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ABSTRACT 
This paper, which is the first of two in a series, provides an 

overview of a viscoplastic constitutive model that accounts for 
time-dependent material deformation (e.g., creep, stress 
relaxation, etc.) in monolithic ceramics. Using continuum 
principles of engineering mechanics the complete theory is 
derived from a scalar dissipative potential function first proposed 
by Robinson (1978), and later utilized by DIA ,  (1988). 
Derivations based on a flow potential function provide an 
assurance that the inelastic boundary value problem is well posed, 
and solutions obtained are unique. The specific formulation used 
here for the threshold function (a component of the flow potential 
function) was originally proposed by Wiliam and Wamke (1975) 
in order to formulate constitutive equations for time-independent 
classical plasticity behavior observed in cement and unreinforced 
concrete. Here constitutive equations formulated for the flow law 
(strain rate) and evolutionary law employ stress invariants to 
define the functional dependence on the Cauchy stress and a 
tensorial state variable. This particular formulation of the 
viscoplastic model exhibits a sensitivity to hydrostatic stress, and 
allows different behavior in tension and compression. 

NOMENCLATURE 
au 	deviatoric component of the state variable tensor 
B constant (in general polynomial form of F) 
C 	coefficient used to simplify expressions for flow and 

evolutionary laws 
F 	Bingham-Prager threshold function 
G scalar state function 
H hardening constant 

scalar hardening function dependent on the inelastic 
state variable 

Ii, .12, .13  invariants associated with the Wifilam-WarnIce 
threshold function F 

)1 , "2, )3 invariants associated with the scalar function G 
K 	octahedral threshold shear stress 
m, n 	unidess exponents 

recovery constant 
• position vector in /7-plane representing deviatoric 

component of a stress state 
• deviatoric component of applied stress tensor 
u, v 	component of position vector r 
• normalized threshold stress 
• internal state variable tensor 
at; 

 
state variable evolutionary law 

4; 	Kronedcer delta 
E 	flow law (inelastic strain rate) 

Th.; 	effective stress tensor 
A 	scalar function in general polynomial form of F; 

dependent on .13  through the angle of similitude 8 
p 	viscosity constant 
H 	plane perpendicular to the hydrostatic stress line in the 

Haigh-Westergaard stress space (i.e., the /7-plane) 
3.14159 •-• 

p 	Willam-Warnice hydrostatic threshold parameter 
Z.; 	effective deviatoric stress tensor 
a 	threshold stress 

cif 	applied rmv-hy stress tensor  

8 	angle of similitude measured in the /Slane 
CI 	scalar dissipative potential function 
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Subscripts: 
be 	equal biaxial compressive 

compressive 
1, 1,  k tensorial components 

n tensorial components 
q, v. v tensorial components 
t tensile 

Overstnie Characters: 
denotes parameters associated with scalar function F 

A 	denotes parameters associated with scalar function G 
rate 

INTRODUCTION 
With increasing use of ceramic materials in high 

temperature applications, the need arises to accurately predict 
thennomechanical behavior. This paper will focus on inelastic 
deformation behavior associated with these service conditions. A 
number of constitutive theories for materials that exhibit 
sensitivity to the hydrostatic component of stress have been 
proposed that characterize deformation using time-independent 
classical plasticity as a foundation. Corapcioglu and Uz (1978) 
reviewed several of these theories by focusing on the proposed 
form of the individual yield function. The review includes the 
works of Kuhn and Downey (1971), Shima and Oyane (1976) 
and Green (1972). Not included is the work by arson (1977) 
who not only developed a yield criteria and flow rule, but also 
discussed the role of void nucleation. Subsequent work by Meer 
and Hutchinson (1985) extended Gurson's work to include 
kinematic hardening of the yield surfaces. Although the 
previously mentioned theories admit a dependence on the 
hydrostatic component of stress, none of these theories allow 
different behavior in tension and compression. Wiliam and 
Warnke (1975) proposed a yield criterion for concrete that admits 
a dependence on the hydrostatic component of stress and 
explicitly allows different material responses in tension and 
compression. Several formulations of their model exist, i.e., a 
three-parameter formulation and a five-parameter formulation. 
For simplicity the work presented here builds on the three-
parameter formulation. 

