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ABSTRACT 

 

In this paper we present a micromechanical approach based on Fast Fourier Transforms 

to study the role played by dislocation glide and grain boundary (GB) accommodation in 

the determination of the plastic behavior of nanostructured materials. For this, we 

construct unit cells representing self-similar polycrystals with different grain sizes in the 

nanometer range and use local constitutive equations for slip and GB accommodation. 

We study the effect of grain size, strain rate and pressure on the local and effective 

behavior of nanostructured fcc materials with parameters obtained from experiments and 

atomistic simulations. Predictions of a previous qualitative pressure-sensitive model for 

the effective yield strength behind a shock front are substantially improved by 

considering strain partition between slip and GB activity. Under quasiestatic conditions, 

assuming diffusion-controlled mechanisms at GB, the model predicts a strain-rate 

sensitivity increase in nanocrystalline samples with respect to the same coarse-grained 

material of the same order as in recently published experiments.  

 

 

KEYWORDS: nanocrystalline materials, micromechanical modelling, grain boundary, 

plastic deformation, shock loading. 
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1- INTRODUCTION 

 

The yield strength of polycrystalline materials depends strongly on their grain size. For 

aggregates with grains in the micron range and above, the yield stress increases inversely 

with the square root of the grain size. This dependence, known as Hall-Petch effect [1,2] 

has been explained in terms of dislocation interaction with the crystal lattice, with other 

dislocations, and with grain boundaries (GBs). For coarse-grained (CG) aggregates, the 

GBs main role is to act as barriers to dislocation motion and promote the formation of 

pile-ups in the bulk of the grains, (e.g. [3]). Smaller grains require higher stress to move a 

dislocation through the stress field created by the pile-ups. In spite of the importance that 

this barrier effect has in the determination of the mechanical properties of the aggregate, 

in polycrystals with grains in the micron range and above, the highly disordered GB 

regions represent only a negligible volume fraction of the material. On the contrary, when 

the grain dimensions approach nanometer sizes, the volume fraction of GBs become 

significant. Then, the GB regions start to play an active role in accommodating 

deformation [3-10], not only at very low deformation rates when diffusional flow at GBs 

becomes significant regardless of the grain size, but at any applied strain rate. This GB 

accommodation may involve local shear shuffling of atoms, GB sliding, and/or diffusive 

processes that happen near the GBs. Regardless of the specific atomic displacements 

involved in GB accommodation, given the highly disordered character of the GB regions, 

the microscopic mechanisms associated with GB activity are intrinsically different from 

the ones associated with plastic deformation by dislocation motion that takes place in the 

bulk of the grains. GB accommodation has similarities with the plasticity of metallic 

glasses or of granular media, i.e. sliding of non-deformable objects controlled by friction 

[9]. Therefore, a sound constitutive equation of GB deformation would not involve 

directionality, as it is indeed the case of the usual constitutive description of crystal 

plasticity. Also, due to the short range of the interactions involved in GB accommodation, 

the stress required to activate this mechanism should be essentially independent of the 

grain size of the aggregate [11]. Furthermore, the constitutive equations that describe 

dislocation glide in the bulk of the grains and accommodation at GBs will have, in 

general, different sensitivities to temperature, strain rate and pressure. Given the role 
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played by diffusion at grain boundaries, the sensitivities of GB accommodation to 

temperature and strain rate under quasiestatic loading conditions, should be in general 

higher than the corresponding sensitivities associated with dislocation slip. This 

determines a faster decrease in yield strength with increasing temperature [12,13] and 

decreasing strain rate [12-17], as the grain size decreases. Regarding pressure sensitivity, 

given that both GB accommodation [9-11] and dislocation glide (e.g. [18]) are likely to 

become more difficult as hydrostatic pressure increases, the overall effect of pressure on 

plastic deformation of materials with nano-sized grains is going to be determined by the 

relative values of the corresponding sensitivity factors. A constitutive micromechanical 

model incorporating such sensitivities would be able to capture the interplay and 

competition between bulk and GB mechanisms for a particular topology of these 

nanostructured aggregates. Such a model could be used as a predictive tool to obtain the 

mechanical behavior of the aggregate, and its sensitivity to different deformation 

conditions and/or microstructural changes.  

 

In conjunction with the growing interest in an accurate characterization of the mechanical 

behavior of nanostructured materials through an intensive experimental research, several 

attempts to construct models of the above kind have been recently published. Using 

crystallographic elasto-viscoplastic Finite Element analysis, Fu et al [19, 20] investigated 

different assumptions for the strain-hardening behavior of the bulk and the GBs, 

obtaining different predictions of the local fields and overall behavior, as a function of 

grain size. Even if in these calculations the GB thickness were overestimated (tens of 

nanometers) compared to the value of ~1nm suggested by Molecular Dynamics (MD) 

simulations [21], its importance resides in suggesting the way of dealing with the 

complex microstructure of nanocrystalline materials, i.e. modeling the material as an 

aggregate of single crystal cores surrounded by outer layers of GB regions with different 

constitutive responses. 

