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Abstract—We describe a framework for cooperative control of
a group of nonholonomic mobile robots that allows us to build
complex systems from simple controllers and estimators. The re-
sultant modular approach is attractive because of the potential
for reusability. Our approach to composition also guarantees sta-
bility and convergence in a wide range of tasks. There are two key
features in our approach: 1) a paradigm for switching between
simple decentralized controllers that allows for changes in forma-
tion; 2) the use of information from a single type of sensor, an
omnidirectional camera, for all our controllers. We describe es-
timators that abstract the sensory information at different levels,
enabling both decentralized and centralized cooperative control.
Our results include numerical simulations and experiments using
a testbed consisting of three nonholonomic robots.

Index Terms—Cooperative localization, formation control, hy-
brid control, nonholonomic mobile robots.

I. INTRODUCTION

T
HE LAST FEW years have seen active research in the field

of control and coordination for multiple mobile robots,

with applications including tasks such as exploration [1],

surveillance [2], search and rescue [3], mapping of unknown

or partially known environments, distributed manipulation

[4], [5], and transportation of large objects [6], [7]. While

robot control is considered to be a well-understood problem

area [8], [9], most of the current success stories in multirobot

coordination do not rely on or build on the results available

in the control theory and dynamical systems literature. This is

because traditional control theory primarily enables the design

of controllers in a single mode of operation, in which the task

and the model of the system are fixed [10]. When operating

in unstructured or dynamic environments with many different

sources of uncertainty, it is very difficult if not impossible to

design controllers that will guarantee performance even in a

local sense. In contrast, we know that one can readily design
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reactive controllers or behaviors that react to simple stimuli

or commands from the environment. Successful applications

of this idea are found in subsumption architectures [11],

behavior-based robotics [12], and other works [13].

In this paper, we address the development of intelligent robot

systems by composing simple building blocks in a bottom-up

approach. The building blocks consist of controllers and esti-

mators, and the framework for composition allows for tightly

coupled perception-action loops. While this philosophy is sim-

ilar in spirit to a behavior-based control paradigm [12], we differ

in the more formal, control-theoretic approach in developing the

basic components and their composition.

The goal of this paper is to develop a framework for composi-

tion of simple controllers and estimators to control the formation

of a group of robots. By formation control, we simply mean the

problem of controlling the relative positions and orientations of

robots in a group, while allowing the group to move as a whole.

Problems in formation control that have been investigated in-

clude assignment of feasible formations [14], [15], moving into

formation [16], maintenance of formation shape [17], [18], and

switching between formations [19], [20]. Approaches to mod-

eling and solving these problems have been diverse, ranging

from paradigms based on combining reactive behaviors [12],

[21] to those based on leader-follower graphs [17], [19] and vir-

tual structures [22], [23].

We are particularly interested in applications like cooperative

manipulation, where a semirigid formation may be necessary to

transport a grasped object to a prescribed location, and coop-

erative mapping, where the formation may be defined by a set

of sensor constraints. We consider situations in which there is

no global positioning system and the main sensing modality is

vision. Our platform of interest is a car-like robot with a single

physical sensor, an omnidirectional camera.

Our contributions in this paper are two-fold. First, we de-

velop a control-theoretic bottom-up approach to building and

composing controllers and estimators. These include simple de-

centralized, reactive controllers for obstacle avoidance, collision

recovery, and pursuing targets, and more complex controllers

for maintaining formation. These controllers can be either cen-

tralized or decentralized and are derived from input–output lin-

earization [10]. Our second contribution is a framework for mul-

tirobot coordination that allows robots to maintain or change

formation while following a specified trajectory and to perform

cooperative manipulation tasks. Our framework involves a se-

quential composition of controllers, or modes, and we show that

the dynamics of the resulting switched system are stable and

converge to the desired formation.

The paper is organized as follows. In Section II, we state the

assumptions of our control framework and present details on our

1042-296X/02$17.00 © 2002 IEEE
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controllers for formation control. We discuss the assignment of

formations, changes in formations, and stable switching strate-

gies in Section III using a group of three robots as an example.