The aforementioned theories are somewhat lacking in that 
they are unable to capture creep, relaxation and rate-sensitive 
phenomena exhibited by ceramic materials at high temperature. 
A noted exception is the recent work by Ding et al. (1994), as 
well as the work by White and Hazime (1995). Another exception 
is an article by Liu et al. (1995) which is an extension of the work 
presented by Ding and coworkers. As these authors point out, 
when subjected to elevated service temperatures, ceramic 
materials exhibit complex thermo-mechanical behavior that is 
inherently time dependent, and hereditary in the sense that  

current behavior depends not only on current conditions, but also 
on thermo-mechanical history. This paper presents the 
formulation of a macrosoapic continuum theory that captures 
these time dependent phenomena Specifically, the overview 
contained in this paper focuses on the complete multiaxial 
derivation of the constitutive model, and examines the attending 
geometrical implications when the Willam-Warnlo (1975) yield 
function is utilized as a scalar threshold function. A second 
article, which will appear shortly, examines specific time-
dependent stress-strain behavior that can be modeled with the 
constitutive relationship presented in this article. No attempt is 
made here to assess the accuracy of the model in comparison to 
experiment. A quantitative assessment is reserved for a later date, 
after the material constants have been suitably characterized for a 
specific ceramic material. The quantitative assessment could 
easily dovetail with the nascent efforts of White and coworkers. 

FLOW POTENTIAL 
Early work in the field of metal plasticity indicated that 

inelastic deformations are essentially unaffected by hydrostatic 
stress. This is not the case for ceramic based material systems, 
unless the ceramic is fully dense. The theory presented here 
allows for filly dense material behavior as a limiting case. In 
addition, as Chuang and Duffy (1994) point out ceramic 
materials exhibit different time-dependent behavior in tension 
and compression. Thus inelastic deformation models for ceramics 
must be constructed in a fashion that admits sensitivity to 
hydrostatic stress and differing behavior in tension and 
compression. This will be accomplished here by developing an 
extension of a .12 model first proposed by Robinson (1975) and 
later extended to sintered powder metals by Duffy (1988). 
Although the viscoplastic model presented by Duffy (1988) 
admitted a sensitivity to hydrostatic stress, it did not allow for 
different material behavior in tension and compression. 

The complete theory is derivable from a scalar dissipative 
potential function identified here as 0. Under isothermal 
conditions this function is dependent upon the applied stress (c4 ) 
and internal state variable (c4), i.e., 

a = 12(er ; 	 (1) 

The stress dependence for a J2  plasticity model or a J2 
viscoplasticity model is usually stipulated in terms of the 
deviatoric components of the applied stress, i.e., 

s j  = al;  - (113) cr a Su 
	(2) 

and a deviatoric state variable 

2 
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au  = 	- (113)akk  Su 	(3) 

For the viscoplasticity model presented here these deviatoric 
tensors are incorporated along with the active strew 

u  = au  - au 	 (4) 

and an active deviatoric stress, identified as 

Eu  = Su  - au 	 (5) 

Both tensors, i.e., rk and 4 are utilized for notational 
convenience. 

The potential once of 0 is exhibited by the manner in 
which the flow and evolutionary laws are derived. The flow law is 
derived from 0 by taking the partial derivative with respect to the 
applied stress, i.e., 

u 	ar if 
- 

an 	
(6) 

The adoption of a flow potential and the concept of normality, as 
erg:pressed in equation (6), were introduced by Rice (1970). In his 
work, the above relationship was established using 
thermodynamic arguments The authors wish to point out that 
equation (6) holds for each individual inelastic state. 

The evolutionary law is similarly derived from the flow 
potentiaL The rate of change of the internal stress is expressed as 

a 	
at, 
80 	

(7) 

where h is a scalar function of the inelastic state variable (i.e., the 
internal stress) only. Using arguments similar to Rice's, Ponter 
and Ledcie (1976) have demonstrated the appropriateness of this 
type of evolutionary law. 