 

Jiang and Weng [11] proposed a generalized elastoplastic self-consistent (SC) 

formulation, based on Christensen and Lo's [22] solution of the concentric double 

inclusion problem, extending from polycrystals to aggregates with nano-sized grains the 
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classic elastoplastic SC formulation based on Eshelby's single inclusion problem. As 

expected, the generalized double inclusion model tends to the classic SC model when the 

GB thickness becomes negligible (coarse-grained case). In their generalized SC model, 

Jiang and Weng assumed: a) rate-independent crystal plasticity for grain interiors; b) an 

isotropic and pressure-dependent Druker's type yield condition [23] at GBs; and c) a 

physical length-scale, given by the dimension of the GB thickness, taken to be 1 nm. This 

generalized SC formulation was in turn used to study the grain size dependence in the 

nanometer range of the stress-strain response (initial yielding and hardening) of 

nanocrystalline Cu. Concerning the pressure dependence of this mechanical response 

(which is present in the local constitutive description of GBs and therefore should also 

affect the macro behavior via the proposed homogenization theory), it was not 

investigated further in Jiang and Weng's paper. Finally, it should be mention that, given 

its rate-insensitive character, strain-rate effects cannot be considered using Jiang and 

Weng's approach. 

 

In a recent contribution, Bringa et al. [24] interpreted the stress profiles obtained by MD 

simulations of shocks in nanocrystalline Cu in terms of different shock pressure 

dependences of slip and GB accommodation. These authors assumed a linear dependence 

with shock pressure of the flow stresses behind the shock front associated with both 

dislocation slip (i.e. Steinberg-Guinan model for shock-induced dislocation plasticity 

[18]), and GB accommodation (inspired in Mohr-Coulomb's law for plasticity of 

amorphous materials [9,10]). Adjusting the corresponding pre-factors using MD results, 

they proposed that the yield strength is given by the minimum between the flow stresses 

associated with dislocation slip and GB accommodation. Both mechanisms depended on 

grain size and applied pressure. This simple approach proved to be compatible with the 

reported Cu MD results and Ni experiments, suggesting that, due to the apparent 

suppression of the softening associated with GB accommodation, the flow stress can 

reach ultrahigh values, at the high pressures produced by shock-loading. However, as it 

was already acknowledged in [24], the use of a simple minimum criterion to decide 

whether the macroscopic yield strength is equal to the flow stress associated with either 
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slip or GB accommodation, does not consider the likely occurrence of strain partition 

between both mechanisms. 

 

Based on some of the assumptions and ideas from these earlier models, in this work we 

report a new micromechanical formulation to study the effect of grain size, pressure and 

strain rate on the yield strength of fcc nanocrystalline materials. The proposed model is a 

full-field approximation that takes into account the actual topology of the aggregate 

consisting in bulk crystalline regions surrounded by a GB percolating phase. Both regions 

co-deform plastically according the following constitutive behaviors: a) for grain 

interiors: crystal viscoplasticity, with Hall-Petch grain size dependence, and in the case of 

shocks, Steinberg-Guinan pressure dependence of the flow stress for slip activation; b) 

for grain boundaries: isotropic viscoplasticity with flow stress independent of grain size, 

and Mohr-Coulomb pressure dependence. The rate dependence of the proposed model 

can be kept in terms of the power laws representing the behaviors of both regions, or 

eliminated using an appropriate normalization. If the rate dependence is kept, rate effects 

under quasiestatic loading conditions also can be taken into account. The length-scale of 

the problem is given by the GB thickness, taken to be 1 nm. Instead of using Finite 

Element analysis as in [19,20], we use here a very efficient approach based on the Fast 

Fourier Transform (FFT) algorithm. This FFT-based solution of a unit cell problem for a 

representative volume element (RVE) gives the local mechanical fields that develop 

inside heterogeneous materials in great detail [25-28]. Periodic boundary conditions, 

required for this type of spectral approximation, are sufficient for the kind of parametric 

study that we want to perform. It is worth noting that, given the viscoplastic character of 

the present approach, it is not intended to describe elastic effects. In particular, in the case 

of shock-loading, no attempt is made here to develop a micromechanical modeling of the 

complex problem of propagation of elastoplastic waves in shocked materials (e.g. [29]). 

Instead, the present model aims at considering the yield strength resulting from the 

microstructural changes left in the material after the passage of a shock front. 

 

The plan of the paper is as follows: in section 2 we briefly review the FFT-based model 

and discuss the construction of self-similar RVEs that represent nanostructured 
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polycrystals having the same topology and crystallographic texture, differing only in 

grain size. Next, we address the way of tackling rate effects with the present approach, 

and introduce the grain size and pressure dependences of our constitutive representation. 

