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Summary. We propose a prescription for treating the transfer of angular
momentum within a gaseous differentially rotating disc subject to gravitational
instability in terms of an effective kinematic viscosity. We show that under certain
conditions this prescription allows a similarity solution and that all solutions tend
towards this at large times.

1 Introduction

Observations of star-forming regions at infrared, millimetre and radio wavelengths have shown
the existence of rotating discs of molecular material (see for example the reviews by Goldsmith &
Arquilla 1985; Pudritz 1986). Although the specific angular momentum of matter in a typical disc
is in general less than that which would arise if the disc condensed directly from the interstellar
medium, it is still much greater than the value of specific angular momentum that can be
accommodated by protostars. It is evident therefore that some redistribution of angular
momentum must take place to enable star formation to occur. Disc-like shear flows are observed
or suspected in a variety of astrophysical contexts (e.g. Pringle 1981) and there is observational
evidence that redistribution of angular momentum does occur even though theoretical
understanding of the viscous or dissipative mechanism responsible is still lacking. Some kind of
hydrodynamic or hydromagnetic turbulence is usually envisaged and the strength of the
mechanism is measured by the dimensionless parameter @ (Shakura & Sunyaev 1973). In the
context of molecular discs, however, it is evident from observational estimates that in some cases
they are close to being unstable gravitationally (e.g. Bieging 1984; Giisten, Chini & Neckel 1984).
This raises the possibility that it is a gravitational instability in the disc which is responsible for the
redistribution of angular momentum and hence for the evolution of the disc as a whole. Larson
(1984) and Boss (1984) have discussed this possibility. In this paper we propose a prescription for
estimating the effect of the gravitational instabilities on the evolution of a disc.

In Section 2 we review briefly the nature of the instabilities due to self-gravity in differentially
rotating discs and show how this might lead under certain conditions to treating the effect of the
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instabilities in terms of an effective kinematic viscosity. In Section 3 we show that in the range of
validity of this prescription the disc evolution equation permits a similarity solution and that
general solutions tend to the similarity solution at large times. We discuss our results in Section 4.

2 Gravitational instability and viscosity prescription

The basic principles underlying the gravitational instability of a thin rotating disc have been
elucidated by Toomre (1964). If the disc has local surface density = and local angular frequency Q
(in this order of magnitude discussion, we take local shearing rate~local angular velocity~local
epicyclic frequency) then disturbances of size L, greater than L;,, where

GZ

- 2.1)

crit™”

are stabilized by the shear. If the disc has local dispersion velocity (e.g. sound speed) C;, then
disturbances of size L, less than L;, where

CZ
L~ S
e

2.2)

are stabilized. Thus in general only disturbances in the range L;<L< L are able to grow due to
self-gravity. Conversely if the dimensionless number Q, where Q*=L;/L;, is greater than
unity, the disc is stable with respect to self-gravity.

To set these quantities in the context of accretion discs we estimate the gravitating disc mass M
(within radius R) by Q>~GM/R?>, and the mass of the disc, My, by Mg~ZR?. For the standard
accretion discs with a central gravitating point mass we have My<M, and in general we expect
Mg=M. The disc semi-thickness, H, is estimated by use of the equation of hydrostatic
equilibrium in the direction perpendicular to the disc plane which yields H~ Hg min (1, Q) where
Hg~C,/Q. We shall assume for the moment that we are working with thin discs so that H<R. In
terms of these quantities we find

L, Hia M
=L R — 0 2.3)
Hx R M,
and
Lk R M

e x—20"L, (2.4)
Hx Hx M

Thus if Q<1, disturbances over regions of size Q<L/Hr<Q™', grow with time, and since the
instability is a dynamical one the characteristic growth time-scale for the instabilities is ~Q™!.
The above considerations are borne out by detailed analysis in the linear regime (Toomre 1964,
1977).