Section IV addresses our sensing and estimation schemes for

formation control. Hardware details and experimental results il-

lustrating the application of our multirobot coordination frame-

work are in Section V. Finally, in Section VI, we draw conclu-

sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control

framework, we list several important assumptions concerning

the group of robots and the formation. We assume, as in [17],

the robots are labeled and one of the robots, designated as ,

is the lead (or reference) robot. The lead robot’s motion de-

fines the bulk motion of the group. The motion of individual

members within the formation is then described in reference to

the lead robot. As in [17] and [19], the relationship between a

robot and its neighboring robots is described by a control graph.

The control graph is an acyclic, directed graph with robots as

nodes, as the parent node, and edges directed from nodes

with smaller integer label values to those with with larger in-

teger values. Each edge denotes a constraint between the robots

connected by the edge and a controller that tries to maintain the

constraint. We present more details on control graphs in the fol-

lowing sections.

In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the

environment. The robots are velocity-controlled nonholonomic

car-like platforms and have two independent inputs. The control

laws are motivated by ideas from the well-established area of

input–output feedback linearization [10]. This means we can

regulate two outputs. The kinematics of the th robot can be

abstracted as a unicycle model (other models can be adapted

to this framework)

(1)

where we let , and and are the

linear and angular velocities, respectively.

A. Basic Leader-Following Control

We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with

a desired Separation and desired relative Bearing . Note

that this relative bearing describes the heading direction of the

follower with respect to the leader. The two-robot system is

transformed into a new set of coordinates where the state of the

leader is treated as an exogenous input. Thus, the kinematic

equations are given by

(2)

where is the system output,

is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-

earization, the control velocities for the follower are given by

(3)

where is the offset to an off-axis reference point on the

robot and is an auxiliary control input given by

and are the user-selected controller gains. The

closed-loop linearized system is simply given by

(4)

In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.

Since we are using input–output feedback linearization [10], the

output vector will converge to the desired value arbi-

trarily fast. However, a complete stability analysis requires the

study of the internal dynamics of the robot, i.e., the relative ori-

entation .

Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its

angular velocity is bounded, i.e., , and the initial

relative heading is bounded away from , i.e., ,

for some . If the control input (3) is applied to , then

the system described by (2) is stable and the output in (4)

converges exponentially to the desired value .

Proof: Let the system error be de-

fined as

(5)

By looking at (4), we have that and converge to zero ex-

ponentially. Then, we need to show that the internal dynamics
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of are stable, which is equivalent to showing that the orien-

tation error is bounded. Thus, we have

and, after some algebraic simplification, we obtain

(6)

where

The nominal system, i.e., is given by

(7)

which is (locally) exponentially stable if the velocity of the lead

robot and . Since is bounded, one can

show that . Using stability theory of perturbed

systems [10] and the condition , gives [20]

for some finite time and positive number .

Remark 1: The above theorem shows that, under some rea-

sonable assumptions, the two-robot system is stable, i.e., there

exists a Lyapunov function , where

and , such that .

We can study some particular formations of practical interest.

For example, if the leader travels in a straight line, i.e., , it

can be shown that the system is (locally) asymptotically stable,

i.e., as , provided that and

. If is constant (circular motion), then is bounded. It is

well known that an optimal nonholonomic path can be planned

by joining linear and circular trajectory segments. Hence, any

trajectory generated by such a planner for the leader will ensure

stable leader-follower dynamics using the above controller.

Remark 2: This result can be extended to robots in an

inline, convoy-like formation where follows under

. If each successive leader’s trajectory satisfies the

assumptions of Theorem 1, then the convoy-like system can

be shown to be stable. We will provide some more insight into

stabilizing robot formations at the end of this section.

B. Leader-Obstacle Control

This controller (denoted ) allows the follower to avoid

obstacles while following a leader with a desired separation.

Thus, the outputs of interest are the separation and the dis-

tance between the reference point on the follower, and the

closest point on the object. We define a virtual robot as

shown in Fig. 1 (right), which moves on the obstacle’s boundary.

We define as the heading of the virtual robot, which is defined

locally by the tangent to the obstacle’s boundary. Our previous

estimation strategies for wall following [24] can be adapted to

recover the relative orientation to the closest sensed section of

the object’s boundary. For this case, the kinematic equations are

given by

(8)

where is the system output, is

the input for , and , . By applying

Fig. 2. Three-robot formation controller.

input–output feedback linearization as above, but replacing the

auxiliary control input, , with , given by

( , are controller gains), the closed-loop linearized

system is given by

(9)

Remark 3: It is worth noting that feedback input–output lin-

earization is possible as long as , i.e., the

controller is not defined if . This occurs

when vectors and are collinear, which should never

happen in practice.