In section 3 we present and discuss the local fields predicted by the model and show 

results on the pressure-dependent behavior of nanocrystalline copper after shock-loading, 

using constitutive parameters derived from Molecular Dynamics simulations and 

experiments [24]. Next, the proposed model is used to study the increased strain-rate 

sensitivity of nanostructured materials under quasiestatic loading conditions. In section 4 

we draw conclusions from this work and mention potential applications of the proposed 

micromechanical approach. 

 

 

2- MODEL 

 

Suquet and coworkers [25-27] developed an iterative method based on FFT to compute 

effective properties and local fields of heterogeneous materials. In turn, Lebensohn and 

coworkers [28, 30-31] adapted this FFT-based formulation to compute local fields and 

texture development of viscoplastic anisotropic polycrystals. The FFT-based formulation 

delivers a full-field solution, i.e. the values adopted by the micromechanical fields in 

every point of a regular grid that covers the space, of the equilibrium and compatibility 

differential equations. It is in general faster than a Finite Element calculation for the same 

purpose and resolution, however limited to periodic boundary conditions. It shares some 

common characteristics with the Phase-Field method, although it is limited to what in 

Phase-Field jargon is known as long-range interactions (e.g. see [32]), since no 

heterogeneous chemical energy term is needed when solving a single-phase polycrystal. 

Recently, a similar kind of Phase-Field analysis was proposed [33] to obtain the local 

fields in elastically heterogeneous polycrystals. The FFT-based approach, however, is not 

restricted to linear behaviors. Problems involving non-linear heterogeneous materials 

(e.g. viscoplastic polycrystals) are treated similarly to a linear problem, using the concept 

of linear comparison material (e.g. [34]).    
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2-1 Construction of RVEs and discretization 

 

The FFT-based formulation is based on the solution of a unit cell problem for a RVE with 

periodic boundary conditions. In the present case, the unit cell represents an aggregate of 

single crystal grains with prescribed orientations, surrounded by outer layers of 

percolating grain boundary regions. The particular orientation of each single crystal 

determines different anisotropic plastic properties from grain to grain, while, due to its 

intrinsic disordered character, the GBs are assumed to have a homogeneous isotropic 

behavior throughout the interconnected “GB phase”. A 3-D implementation of the FFT-

based method requires to discretize a cubic unit cell using a regular grid of NxNxN 

Fourier points (FPs). In this work we adopted N=128, resulting in 2097152 discretization 

points. Each FP belongs either to a grain interior, or to the GB phase. The dimensions of 

such Fourier grid are large enough such that each grain and the GB phase are represented 

by a large number of Fourier points. The length-scale associated with the RVE is 

determined by the GB thickness, taken to be 1 nm. In order to study the effect of grain 

size without interference of other microstructural characteristics (like crystallographic 

texture, or any particular orientation correlation between neighbour grains) self-similar 

RVEs were generated as follows. First, the 3-D unit cell was partitioned into grains by 

Voronoi tessellation. Given that a FFT-based calculation requires a discrete mapping of 

the microstructure on a regularly-spaced grid, this procedure is simpler than determining 

the exact position of the boundaries between Voronoi cells in a continuum. This discrete 

Voronoi procedure consists in randomly distributing 27 grain nuclei (with random 

crystallographic orientations) in the cubic unit cell and assigning each FP to its nearest 

nucleus, accounting for periodic boundary conditions across the RVE limits. Next, in 

order to determine the FPs belonging to the GB phase, the sets of Fourier points with up 

to first, second and third neighbours belonging to a different grain were identified. A 

fourth set was obtained by choosing one of the two points of each pair of first-neighbour 

FPs belonging to different grains. Next, by assigning these four sets of Fourier points to 

the GB phase, four self-similar RVE were determined, with the same number of grains 

and the same topology and crystallographic texture, differing only in the volume fraction 
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of GB phase. If in all cases the GB thickness is taken to be 1 nm, a simple formula 

involving the volume fraction of GB phase gives the average grain size of the RVE: 

( ) 31
GBx11

nm1
d

−−
=          (1) 

Table 1 reports the resulting GB volume fractions and grain sizes of the four RVEs used 

in this work. Figure 1 shows four 2-D sections (YZ cuts at X=64) corresponding to the 

four RVEs. The GB regions are represented in white. Regarding the grains, for later 

analysis, the gray shades represent the relative yield strength of each grain under uniaxial 

tension or compression, i.e. lighter (darker) shades represent softer (harder) grains. 