To give the flow potential a specific form, the following 
integral format proposed by Robinson (1978) is adopted 

= K 2[(-11 dF +(-111 GmdG] 	(8) .2p 

where p R. H, and K are material constants. In this formulation 
p is a viscosity constant, H is a hardening constant, n and to are 
unitless exponents, and R is associated with recovery. The 
octahedral threshold shear stress K appearing in equation (8) is 

generally considered a scalar state variable which accounts for 
isotropic hardening (or softening). However, since isotropic 
hardening is often negligible at high homologous temperatures ("a 
0.5), to a first approximation K is taken to be a constant for 
metals. This assumption will be adopted in the present work 
regarding ceramic materials The reader is directed to the work 
by Janos& (1996) for specific details regarding the experimental 
test matrix needed to characterize these parameters 

Several of the quantities identified as material constants in 
the theory are strongly temperature dependent in a non-
isothermal environment However, for simplicity, the present 
work is restricted to isothermal conditions. A paper by Robinson 
and Swindeman (1982) provides the approach by which an 
extension can be made to nonisothennal conditions. The present 
article concentrates on representing the complexities associated 
with establishing an inelnoir constitutive model that will satisfy 
the assumptions stipulated herein for ceramic materials 

The dependence upon the effective stress 4 and the 
deviatoric internal stress ag, are introduced through the scalar 
functions 

	

F = F (Eu,q u ) 	 (9) 

and 

	

G = G (a u , a u ) 	 (10) 

Inclusion of ik and a#  will account for sensitivity to hydrostatic 
stress. The concept of a threshold function was introduced by 
Bingham (1922) and later generalized by Hohenemser and 
Prager (1932). Correspondingly, F will be referred to as a 
Bingham-Prager threshold function. Inelastic deformation onus 
only for those stress states where 

	

F (Zu ,q u ) > 0 	 (11) 

For frame indifference, the scalar functions F and G (and 
hence 0) must be form invariant under all proper orthogonal 
transformations This condition is ensured if the functions depend 
only on the principal invariants of Z, a, th and ari, that is 

	

F = F (71, :72  , J, 	(12) 

and 
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(24) 3 n, 
r, 

G = G 	j, /2, b 	(13) 

= all  

au au 

= (3) au air an 

These scalar quantities are elements of what is known in 
invariant theory as an integrity  basis for the functions F and G. 

A three parameter flow criterion proposed b y  Wilk= and 
Wamke (1975) Will serve as the Bingham-Prager threshold 
function, F. The Willam-Wamke criterion uses the previousl y  
mentioned stress invariants to define the functional dependence 
on the Cauchy  stress (ad and internal state variable (at). In 
general, this flow criterion can be constructed from the followin g  
general polynomial 

BEL) — 1 (20) 
cr, 

where cr, is the uniaxial threshold flow stress in compression and 
B is a constant determined by  considering homogeneously 
stressed elements in the virgin inelastic state, i.e., 

if = 0 
	

(21) 

Note that a threshold flow stress is similar in nature to a yield 
stress in classical plasticity. In addition, A is a fimciion dependent 
on the invariant 73 and other threshold stress parameters that are 
defined momentarily. The specific details in deriving the final 

form of the function F can be found in Wiliam and Warnke 
(1975), and this final formulation is stated here as 

F 	jv .73 	1 [ 1 112J2 1 	

(22) 

1 
3n, 

for brevity. The function F is implicitly dependent on Xi through 
the function r which is characterized in the next section. This 
function is dependent on the angle of similitude U which is 
defined by  the expression 

cc's (369 = 
2(34

312 
(3,11; 13 	

(23) 

The invariant 17 in equation (22) admits a sensitivity to 
hydrostatic stress. The invariant .7.; in e quation (23) amts for 
different behavior in tension and compression, since this 
invariant changes sign when the direction of a stress component 
is reversed. The parameter p characterizes the tensile hydrostatic 
threshold flow stress. This parameter will also be considered in 
more detail in the next section. 