Remark 4: By using this controller, a follower robot will

avoid the nearest obstacle within its field of view while keeping

a desired distance from the leader. This is a reasonable assump-

tion for many outdoor environments of practical interest. While

there are obvious limitations to this scheme in maze-like envi-

ronments, it is not difficult to characterize the set of obstacles

and leader trajectories for which this scheme will work.

C. Three-Robot Shape Control

Consider a formation of three nonholonomic robots labeled

, , and (see Fig. 2). There are several possible ap-

proaches to controlling the formation. For example, one could

use two basic lead-follower controllers: either with

, or with . Another approach that is

more robust to noise is to use a three-robot formation shape

controller (denoted ), that has robot follow both

and with desired separations and , respectively,

while follows with . Again, the kinematic

equations are given by

(10)

where is the system output,

is the input vector, and
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Once again we use input–output linearization to derive a control

law for which gives us the following closed-loop dynamics:

(11)

where is an auxiliary control input and is the

chosen positive definite controller gain matrix. As before, we

will show that the closed-loop system is stable and the robots

navigate keeping formation.

Theorem 2: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its

angular velocity is also bounded, i.e., , and the

initial relative orientation with

and . If the control input obtained from the feed-

back linearization is applied to and , then the formation is

stable and the system output in (11) converges exponentially

to the desired value .

Proof: By Theorem 1, the internal dynamics of are

stable, i.e., the orientation error ( ) is bounded. As a result

for , the relative velocities and orientations of and can

be shown to be bounded under the assumptions of the theorem.

By an analysis similar to Theorem 1, the internal dynamics of

can be shown to be stable (see [20] for details).

Remark 5: In contrast to the previous two-robot formation

controller, this controller allows explicit control of all separa-

tions and minimizes the risk for collisions. Hence, it is preferred

when the separations between robots are small, and when, co-

incidentally, the estimates of distance through vision are better.

Remark 6: Theorems 1 and 2 guarantee that all signals in the

closed-loop formation system are bounded and the output error

vanishes exponentially. However, as in any practical system, un-

modeled dynamics and measurement errors will degrade perfor-

mance. The best we can do is guarantee that the output error con-

verges to a neighborhood of the origin. Robust control theory

applied to nonholonomic systems (e.g., [25]) points to a sys-

tematic way of approaching this problem analytically. As can

be seen from our experimental results, since velocities of indi-

vidual robots and sensor errors are bounded, the system errors

are also bounded.

D. Extension to Robots

Results similar to Theorems 1 and 2 are possible for forma-

tions of robots, but they have to be hand crafted, i.e., there

currently are no general results. Instead, we present a discussion

on propagation of stability bounds and formation shape errors

along the leader-follower chains in a given formation.

As we saw earlier in this section, to guarantee stability of the

internal dynamics of a robot following using SBC, we

need and . This, in turn, means that

and will have to be appropriately constrained, e.g.,

and . Notice it is not

enough that , but instead where

will depend on the initial formation error, controller

gains, and . This idea can be applied to an robot

inline formation. Basically, the smaller the initial formation er-

rors and the smoother the leader’s trajectory, the easier it is to

maintain a formation shape.

Thus, the performance associated with a choice of formation

for nonholonomic robots with input–output feedback linearized

(a)

(b)

Fig. 3. Five-robot formation. (a) All SBC controller chains. (b) One SBC and
four SSC controllers. For the same leader trajectory, notice the higher transient
formation shape errors for the control graph (a).

controllers depends on the length of the path for flow of control

information (feedforward terms) from the leader to any follower

in the assigned formation. As this length becomes greater, the

formation shape errors have a tendency to grow. This leads to

a simple heuristic: when deciding between two formation con-

trol assignments that are otherwise similar, we prefer the one

that minimizes the length of leader-follower chains (we prefer

over or whenever possible, see Fig. 3

for an example). We revisit the robot formation assignment

problem in the next section using the notion of control graphs.

We consider two types of scenarios: the control graph is fixed,

and where the control graph is dynamically adapted to the envi-

ronment and the relative robot positions.

III. COORDINATION PROTOCOL

In Section II, we have shown that under certain assumptions

a group of robots can navigate maintaining a stable formation.