 

2-2 Local constitutive behavior 

 

The local constitutive equation for a point x  belonging to a grain interior is given by the 

following power law for single crystal viscoplasticity [35]: 
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where ( )x� �  and ( )x  are the local strain rate and stress tensors; ( )x� s , ( )xsγ� , ( )xsτ  and 

s
oτ  are, respectively, the orientation-dependent Schmid tensor, the shear rate, the resolved 

shear stress, and a reference shear stress, of slip system (s). The pre-factor oγ�  is a 

reference shear rate, and GIn  is an exponent, which in an explicit rate-sensitive context 

can be associated with the inverse of the rate-sensitivity of the coarse-grained material 

(see section 2-4). Equation (2) expresses that the deformation rate is given by the sum 

over the shear rates contributed by all the 12 slip systems of the fcc crystal structure. 
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The local constitutive behavior for a point x  belonging GB phase is here assumed to be 

given by the following J2- isotropic power law for nonlinear isotropic materials [34]: 

( ) ( )
( ) ( )x�x

x
x� GBn

o

eq

eq

o
2

3 ���
�����

σ
σ

σ
ε=

��
       (3) 

where ( )xeqσ  and oσ  are the von Mises equivalent of the stress and a reference 

equivalent stress, respectively, oε�  is a reference strain rate, and GBn  is an exponent, 

which in a explicit rate-sensitive context can be identified as the inverse of the rate-

sensitivity associated with the deformation mechanisms of GB accommodation. 

  

2-3 FFT-based algorithm 

 

The discretization described in section 2-1 determines a regular grid in the Cartesian 

space{ }dx  and a corresponding grid in the Fourier space { }d
	

. The method requires the 

selection of a linear reference medium of stiffness L  to convert a (periodic) 

heterogeneity problem into a homogeneous problem with polarization. Combining the 

latter with the equilibrium condition we obtain: 

( ) ( ) 0uL j,ijlj,kijkl =χ+ xx



        (4) 

where ( )xku�  and ( )xijχ  are the periodic velocity and polarization fields. The resolution 

of Eq. (4) by Green functions requires considering the following auxiliary problem: 

( ) ( ) 0''GL imlj,kmijkl =−δδ+− xxxx        (5) 

where ( )xkmG  is the periodic Green function associated with the velocity field, and ( )xδ  

is Dirac's delta. From Eq. (5), the Fourier transform of the symmetric Green operator 

( )d
�� ˆ  associated with the periodic strain-rate field ( ) 2uu k,ll,k  +  can be readily 

obtained for each point of grid in Fourier space (e.g. [28]). The FFT-based algorithm 

consists in finding a strain-rate field, associated with a kinematically admissible velocity 

field that minimizes the average of the local strain energies, under the constraint imposed 

by the strain compatibility condition. If a macroscopic strain rate E�  is imposed on the 
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unit cell, the algorithm is initialized under a uniform strain rate assumption ( ) 0
~

d
o =x� � , 

where the symbol “~”  denotes local deviation with respect to average.  The 

corresponding initial guess of the stress field ( )d
o x�  can be readily obtained inverting 

the local constitutive relations for grain interiors and grain boundaries, Eqs (2-3). Further, 

assuming ( ) ( )d
o

d
o x�x

�
= , where ( )d

o x
�

 is the initial guess for a field of Lagrange 

multipliers associated with the compatibility constraint, the following iterative procedure 

can be started. If ( )d
i~

x� �  and ( )d
i x

�
 are known, the (i+1)th iteration starts with the 

calculation of the new guess of the polarization field: 

( ) ( ) ( )d
i

d
i

d
1i ~

: x�Lx
�
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The Fourier transform of this polarization field results from: 

( ) ( ){ }d
1i

d
1i fftˆ x��� ++ =         (7) 

where fft denotes the application of the (discrete) FFT algorithm.  The new guess for the 

kinematically admissible strain rate deviation field in Fourier space can be then obtained 

as [27]: 
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After applying the inverse FFT to get ( )d
1i~

x
 +�

, the new guess for the stress field is 

calculated from: 
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where ( )d
1i x� +  is related to ( )d

1i x� +  through the local constitutive relations (Eqs. 2-3). 

The iteration is completed by calculating the new guess for the Lagrange multiplier field 

[27]: 
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Convergence is reached when the corresponding strain rate deviation fields ( )d
~

x� �  and 

( )d
~

x
 �

, and stress fields ( )dx�  and ( )dx
�

, coincide within certain tolerance. With the 

converged solution, the values of stress, velocity gradient (strain rate and rotation rate) 

and velocity in each Fourier point can be obtained [28]. This allows us to compute the 

effective stress and strain rate in the polycrystal by averaging the corresponding local 

magnitudes over the entire unit cell, and to predict texture development, microstructure 

evolution and strain-hardening, as well [28]. 