Toomre (1964) speculates that in the case when the disc consists of stars, and the corresponding
G, is simply the stellar dispersion velocity, the effect of the instabilities is to heat the disc locally
(i.e.increase C; and hence Hy) until Q is large enough that the disc becomes stable. An accretion
disc, however, in which C; corresponds to a thermal velocity, is able to cool locally and one must
therefore take into account the balance between heating due to the instability and cooling due to
radiation. Paczynski (1978) and Kozlowski, Wiita & Paczynski (1979) constructed models of
steady accretion discs in which this balance was assumed to occur precisely when the disc was on
the border of instability, i.e. when O=1.
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In the context of star formation Larson (1984) has used the formula given by Lynden-Bell &
Kalnajs (1972) for the torque produced by a particular spiral pattern and strength to estimate the
torque which can be achieved. He concluded that such torques could be strong enough to
dominate the angular momentum transfer in such discs. However without knowledge of the
non-linear growth and the mutual interaction of the unstable spiral modes, the net dynamical
effect of the instability is not readily amenable to analysis.

In this paper we address ourselves to the long-term dynamical evolution of a disc subject to
these instabilities. In order that the instabilities give rise to local heating, they must also give rise
to transfer of mass and angular momentum within the disc (Lynden-Bell & Pringle 1974). In this
sense, therefore, provided that the maximum size of unstable regions L. is such that L <R,
the instabilities may be regarded as giving rise to a local effective kinematic viscosity, v.g. Since
the size of region over which angular momentum is transferred is ~ L, and the time-scale ~Q71
we propose a prescription for the effective kinematic viscosity of the form

2
Lcrit

Q—l

Vet~ ———~Q ?HRQ. (2.5)
The prescription would be valid for Q<1 (so that the disc is unstable) and for Q>> H/R, so that
Li«<R, or equivalently so that the ‘viscous’ time-scale in the disc

R? M\?
f~—— [ —) @1
Vet \ Mgy

is more than the dynamical time-scale in the disc t;~Q ™. If 0>1, then the disc is stable against
self-gravity, v.¢=0 and any transfer of angular momentum within the disc must be due to other
effects. We speculate below on what happens if Q>< H/R. In contrast to previous work we do not
insist that Q=1.

It follows immediately that in the absence of any other form of momentum transport, once a
disc has become self-gravitating it remains so since as Q—1, v.— 0 and so the heating, but not
the cooling, tends to zero. We also note that this prescription for the effective viscosity is
equivalent to the standard @ parameter formulation of Shakura & Sunyaev (1973) with
a~Q~*>1.

3 Similarity solution

In any particular circumstance the detailed local disc structure, and consequent value of Q, must
be determined using the relevant equation of state, cooling functions, opacity etc. in the standard
manner. In this section we consider the particular case of a disc for which My<M so that we may
take Q2=GM/R? with M constant, and for which throughout the disc at all times we may take
Hg/R<Q<1, so that vee=Q 2H%Q. We show that in this case a similarity solution may be
constructed.

The equation governing the evolution of the surface density, X, of an accretion disc with a
central, dominant gravitating point mass and with kinematic viscosity v is (Pringle 1981)

aZ 3 9 a
—_———— [Rl/z——— (szl/Z)] . (3.1)
ot R OR oR
For the case we are considering we have using (2.1) and (2.5), that
v=2?RQ/M? (3.2)

which is independent of C,. Thus since M is a constant, v is of the form v« Z°R® for some a, b. By
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analogy with solutions of the thermal conduction equation with a non-linear, but power-law,
coefficient of conductivity given by Zel’dovich & Raizer (1966), Pringle (1974, 1981) pointed out
that such an equation has solutions of similarity form. There are two basic solutions. One solution
has constant disc mass, but steadily increasing disc angular momentum and corresponds to the
disc being dispersed to infinite radius by a torque supplied at the origin. The other solution, which
we consider here, has zero torque at the origin and is given by

)T

where

R 45\2/ ZoR%\* . GM [ t\?*/°

SRS ()
Ry 8 M R} \

and Ry, 2, tp are arbitrary constants.
At any given time, ¢, the mass of the disc is given by

R¢
Mdisc:f Z27RdR
0

2R215Jr(ZOR%)2 (GM)W(t)“/S 55)
0\ m /°\ R f

whereas the total disc angular momentum

R¢
J gicc= f SR2Qx27RdR
0

SoRE\* | GM
to —
Rp

= constant. (3.6)