However, in real situations mobile robotic systems are subject
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Fig. 4. Three control graphs for the three-robot case.

to dynamic sensor, actuator, and communication constraints. We

need a switching paradigm that allows robots to select the most

appropriate controllers (formation) depending on the environ-

ment. We first illustrate this approach using three nonholonomic

mobile robots , , and .

A. Choice of Formations: A Switching Strategy

Let be the set of available controllers

for robot . We consider the problem of selecting the con-

troller, for robot , assuming that the controllers

for robots have been specified.

First, , the reference robot, follows a given trajectory

. Since can only follow (because of the

numbering constraint of Section II), . Thus,

follows with . The set for now has three con-

trollers: . Thus, as shown

in Fig. 4, may follow or with or ,

or follow both and with . The palette of

controllers for the three-robot group becomes .

Each member of this palette corresponds to a different control

graph and a different mode.

If the assumptions in Theorems 1 and 2 hold, then each mode

with is stable. We need to show that for a given

switching strategy , the switched system is stable, i.e., given

any initial mode , a desired mode is achieved in finite time.

Our switching strategy is guided primarily by our sensor (om-

nidirectional camera) constraints and the presence of obstacles.

Fig. 5 depicts the switching boundaries in Cartesian space where

denotes the maximum range within which a neighbor robot

can be detected. is a predefined range where a robot

may detect two possible leaders. To be more specific, may

detect , , neither robot, or both. Notice also that the tri-

angle inequality should be satisfied. If with

were collinear, SSC would not be defined, then a SBC

should be utilized.

The formation control objective is to drive to a region

where it can detect both and , i.e., mode . Thus, the

switching control strategy for can be summarized as follows:

(12)

The set of control behaviors that a robot uses when there is no

leader within its field of view is called autonomous navigation.

Since a palette of controllers and a switching strategy are

given, we need to verify that the switched system will reach

mode , regardless of the initial mode. Let be the

Fig. 5. Choice of controllers for R . The plot on the bottom shows the
constraints and equilibrium point in Cartesian x � y coordinates.

desired position of . The key idea is that the three modes in

Fig. 4 share the same goal position . Thus, is always driven

to the region where it can see and follow both and . This

intuitive procedure may fail if the switching strategy is not

properly defined. It is well known that a switched system can be

unstable even though all individual systems are stable (see [26]

and the references therein). For this particular switched system,

we have the following result.

Proposition 3: Given the three-robot system depicted in

Fig. 4, if the switching strategy (12) is applied to and all

modes share the same goal position , then for any

initial mode , the switched system will reach in finite

time, i.e., is a stable equilibrium mode.

Proof: Let the system error be defined as

and a Lyapunov function candidate for the desired formation

be given by

(13)

where

(14)

is a Lyapunov function candidate for subsystem ,

i.e., follows using a basic leader-following controller. If

the assumptions in Theorem 1 are satisfied, then . More-

over, if the assumptions in Theorem 2 are satisfied for subsystem

, then . Since is common for all modes,

we only need to consider in (14) for studying the stability of

the switched system.
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Fig. 6. Choice of controllers for R in the presence of obstacles (top). In
simulation, the leader follows a sinusoidal trajectory while followers switch to
avoid obstacle and maintain the desired triangular formation (bottom).

Fig. 7. Formation control graph for four robots and associated adjacency
matrix.

By definition is a Lyapunov function for mode . We

would like to show that is also a Lyapunov function for and

. Let us consider formation mode . makes

and exponentially as . But we need to show that

. To accomplish this, let us define , then

show that or . Since all modes

share the same goal position , we have that is given by

(15)

Thus, as . Using the inequality constraint im-

posed by the geometry of the problem, i.e., , it is

easy to show that . Then, is a Lyapunov func-

tion for (similarly for ). More precisely, (13) is a common

Lyapunov function for the switched system, and is stable for

any arbitrary fast switching sequence.

Remark 7: It is well known that Lyapunov methods pro-

vide conservative stability regions, since we always consider the

worst case. Simulation results reveal that the desired formation

is achieved even when some of the assumptions discussed here

are not satisfied, e.g., position and orientation of and are

randomly initialized.