 

2-4 Rate dependence 

 

Two interpretations of the power law constitutive expressions (Eqs. 2-3) are possible. In 

grain interiors, under quasiestatic loading conditions, the physics of dislocation glide 

limited by discrete obstacles determines an Arrhenius relationship between the flow shear 

stress and the shear rate [36,37]: 
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where F∆ is the total free energy required to overcome an obstacle without aid of external 

stress. F∆  is in general large, and this rate equation can be approximated by the 

expression:  
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used in Eq. (2). The microscopic rate sensitivity is defined as: 
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�
γ∂
τ∂=

τ
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Making the plausible assumption that CG
s mm =  [38] (with CGm  being the macroscopic 

rate sensitivity of the coarse-grained material), the exponent of the power law for grains 

interiors (Eq. 2) has an actual physical meaning, i.e. 
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CG
GI m

1
n =           (14) 

As for the constitutive relation for GBs (Eq. 3), the following assumption: 

1nGB =           (15) 

represents the actual linear rate dependence associated with GB diffusional flow [37]. 

Therefore, if the power law exponents of Eqs. (2-3) are chosen according to expressions 

(14-15), i.e. giving them a meaning based on the actual physical mechanisms controlling 

deformation in the bulk of the grains and in GBs, the present formulation can be 

explicitly used to study the rate dependence of nanostructured materials. 

 

When Eqs. (2-3) are used in a shock-loading context, the references stresses s
oτ  and oσ  

should be interpreted as the variables that describe the plastic state in grain interiors and 

GBs, respectively, behind the shock front. In other words, the shock induces 

microstructural changes that result in a harder material after the passage of the shock 

[24]. In such case, the functional forms of the rate equations (2-3) cannot be interpreted 

in terms of actual microscopic deformation mechanisms. Therefore, a different 

interpretation should be given to them. For this, we use similar arguments as those given 

by Kok et al [39] in the context of a crystal plasticity-based Finite Element analysis of a 

coarse-grained polycrystalline material. These authors proposed a modification of the 

standard power law (Eq. 2) to eliminate any explicit strain-rate dependence associated 

with it. This was done in the context of the development of a slip version of the so-called 

Mechanical Threshold Stress (MTS) model [40]. The original MTS model is an isotropic 

scalar model that gives the macroscopic flow stress as a function of strain rate, 

temperature and current state through a state variable called mechanical threshold. The 

slip version of the MTS model consists in assigning a threshold shear stress to each slip 

system. In order to eliminate the rate dependence from the power law equation, Kok et al 

[39] set the reference shear rate oγ
�

 equal to the current macroscopic equivalent strain 

rate, i.e. 
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EE ���� :
3

2
Eeqo ==γ          (16) 

In this way, the power law (Eq. 2) is retained for mathematical convenience, but the local 

stress remains unchanged as the strain rate changes. In the present formulation, for 

consistency, the reference strain rate associated with GB accommodation (see Eq. 3) 

should also be chosen as eqo E�� =ε . Then, the exponents involved in Eqs. (2-3)  are set 

equal to a convenient value, e.g.: 

20nn GBGI ==          (17) 

In this way, any sensitivity (e.g. to strain rate, temperature, grain size or pressure) of the 

proposed constitutive description, if known, should be given by the functional 

dependence of s
oτ  and oσ  with the above variables. In the following section we describe 

the pressure and grain size dependence adopted in this work.  

 

2-5 Pressure and grain size dependence  

 

Concerning the explicit pressure and grain size dependence of our state variables we 

adopted Bringa et al. [24] approach, with slight modifications. Based on preexisting 

models (Steinberg-Guinan and Hall-Petch), these authors proposed the following 

dependences with shock pressure and grain size for the flow stresses behind a shock 

front, associated with dislocation glide in grain interiors and deformation accommodation 

at grain boundaries, respectively: 

( ) ( ) 5.0
ooGI ddPGC −β+=σ        (18a) 

( ) ( )oaGB dd1P +α+σ=σ         (18b) 

where P is the shock pressure, oG  is the shear modulus at zero pressure, C is material-

dependent adjustable parameter, aσ  is the flow stress of the amorphous material at zero 

pressure, βα and  are pressure-sensitivity factors, and od  is a reference grain size. Here, 

we adopt: 
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( ) ( )
CG

5.0
oos

o M

ddPGC −β+=τ         (19a) 

Pao α+σ=σ           (19b) 

i.e. we have introduced two modifications: a) in Eq. (19a), a factor CGM1 was added. 

CGM  is the average Taylor factor (i.e. the ratio between the effective stress and the 

reference slip stress) of the untextured coarse-grained material, whose local constitutive 

equation is given by Eq. (2). CGM  is model-dependent and also depends on the applied 

strain-path and the exponent in Eq. (2) (e.g. for uniaxial tension or compression and an 

exponent of 50, the FFT-based model gives 28.2MCG = ); b) the grain size dependence 

disappeared from Eq (19b). Provided the volume fraction of GBs is explicitly accounted 

for in the present model, it turns out to be unnecessary to include a grain size dependence 

in the constitutive law for GB accommodation, as it was proposed in [41], using scaling 

arguments within the context of a simple phenomenological model. 

