko

- {1992) for the complete denvation With the function r(3)

defined the flow surface can be completely mapped in a /Fplane,
as depicted in Figure 3.

For either & or 6 the function r(§) is defined as

© - o

u(ﬁ) = Zrc(r -r,) (8)
Zr,~r Y4 -r7)ees’6) @D

2 13
+35r° —4nr. ]

oWe)=4(7 ~n7)eos?(6) + (n-2:)  ©9)

For the definitions expressed in equations (31) through (33)

4 T
- < =
3 S 6 3 G9

-Physi@l}y,r@rq)mtsthedeviamﬁcwmponemdam

state, since this vector lies in the J7plane. Note that equation (31)
yields r(@ = r; for the special case of & = 0. Similarly, (@) = r.
for = 73.
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FLOW SURFACES - INTERPRETATION

As in Robinson's original theory, the current model is closely
tied to the concepts of a potential fimction and normality. It is this
potential-normality structure that provides a consistent
framework According to the stability postulate of Drucker
(1959), the concepts of normality and convexity are important
requirements which must be imposed on the development of a
flow or yield surface. Constitutive relationships developed on the
basis of these requirements assure that the inelastic boundary-
value problem is well posed, and solutions obtained are unique.
Experimental work by Robinson and Ellis (1985) has
demonstrated the validity of the potential-normality structure
relative to an isotropic J; alloy (iLe., type 316 stainless steel). With
this structure, the direction of the inelastic strain rate vector for
" each stress point on a given surface is directed normal to the flow
surface F=constant (see Figure 4). Without experimental

Figure 4 Flow surfaces associated with a monotonically
increasing value of the flow function F.

evidence to the contrary, it is postulated that this structure is
similarty valid for isotropic monolithic ceramic materials,

For constitutive models based on Robinson's (1978) original
framework flow surfaces generated by non-zero values of F are
associated with different inelastic strain rates. Figure 4 illustrates
a typical family of level surfaces generated by monotonically
increasing the magnitude of F (a; =0). The family is projected
cnto the oy~Cp stress plane Large values of F=constant
correspond to flow qurfaces that eventually cluster forming a
limiting surface. This implies large changes in inelastic strain

rate for only small stress changes amalogous to the yield
condition of classical plasticity. This feature was pointed out
ariginally by Rice (1970) for constitutive models based on
equation (6).

The convexity of the proposed flow surface assures stable
requirement also implies that level surfaces of a finction ares

closed surfaces, since an open region of the flow surface allows
the existence of a load path along which failure will never occur.

SPEOJUMO|

oy, (MPa)

»

a2

.7 4

Figure § Flow surfaces as a function of the ratio r/7,.
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For the Willam-Warnke mode), convexity is assured if the ratio of
the intercepts in the J[Fplane satisfies the condition 1.0 2 r, 4. >2
0.5. The family of surfaces shown in Figure $ illustrates thes
concept of convexity for surfaces having various r./, ratios. Here?
the values of the ratio vary from 0.726 to 0.487. Notice thes
surfaces identified as "e" and *f" violate the convexity condition. 2

d

constitutive theory presented herein) depenerates to simpler
models under special limiting conditions. For the case of #. = #, =
ro, Where 7, is the same for any angle @, the model degenerates to
a two-parameter formulation, ie, the Drucker-Prager flow
criterion. When projected onto the o;~0 stress plane under
these conditions, the flow surface depicted in Figire 1
degenerates to an ellipse (see Figure 6), Note that the major axis




of this ellipse is aligned with the bisector of the first and third

quadrants, and the intercepts along the o;;and o> axes represent.

equal in magnitude, even though the flow surface degenerates to
a arcle in the /Zplane. The Drucker-Prager formulation yields

oz (MFPa)

Figure 6 Flow surface for the Drucker-Prager formulation

different tensile and compressive threshold stresses because the
formulation produces a right circular cone in the three-
dimensional Haigh-Westergaard stress space. For the special case
where r. = r, = r, and p = oo, the Willam-Warnke model reduces
to the single-parameter Von Mises criterion. For this case, the
flow surface degenerates to a cixle in the JFplane (a right
circular cylinder in the three-dimensional Haigh-Westergaard
stress space) and an ellipse in o3 —02 stress space, which is
depicted in Figure 7.