A similar functional form is adopted for the scalar state 
function G, i.e., 

{ 2 /2  In 
G( I ,  /2. 	.= 	r(b.) 	5 	-r  

The function G stipulated in the expression above is implicitl y
dependent on /3 through a second angle of cimilinifis, 8, which is  
defined by  the expression 

(3131  A 
cos (3/9) — 

2(4)
3/2  

This formulation assumes a threshold does not exist for the scalar 
function G, and follows the framework of previously proposed 
constitutive models based on Robinson's (1978) viscoplastic law. 

THRESHOLD PARAMETERS 
For the Willam-Warnke three parameter formulation the 

model parameters include crt, the tensile tmiaxial threshold stress, 

where 

and 

(25) 

4 
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Tensile Meridiani.  =0 

cc  

Compressive Meridiaa = it 

(-72)" 

th, the compressive imiaxial threshold stress, and crba  the equal 
biaxial ccarqxessive threshold stress. A  The function r(M appearing 
in equation (22) and the fimcdon r(0) appearing in equation (24) 
depend implicitly on these parameters. This is demonstrated later 
in this steam. 

To explore the nature of the potential fimction, level =faces 
of Cl are projected onto varies's stress subspaces for the virgin 
inelastic Stat Restricting ow view to the virgin inelastic Sate 
implies surfaces of D=amstant are also steams of F —;:onstant 
As noted previously, F plays the Mk of a Bingham-Prager 
threshold function. Since there we an infinite family of surfaces 
fc- onstant, each associated with a partialar magnitude of Or 
inelastic strain rate, we restrict the scope of this discussion to 
threshold surfaces to gain an imderstanding of the physical 
nature of the current modeL 

The parameters ci and cre  are depicted in Figure 1 where a 
threshold surface (F=0) has been projected onto the ern-022 stress 
subspace. For illustration, a set of threshold flow stress values has 
been adopted that roughly corresponds to values anticipated for 
isotropic monolithic ceramics. Specifically, the compressive 
uniaxial threshold stress value is a, = 2.00 MPa. The tensik 
imiaxial threshold stress value is c = 0.20 MPa, and the equal 
biaxial comp:wive threshold stress value is al c. = 2.32 MPa. 

-3 

Figure 1 Threshold function projected onto the an - a22  
stress plant 

Using these stress threshold values the flow function in Figure 1 • 
defines a smooth flow surface for any combination of stresses. 
States of stress lying within the flow surface depicted in this 
figure represent elastic states of =est Inelastic flow mats when 
any load path reaches this surface, or other surfaces beyond (i.e., 

surfs= where .P>0). It is readily discerned from this figure that 
the constitutive model allows different flow behavior in tension 
and compression. 

The threshold parameter as  can be seen when a cutting 
plane is passed through the flow surface (F=0) it the Haigh-
Westergaard stress space. Specifically the cutting plane contains 
the hydrostatic stress line and it intersects the conic =face 
(F=0) along two lines (see Figure 2). By convention, these lines 
of intersection are termed meridians. The relative position of 
each meridian is defined by the angle of similitude V (which is 
depicted in Figure 3). For the tensile meridian and for the 
compressive meridian E/Z The tensile and compressive 
meridians, depicted in Figure 2, are linear for the three-parameter 
Willarn-Wamke criterion. Meridians are nonlinear for the five-
parameter formulation. In Figure 2 all three parameters, i.e., ert, 

Figure 2 Threshold flow stresses defined by the tensile and 
compressive meridians 

ag, and as  are visible. These parameters are defined by the 
intersection of load paths with the flow surface. This 
characterization of the threshold flow stresses is described in 
detail in Palico (1992). Also note that this formulation of the 
Bingham-Prager flow function introduces a dependence on the 
hydrostatic component of the stress state. Combining views from 
Figures 2 and 3 hi the Haigh-Westergaard stress space yields a 
flow surface in the shape of a pyramid with a triangular base. As 
a reference, typical .17 plasticity models have yield surfaces that 
are right circular cylinders in the Haigh-Westergaard stew 
space. 
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crbe 
cr, 

(30) Ybe  = 

Figure 3 Flow surface projected onto the /7-plane in the Haigh- 
Westergaard stress space. 