 

For the choice of the parameters involved in Eqs. (19), we followed Bringa et al [24] and 

references therein. The value of aσ  has been estimated to be 0.9 GPa for Cu [42]. Using 

MD, these authors calculated the elastic constants for Cu as a function of pressure (at 

T=0K), obtaining GPa45Go = , and 1≈β  for P<60 MPa, in agreement with experiments 

[43]. The value of the pressure-sensitivity factor for GB accommodation α  was assumed 

to be 04.0=α , i.e. within the range reported in Ref. [9] from energy minimization 

calculations in amorphous metals. The adopted reference grain size was nm30do =  and, 

by assuming that the flow stresses of slip and GB accommodation are equal when the 

grain size is od , a value of C=0.04 was obtained. It should be also mentioned that the 

values of the relevant model parameters given above were also adopted to simulate 

deformation under quasiestatic conditions (see sections 3-1 and 3-3), by setting the shock 

pressure to zero in Eqs. (19). 
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3- RESULTS 

 

3-1 Grain size dependence of local deformation fields 

 

Figure 2 shows the 2-D section maps of local von Mises equivalent strains for the four 

self-similar RVEs, relative to the applied macroscopic von Mises equivalent strain, for 

the case of nanocrystalline Cu deformed in quasiestatic (P=0 in Eqs 19) axisymmetric 

compression along the z-axis. The 2-D sections shown in Fig. 2 correspond to the same 

YZ cuts as the ones displayed in Fig 1 (note that the compression axis lies in the vertical 

direction). The main observation is that the strain is concentrated at GBs, reaching 10 

times the macroscopic strain, while significant portions of the grain interiors undergo 

local strains which are less than the applied macrostrain. This trend is more marked as 

grain size decreases, e.g. see the center grain (marked “A”). Another interesting 

observation is that the grains that deform the most (e.g. grain “A”) are not necessarily the 

softest (e.g. grain “A”  has an intermediate yield strength, see Fig. 1) but the most 

ubiquitous. For instance, in the 29 and 15 nm cases, grain “A”  provides a link between 

GBs well oriented for the propagation of a transgranular deformation band at 

approximately 50 degrees with respect to the compression direction. At smaller grain 

sizes, the fine structure of the strain field can be observed inside the GBs. Interestingly, 

the strain seems to concentrate near the transition zones between GB and the bulk of the 

grains, especially near triple junctions. This may indicate the occurrence of local shears 

consistent with grain boundary sliding and grain rotation.  

 

 Fig. 3 shows the relative activities (strain partition) in the grain interiors and the GB 

phase, along with the corresponding volume fractions, as a function of grain size, 

corresponding to the cases shown in Fig. 2. The relative activities are defined as local 

strains averaged over all of the Fourier points belonging to each region, normalized by 

the macroscopic strain. Consistent with the results of Fig. 2, the relative activity at GB 

exceeds the corresponding GB volume fraction. This trend is more marked as the grain 

size decreases. At 5 nm, the grain interiors contribute only with 10% to the overall strain, 

while they still represent almost half of the volume. This result is consistent with most of 
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the reported MD simulations at these grain sizes [5], although we note that MD has not 

yet given a quantitative measurement as presented in Fig. 3.  

 

3-2 Pressure dependence of yield strength under shock loading 

 

Figure 4 shows the pressure and grain size dependence of the yield strength of 

nanostructured samples, as predicted by the present model, using the constitutive 

equations and parameters for Cu given by Eqs (2), (3), (16), (17) and (19), and described 

in section 2-4. The main characteristics of these curves are: a) as expected from the type 

of pressure dependence adopted for the local constitutive behaviors (Eqs 19), the yield 

stress increases with shock pressure, for all grain sizes, b) the Hall-Petch inversion is 

observed at around 10 nm for all pressures, c) the line joining the yield strength maxima 

exhibits a negative slope. This result is the outcome of the present model that considers a 

detailed partitioning of strain between GBs and grain interiors and is therefore to be 

compared with Fig. 1 of Ref. [24] in which a qualitative minimum criterion for the flow 

stress was used. From this comparison the differences in the location and the slope of the 

Hall-Petch inversion curves are apparent. In particular, the significant decrease of the 

Hall-Petch inversion point with increasing pressure reported in [24], which would 

maximize the yield strength under shock loading for smaller grain sizes as pressure 

increases, seems to be only marginal in the context of the present, more refined approach.  