STRESS-STRAIN RELATIONSHIP

Employing the chain rule for differentiation and taking the
partial derivative of £ with respect to o}, as indicated in equation
(6), yields

. (an] SF 81 ony
o 8F)| 81, dn,, o,
,OF 87, 9%, 98,
8J,38%,, 88, do,,

a}: a_j oL, 8S,,
5.] 2z, 858, do,;

where equation (8) has been utilized to define Q.

-2 -
Figure 7 Flow surface for the Von Mises formulation

AEvaluaﬁnthepanialderivaﬁvetﬂmsineqmﬁon(BS)
yields the following expression for the flow law .

278,
£,;=Co Cl‘su"'czzu'*'cz e TT 3 6)

where the magnimdes of the coefficients C,, C,, C;, and C; are
dependent on the invariants defined in equations (14) through
(26) (i.e, I;, 75 and Jy), the three threshold parameters (ie., o,
o, and o), and the flow potential parameters utilized in
equation (8) (i.e., & X, and ) . The first coefficient is defined by
the expression

K*F*
G = 5 )

The remaining three coefficients are defined as

1
C] = 3p0‘, (38)
r 2
[ , ] 2
ZorN 22
39)

4T

+
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Notcttmthcpamaldmdr@appmnglﬂm
(39) and (40) are defined as

A qﬁj dé
_ 1)
_::(%[;‘ﬁ] 2J2[4(J,;J.§Z(J,)’]”’
.- -lfa[%@]
42)

B - ety
a2, r)[r: )lB)edd)

n2
[4(r -r, oos +5r 4’,":]

el

Similarly, wilizing the chain rule for differentiation and
taking the partial derivative of QQ with respect to the internal
stress ay as indicated in equation (7) yields

& = 2Q dF + a2 3G
15 ,9}:(9(;” é‘Gé‘a

o (an) SF 31 ony
dF)| 81 o, oa,;
LOF aJ, 8%, da,,

Y%7, 5%, 2a,, oa,

5F 27, 6%, da,,
aJ /%, éa,, da,

. (an] oG @/,
2G)|é s day
5G é /, da,
5/2 da,, aa,,

+ 3G a /3 aaw
0" /3 aanv aaij

I

Evaluating the partial derivative terms in equation (43)
yields the following expression for the evolutionary law

ij ij CJ[CJJI'}' + C’“U

+ G (a;-,a,,- - 2;3}%-]]} “

“hmsgmgrvmmeqmnonm The magnitedes of the 5
coefficients C,, Cs, and Cs are dependent on the invariants ;
defined in equations (17) through (19) Gie, /, /> and fy), the &
three threshold parameters (ie., & 0, and o), and the flow
potential parameters utilized in equation (8) (ie., R, H, K, and £

&, = h{&' -
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m). The first coefficient is defined by the expression &
K* RG" >

C, = 47) ¢

4 H (7)%

The remaining two coefficients are defined as




48)

AT -

Note that the partial derivatives of (&) appearing in equations
(48) and (49) are defined as

- ]

G /-

) [dv(f")] P
v @)l # ||, /2[4( 12) - 27 /3)2]

Z’ﬁ) _ -[jéj[fd_‘?} 1)

K [W@} [y o ik

Equations (36) and (46) constitute a multiaxial statement of
a constitutive theory for isotropic materials. In the present and
subsequent developments, it will serve as an inelastic deformation
model for ceramic materials.

SUMMARY AND CONCLUSIONS

A multiaxial continuum theory was presented for predicting
the inelastic response of isotropic monolithic ceramic materials,
The viscoplastic constitutive model was derived from a single
scalar dissipative function which has similar geometrical
interpretations (e.g, convexity and normality) as the yield
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function encountered in classical plasticity, By adopting a flow
potential to derive the theory, certain required continuum
properties can be demonstrated, thereby emsuring that the
resulting inelastic boundary value problem is well-posed, and
solutions obtained are unigue.

Congtititive equations for the flow law (strain rate) and
evolutionary law are formulated based on a threshold function
which exhibits a sensitivity to hydrostatic stress and allows
different behavior in tension and compression. Further, inglastic
deformation is treated as inherently time-dependent A rate of
inelastic strain is associated with every state of stress. As 2 result,
resulting from applied boundary conditions and are not treated
separately in an ad hoc fashion.

The overview presented in this paper has provided a
qualitative assessment of the capabilities of this viscoplastic
model in capturing the complex thermomechanical behavior
exhibited by ceramic materials at elevated service temperatures.
Incorporating this model into a non-linear finite element code
would provide industry the means to mumerically simmlate the
inherently time-dependent and bereditary phenomena exhibited
by these materials in service.
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