In lieu of the previously mentioned three threshold stress 
parameters, the threshold parameters 

_ YbeYt  

(a 2 ybe  

(s) 2r,,, + z 

are introduced to simplify equations (26) through (28). Details of 
the derivations for the parameters appearing in equations (26) 
through (28) can be found in either Palko (1992) or Chen (1982). 

The parameter p is depicted graphically in Figure 2. As 
noted earlier this parameter is the tensile threshold hydrostatic 
flow stress. Wiliam and Wamke postulated that a single sector 
(46 S S ra3) of the flow surface in the /7-plane could be 
represented as a segment of an ellipse. The major and minor axes 
of the ellipse are fommlated as functions oldie intercepts r e  and r, 
(see Figure 3). The minor axis of the ellipse is asanned to 
coincide with a tensile axis. However, the center of the ellipse 
does not necessarily coincide with the hydrostatic axis, either for 
a material in the virgin state, or for a material that has been 
subjected to a service history. The reader should consult Palko 
(1992) for the complete derivation. With the function rit8 
defined the flow surface can be completely mapped in a /7-plane, 
as depicted in Figure 3. 

For either V or .8 the fraction riff° is defined as 

q9) — 449)  49) 
(31) 

2r,fr, 2  —rilbos(9) 

+r, prt  _ rj[4(r,2 _ rticos2 (0 	(32)  

+5,2  —47, i m  

re 

and 

what 
(26)  

= 

(27)  

(6) 1,2 r  
Ile 4  

= (5) [3;e  + Ybc  — 4] 
(2s) 

and 

v(19)= 	—r, 2)cos2(8) + (re  —202 	(33) 
are utilized in order to simplify the expression presented later for 
the fraction r. These alternative threshold stress parameters are 
dependent on the parameters a, a, and am. Specifically, the 
normalized threshold stresses 

Yr = —at 
	

(29) 
cc  

and 

For the definitions expressed in equations (31) through (33) 

ir 
– — 8 — 

3 	3 
(34) 

Physically, r(5) represents the deviatoric component of a stress 
a since this vector lies in the /7-plane. Note that equation (31) 
yields r(FP = re  for the special case of 8 = O. Similarty, r(8) = 
for 

6 
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-7 	 1 

-7 

— a -- ay/re a 0.726 

— 6 — 03112 

— e — nfre . 0534 

—d — ries = 0.510 

—e — eire= 0.496 

—1— 0.427 

FLOW SURFACES- INTERPRETATION 
As in Robinson's original thecay, the current model is closely 

tied to the concqxs of a potential fimction and normality. his this 
potential-normality structure that provides a amsigent 
framework. According to the stability postulate of Drucker 
(1959), the concepts of normality and convexity are important 
requirements which must be imposed on the development of a 
flow or yield =face. Constitutive relationships developed on the 
basis of these nxjuirements assure that the inelastic boundary-
value problem is well posed, and solutions obtained are unique. 
Experimental work by Robinson and Ellis (1985) has 
demonstrated the validity of the potenfial-ncamality structure 
relative to an isotropic .12 alloy (Le., type 316 stainless steel). With 
this structure, the direction of the inelastic strain rate vector for 
each stress point on a given surface is directed normal to the flow 
surface F=constant (see Figure 4). Without experimental 

Figure 4 Flow surfaces associated with a monotonically 
increasing value of the flow fimction F. 

evidence to the contrary, it is postulated that this structure is 
similarly valid for isotropic monolithic ceramic materials. 

For constitutive models based on Robinson's (1978) original 
framework flow surfaces generated by non-zero values of F are 
associated with diffotnt inelastic strain rates. Figure 4 illustrates 
a typical family of level surfaces generated by monotonically 
increasing the magnitude of F (a1 pØ.  The family is projected 
onto the crira22 stress plane. large values of F=ccaastant 
correspond to flow surfaces that eventually cluster forming a 
limiting surface. This implies large dianges in inrilgoir strain  

rate for only 	all stress changes, analogous to the yield 
condition of classical plasticity. This feature vas pointed out 
originally, by Rice (1970) for constitave models based on 
equation (6). 