 

Figure 5 shows the effect of pressure on the strain partition between slip and GB 

accommodation (for sake of clarity, only the relative slip activity curves are shown, the 

GB relative activity can be obtained subtracting the slip activities from unity). As shock 

pressure increases, slip activity increases. The inserted figure shows in more detail the 

predictions for the smallest grain sizes. While for a grain size of 5 nm the slip activity at 

22 GPa shows about 50% increase with respect to the P=0 case, for larger grain sizes this 

relative increase is only marginal. Given that the dislocations are the carriers of plastic 

deformation inside the grains, the significant increase of slip activity at smaller grain 

sizes and higher pressures should involve a larger number of dislocations gliding through 
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the grains. Such increase in the number of dislocations as grain size decreases and shock 

pressure increases has also been found in MD simulations [24].   

 

3-3 Strain-rate dependence of  yield strength  under quasiestatic loading 

 

In this section we show results of the model for quasiestatic loading conditions. The rate 

dependence is considered to be explicitly related to the power law exponents of Eqs (2-

3). We have adopted 50GIn =  and 1GBn = . This value of GIn  corresponds to a rate-

sensitivity of the coarse-grained material 02.0CGm = . The latter is compatible with 

warm deformation of fcc materials (e.g. m=0.025 for CG Al deformed at 250 °C [13]). 

Figure 6a shows the yield strength variations in the strain rate range 10-2-100 s-1, for 

axisymmetric compression, as predicted for the 15 nm RVE. For comparison, we have 

included the strain-rate dependence of the coarse-grained material (100 µm). The 

resulting effective strain-rate sensitivity of the 15 nm material is m=0.155 (representing 

roughly an eight-fold increase with respect to the CG value of 0.02). This increase is 

comparable with the seven-fold increase with respect to the coarse-grained rate-

sensitivity value reported by Lu et al [17] for the case of Cu containing nano-sized twins 

of ~20 nm width, deformed at room temperature; and also with the ten-fold increase 

reported by May et al. [13] in ECAP-deformed Al with grain size of ~300 nm deformed 

at 250 °C. However, it should be acknowledged that the conditions of both the above 

experiments are not strictly the same as in our simulations. In the case of Cu with 

nanometer twins, the specific orientation correlation across the coherent twin boundaries 

could determine a significant difference with respect to the uncorrelated GB regions 

assumed in our model. Moreover, Lu et al. observations correspond to room temperature, 

while our simulations are compatible with warm-temperature deformation. (We have 

attempted to run simulations using room-temperature rate-sensitivity values: m=0.005, 

i.e. 200GIn = , but the FFT-based algorithm becomes instable at those very high 

exponents). In what concerns the ECAP Al measurements, the main difference with 

respect to our simulations is the grain size, cf. grain sizes of ~300 nm in the experiments 

versus 15 nm in our simulations. (Here, again, we had numerical difficulties to run 
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simulations with grain size larger than 30 nm, to be closer to the experiments. Since the 

length scale is fixed by the GB thickness, 1 nm, the sizes of the Fourier grids needed to 

reach larger grain sizes are beyond standard computational resources). 

 

Regarding the relative strain activity in the bulk and the GB regions at different strain 

rates, shown in Fig. 6b, the activity of GB accommodation increases as the strain rate 

decreases, reaching values of 80% (i.e. four times the GB volume fraction, also shown in 

the figure). This behavior reflects the fact that at lower strain rates there is more time for 

GB diffusion mechanisms (represented by the exponent 1GBn = ) to contribute profusely 

to the overall deformation. Interestingly, this significant increase in GB activity at lower 

rates apparently does not involve changes in the effective rate-sensitivity (i.e. in Fig 6a, 

the σlog  vs. ε
�

log  plot in the 15 nm grain size case remains linear).    

 

 

4- CONCLUSIONS 

 

We have presented a micromechanical approach based on Fast Fourier Transforms to 

study the role played by dislocation glide and GB accommodation in determining the 

plastic behavior of nanostructured materials. By constructing self-similar RVEs and using 

constitutive parameters obtained from experiments or derived from atomistic simulations, 

we were able to study the effect of grain size, strain rate and pressure on the local and 

effective behavior of fcc materials with nano-sized grains. In general, the local strain 

fields exhibit a strong concentration in GBs. In grain interiors, the strain is higher in 

grains which can serve as links between GB regions well-oriented with respect to the 

direction of maximum macroscopic shear, to form transgranular deformation bands. 

 

Under shock-loading conditions, the qualitative pressure-sensitive model of Bringa et al. 

[24] was physically grounded by explicitly considering a material with two different 

constitutive behaviors, and by solving the strain partition between slip and GB activity. 

As expected from the type of pressure dependence adopted for the local constitutive 

behaviors, the predicted yield stress versus grain size curves are shifted upwards as the 
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shock pressure increases, while the predicted Hall-Petch inversion occurs (for the set of 

parameters adopted here) around 10 nm and shows a weak decrease with pressure. The 

relevance of these results appears clearly when we note that current constitutive models 

for shock-loading [18, 44] do not typically include grain size effects. These effects would 

be significant, for instance, for the design of the nanostructured targets under 

consideration for the National Ignition Facility [45]. 