=/GMRyXZoR%x 6:5(

The evolution of the surface density distribution as a function of time is shown in Fig. 1. At time
t=0, all the mass (an infinite amount in order to provide a finite amount of angular momentum) is
at the origin. As time evolves the outer disc radius R¢«¢*>. Each element of mass in the disc
moves outwards initially, and then reverses direction and collapses back to the origin. Since
Mot /5, the mass flux on to the origin is of the form M «¢~%/5_ At large times, almost all the
mass has returned to the origin with an ever-diminishing amount of mass going to ever-larger radii
carrying all of the initial angular momentum. We note that this kind of similarity behaviour has
been discussed by Lin & Papaloizou (1985). The arbitrariness of the constants ¢y, £y and Ry can be
used to express the solution more succinctly. In particular we note that if we take Ry=R; when
t=ty, we have Mg (t=1t0)=(47/3)ZoR3%, and thus

4x £\~ :
Moo (t)=— ZoR} (——) (3.7)
3 to
We also find that in this case
Q(Ro) ' [ i ]2 (3.8)
t = - , .
° ° 10”2 Mdisc(t= tO)
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Figure 1. A log-log plot of surface density X versus radius R for the similarity solution given by equations (3.3) and
(3.4). Z and R are in arbitrary units. The outer disc radius increases with time, and time increases by a factor of /10
for each model.

log

log R

Figure 2. Evolution of the surface density distribution calculated numerically from the initial £ distribution given by
equation (3.10). Both = and R are in cgs units. The eight curves represent times of 1.1x10', 6.9x10'2, 2.5x10%,
6.1x10", 1.2x10™, 2.1x10", 3.6x10" and 5.6x10's with the outer disc radius a monotonically increasing
function of time.
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and hence

36
Jaise= Maisc(f0) X y GMR X 11528

=1.5%x10"% M. (to)) JGMR,, (3.9)

Although the similarity solution (3.3), (3.4) is not a general solution, there are grounds for
expecting solutions of the equations to tend towards the similarity solutions at large times (e.g.
Lin & Papaloizou 1985). We have been able to demonstrate this explicitly by calculating the
solution numerically with various initial conditions.

To illustrate this we take a particular case with M=20 M, and consider radii R;,=2x10'° cm<
R<R,,=5x10" cm. We set =0 interior to the inner boundary R, and integrate the equation
(3.1) using a standard explicit to first-order finite-difference scheme. We take 60 radial zones in a
geometric progression between R;, and R,,;. We limit ourselves to times for which the surface
density 2 vanishes at some radius less than R,,,, so that the boundary condition applied at R, is
not relevant. For the case we illustrate (Fig. 2) we chose

2(R,t=0)=Zpexp[—(R—R.)*/(AR)’] (3.10)

with R,=2.8x10', AR=0.1R, and 2,=100gcm™".
It is evident from the figure that the density distribution rapidly becomes of the form X« R~3/2
over most of the radius in line with the expectation of the similarity solution.

4 Discussion

We have put forward a prescription for the calculation of the time-evolution of discs subject to
gravitational instability. Implicit within that prescription is the assumption that even when matter
in the disc is subject to self-gravitation, the instability does not necessarily lead directly to
condensation of parts of the disc into distinct self-gravitating bodies. In line with previous
authors, we have assumed rather that the instability gives rise to density waves of some kind which
are able to transfer angular momentum, and therefore, dissipate energy and cause internal
heating of the disc. As the disc evolves however, the strength of the instability measured by Q also
evolves and at some stage in the evolution it is likely that Q2 will become less than H/R.

We note that in the centre of the similarity solution of Section 3, £— o« as R— 0. This means
that unless C;— « there, Q—0 and the validity of the equation (2.5) for v, is violated. If Q
becomes too smallin the centre of the disc it is reasonable to assume that a self-gravitating body is
formed there. Since Q depends through C; on the thermal state of the disc at each radius, and
since the thermal state depends on the opacity which is in general not a monotonic function of
radius, it may be that with certain initial conditions, Q will become less than Hr/R, and the
instability will become fully dynamical at a particular finite radius of the disc. One might speculate
that in this case a self-gravitating ring is formed at around that radius, or perhaps a ring of N
self-gravitating entities where N~R/Hg~Q~'. Further computations are required to determine
the circumstances under which this might happen.
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