The convexity of the proposed flow surface assures stable 
material behavior, Le., positive diapation of inelastic work, 
which is based on thermodynamic principks, The convexity 
requirement also implies that level =faces of a function are 
dosed surfaces, since an open region of the flow surface allows 
the existence of a load path along which failure will neva .  occur. 

e en  (Mh) 

on  (Mh 

Figure $ Flow surfaces as a function of the ratio r/re. 

For the Willam-Warde model, conviaty is assured if the ratio of 
the intercepts in the /T-plane satisfies the condition 1.0 k r, > 
0.5. The family of surfaces shown in Figure $ illustrates the 
concept of convodty for surfaces having various ;Yr, ratios. Here 
the values of the ratio vary from 0.726 to 0.487. Notice the 
surfaces identified as "e" and "f" violate the convexity condition. 

• Finally, the Willam-Wamke flow criterion (and the 
constitutive theory presented herein) degenerates to simpler 
models under special limiting conditions. For the case of rc  = r, = 
r,„ where to  is the same for any angle 0, the model degenerates to 
a two-parameter formulation, Le., the Drucker-Prager flow 
criteria When projected onto the cro--cra stress plane under 
these conditions, tit flow surf= depicted in Figure 1 
degenerates to an ellipse (see Figure 6). Note that the major axis 
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Figure 7 Flow surface for the Von IvEses formulation 

of this ellipse is aligned with the bisector of the first and third 
quadrants, and the intercepts along the an  and an  axes represent 
nniaxial tensile and compressive threshold stresses that are not 
equal in magnitude, even though the flaw surface degenerates to 
a circle in the /7plane. The Drudcer-Prager formulation yields 

Figure 6 Flow surface for the Drucker-Prager formulation 

different tensile and compressive threshold stresses because the 
formulaticui produces a right circular cone in the three-
dimensional Haigh-Westergaard stress space. For the special case 
where r = rt  = rc, and p= the Willam-Wamke model reMmes 
to the single-parameter Von /vises criterion. For this case, the 
flow surface degenerates to a circle in the /7-plane (a right 
circular cylinder in the three-dimensional Haigh-Westergaard 
moss space) and an ellipse in error  stress space, which is 
depicted in Figure 7. 

STRESS-STRAIN RELATIONSHIP 
Employing the chain rule for differentiation and taking the 

partial derivative of II with respect to (4 as indicated in equation 
(6), Sick's 

_ 
 i

t310F Or, arhi 

13F) 811  77ki eau 

OF 0.7 OE OS 4. 2 	WV 	BM 

8:12  az., as.. &T o  

OF ej, az„„ as.] 
+ 

J3  OE., OS. Dag  

where equation (8) has been utilized to define a 

Evaluating the partial derivative terms in equation (35) 
yields the following expression for the flow law 

[

el;  =co  cisu +c2z ;  2 J28., 
C3( S plEv 	—3 )] (36)  

where the magnitudes of the coefficients C o, C1, C2, and C3 are 
dependent on the invariants defined in equations (14) through 
(16) (i.e., T,. 7, and 734 the three threshold parameters (Le., c4 
ao, and o-k), and the flow potential parameters utilized in 
equation (8) (i.e.„14 K, and n) . The first coefficient is defined by 
the expression 

— 
	F' 

2,u 

The remaining three coefficients are defined as 

Ci  - 
3pa, 

[

1 	11 2 	1"2  
2rMa c iL 5 -72.1 

/ / f 127 2  lila 	pfili  
cre[r(i0 L 	612 

(35) 

and 

C2 

1 

(37)  

(38)  

(39)  
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ill  1 
a S 8.13  (40) 