 

At low strain rates, assuming a linear rate equation for GB accommodation (compatible 

with diffusion-driven mechanisms at GB), the model predicts a strain-rate sensitivity 

increase in materials with nano-sized grains with respect to coarse-grained, of the same 

order as in recently published experiments.  

 

Further applications of the present model are worth considering. Although in this work 

we restricted our attention to the plastic response of nanostructured materials without 

microstructure evolution, the implementation of an incremental microstructure updating 

scheme is straightforward. For this, all the converged local rate fields can be assumed to 

be constant during a given time interval t∆ , after which the current state of the material is 

updated. In particular, the resulting local rotation fields can be used to study the grain 

rotations associated with shear at grain boundaries. Also, the behavior of materials with 

special types of grain boundaries, like nanometer twin's boundaries, can be studied with 

the present approach.  

 

Another appealing idea is to perform direct comparisons between the present continuum 

approach and MD simulations. For instance, in grain interiors, once the shear associated 

with slip system (s) at point x is obtained as ( ) ts ∆γ x
�

, the number of dislocations of s-

type that have swept this point can be estimated as: ( ) bdts ×∆γ x
�

, where b is the Burgers 

vector length. Hence, maps displaying the number and type of passed dislocations can be 

constructed for comparison with MD simulations for the same RVE.  
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Another feature of the plastic deformation of nanostructured materials scarcely 

investigated so far, which can be easily treated by means of the present approach, is 

anisotropy. The Severe Plastic Deformation (SPD) processing commonly used to obtain 

ultrafine-grained (UFG) materials usually results in samples with non-uniform 

morphologic and/or crystallographic textures (e.g. [13]). The influence of this anisotropic 

UFG microstructure can be readily studied with the present model by constructing unit 

cells having grains with orientations and shapes representative of the actual 

crystallographic and morphologic texture of these SPD materials.  

 

Finally, it should be mentioned the potential use of the present mesoscopic constitutive 

approach to bridge scales, from atomistic to macroscopic levels, for a microstructure-

sensitive prediction of the mechanical behavior of nanocrystalline materials. In such 

multiscale context, the lower scale formulations would provide a physically-based 

description of the microscopic deformation mechanisms, while the macroscopic solution 

of the mechanical problem would account for the applied boundary conditions. The 

strategy of passing information from one scale to the other could be by direct 

interrogation to the lower scale models (e.g. [46]), or by using the mesoscopic model to 

pre-adjust some kind of constitutive function to be used in turn at the macroscopic level 

(e.g. [47] in the case of texture-induced anisotropy).  
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TABLE CAPTIONS 

 

Table 1: Grain boundary volume fraction, grain size and construction criterion of the four 

self-similar RVEs used in this work. 
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FIGURE CAPTIONS 

 

Figure 1: 2-D sections (YZ plane at X=64) of to the four self-similar 3-D RVEs. White 

regions: grain boundaries; grey regions: grains. Lighter (darker) shades represent softer 

(harder) grains under uniaxial tension or compression.  

 

Figure 2: Predicted 2-D section maps (YZ plane at X=64) of local von Mises equivalent 

strains, relative to the applied macroscopic von Mises equivalent strain, for axisymmetric 

compression along the z-axis, with no superimposed hydrostatic pressure. 

 

Figure 3: Strain and volume fraction partition as a function of grain size, for 

axisymmetric compression along the z-axis. 

 

Figure 4: Predicted yield strength as a function of grain size for different shock pressures 

(in GPa). Constitutive parameter values for nanocrystalline Cu, after Bringa et al [24]. 

 

Figure 5: Predicted slip activity as a function of grain size for different shock pressures 

(in GPa). Constitutive parameter values for nanocrystalline Cu, after Bringa et al. [24]. 

 

Figure 6: a) Predicted log-log plot of yield strength vs. strain rate for axisymmetric 

compression (with no superimposed hydrostatic pressure) for the 15 nanometer-grain and 

the coarse-grained material. b) GB relative activity for the 15 nm case. GB volume 

fraction = 0.1918 also shown. 
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FPs assigned to GBs GB volume fraction Grain size 

one point from every pair of 

first neighbours belonging to 

different grains 

 

0.1007 

 

29 nm 

every point with first 

neighbours belonging to a 

different grain 

 

0.1918 

 

15 nm 

every point with first or second 

neighbours belonging to a 

different grain 

 

0.3588 

 

7 nm 

every point with first, second 

or third neighbours belonging 

to a different grain 

 

0.5024 

 

5 nm 

  

 

Table 1
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Fig. 1 
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Fig. 2 
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