Note that the partial derivatives of ne0 appearing in equations 
(39) and (40) are defined as 

of)  11 iduJil 
012 	T9i dB 

lt 31513  

21211412) - 27( 3)2112  

(41) 

  

and 

I v iil[dack7 

dG a /2  aan 
b8a,, dau  

ecA gal 
d 113  (9 cr,„ da„ 	(45) 

1419)1 4f4c 
vliq dO 

13  

[4(12)3  -27(.13)2
]112 

 

(42) 

du() 	2refris 

4r,(2r, -r,* 2  -rlsi4Mco45) 
[4r1 ,2  -71;0520)+5r/ _4;412 

where 

dO 
(43) 

e0 8G) - n 	+ — 
F 	8G 8a  

..1aF 
511[ 8F 87, arks 

Oil" ado  

OF 0:12  dE,„ dan  
+ 

(3 J2  E,, da da,), 

OF ei3  8!, 8a, 
+ 

813  5E,, da.„ 

(

81110G .1, 
G  

Evaluating the partial derivative terms in equation (43) 
yields the following expression for the evolutionary law 

it o  = 	- C4[C JO + Csau 

+ cc  (aja 	
245,111 

3 	
(46) 

II 

where se is given in equation (36). The magnitudes of the 
coefficients C.‘  Cs  and C6 are dependent on the invariants 
defined in equations (17) through (19) (Le, A b and ist, the 
three threshold parameters (i.e., ea ac, and cr,), and the flow 
potential parameters utilized in otpunion (8) (i.e., R. H, K. and 
m). The lust coefficient is defined by the exp=sion 

and 

dv 0)  
a - 

8 fri 2 _ cisincil costa) 

 

K 2  Ras' 
C, -  	 (47) 

 

(44) 

The remaining two coefficients are defined as 

Similarly, utilizing the chain rule for differentiation and 
taking the partial derivative of fl with respect to the internal 
stress cti  as indicated in equation (7) yields 
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= --1-11"2 [11 1.1 
cr,L 	j 	eh 	-1 19 

and 

fiSi2) 	I d4e)1 
8 /2 	14-0)1_ dO 

u(b) dv (0) 
a 

	
(50) 

?PR if 	 
2 44/2)3  —Ma i 

function encotmtered in classical plasticity. By adopting a flaw 
potential to derive the theory, certain required comimmm 
properties can be demonstrated, thereby ensuring that the 
resulting inelastic boundary value problem is well-posed, and 
solutions obtained are unique. 

Constitutive equations for the flaw law (strain rate) and 
evolutionary law are formulated based on a threshold fimction 
which exhibits a sensitivity to hydrostat stress and allows 
different behavior in tension and compression. Further, inelastic 
deformation is treated as inherently time-dependent A rate of 
inelastic main is moaned with every state of stiesa Ma result, 

(49) creep, mess relaxation, and rate sensitivity are phenomena 
resulting from applied boundary conditions and ate not treated 
separately in an ad hoc fashicm. 

(48) 

Not that the partial derivatives of r(e) appearing in equations 
(48) and (49) are defined as 

and 
9 r(e) 	1   [cal 

8/3 	

1 
v(e) a 

0[41 	'5  Nei a r L4,2)3-27(by1/2 

Equations (36) and (46) constitute a multiaxial statement of 
a constitutive theory for isotropic materials. In the present and 
subsequent developments, it will serve as an inelastic deformation 
model for ceramic materials. 

SUMMARY AND CONCLUSIONS 
A multiaxial continuum theory was presented for predicting 

the inelastic response of isotropic monolithic ceramic materials. 
The viscoplastic constitutive model was derived from a single 
scalar dissipative fimction which has similar geometrical 
interpretations (e.g., convexity and normality) as the yield 

The overview presented in this papa has provided a 
qualitative assessment of the capabilities of this viscoplastic 
model in capturing the complex thermomechanical behavior 
exhibited by ceramic materials at elevated service temperatures. 
Incorporating this model into a non-linear finite demon code 
would provide industry the means to numerically simulate the 
inherently time-dependent and hereditary phenomena exhibited 
by  the materials insert 
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