(a)

(b)

Fig. 8. (a) Six robots have an initial configuration close to the desired
formation shape (an equilateral triangle with equally spaced robots). (b) The
initial configuration is quite different from the desired formation shape.

Fig. 9. Three-dimensional geometry for agent localization.

Fig. 6 depicts the switching boundaries in the presence of ob-

stacles. Here, denotes a safety region within which an ob-

stacle can be detected, is the desired distance from the robot

to the obstacle, and is the angle between and . Let us

assume follows with , if an obstacle is detected,
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Fig. 10. Triangular to pair-wise localization switch resulting from team geometry (a)–(b) or occlusions in the environment (c).

then switches to . Once the obstacle has been suc-

cessfully negotiated, switches back to according to

the following switching rules:

We now illustrate the application of these concepts to a sim-

ulation of three nonholonomic robots with one obstacle [Fig. 6

(bottom)]. Robot is the lead robot and the desired shape is

an equilateral triangle. The formation shape is achieved and the

robots successfully negotiate the obstacle. During the course of

the motion, robot switches modes to successfully navigate

the obstacle, while robot switches modes based on its loca-

tion with respect to the lead robot, .

B. Formation Control Graphs

When , we can construct more complex formations by

using the same set of controllers and similar switching strate-

gies. However, we need a representation of an robot formation

which scales easily with and allows decentralized decision

making. At the coordination level, for an robot formation to

maintain a desired shape, we need to model the choice of con-

trollers between the individual robots as they move in a given

environment. We use directed graphs to accomplish this [17].

We model the group of autonomous mobile robots as a tuple

where (or, e.g., , see [27])

is the reference trajectory of the lead robot, is a set of shape

vectors describing the relative positions of each vehicle with re-

spect to the reference formation frame , and is a control

graph where nodes represent robots and edges represent rela-

tions between nodes (see details below and in [17]). Without

loss of generality, the formation reference frame is fixed

to the lead robot; however, it is not a requirement in our method.

Sometimes it is necessary to add virtual robots to the group to

represent either moving targets, or trajectories that are along

such features as walls, lanes, or obstacles.

The control graphs describing the formation are designed

from the basic controllers described in the previous section.

In Fig. 7, for example, the formation of a group of four robots

involves one leader following controller ( following ) and

two formation shape controllers ( following and , and

following and ). We call such a directed graph ,

with nodes representing robots and edges describing the

control policy between the connected robots, a control graph.

Fig. 7 shows a directed graph represented by its adjacency

matrix (see [19] for definition). Note the control flow from

leader to follower . If a column has a nonzero entry in

row , then robot is following . A robot can have up to two

Fig. 11. (top) Clodbuster team used for experiments. (bottom) Typical view
from the omnidirectional camera.

leaders. Note that can be written as an upper triangular

matrix for any directed acyclic graph (with possible reordering

of vertices).

For a formation of robots, we can consider a triangulation

approach and Fig. 5 can be used to assign control graphs for

labeled robots. For robot , we use Fig. 5. For , we

select the two nearest neighbors from the set

, and select controllers based on and . Fig. 8 shows

two example simulations of teams of six robots converging to

the desired shape while following the desired trajectory. The

robots apply the above technique to reassign the control graph at

every timestep while relying on the cooperative localization to

reparameterize the shape setpoints for the controllers. The final

assignment is different in the two cases even though the same

desired formation shape is achieved.

An obvious concern regarding stability of the formation arises

when we switch between control graphs and shape vectors to

achieve and maintain a desired physical shape. In Section III-A,
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Fig. 12. Sample ground-truth data for trajectories for a triangular formation.

it was shown that under some assumptions on the sensor and mo-

tion constraints, the system had a common quadratic Lyapunov

function [26] and a stable equilibrium point. While a proof sim-

ilar to the one for three robots can be pursued for the robot

assignment problem, finding a common Lyapunov function and

working through the calculations becomes tedious and does not

provide insight into the problem.

IV. SENSING AND ESTIMATION

The sole physical sensor used by the robots in our experi-

ments is the onboard catadioptric camera system [28]. From the

omnidirectional imagery acquired by these cameras, we have

developed several logical sensors—an obstacle detector, a col-

lision detector, a decentralized state observer, and a centralized

state observer (see [29]). One of the primary advantages of cata-

dioptric camera systems for this application is that they afford a

single effective point of projection. This means that after an ap-

propriate calibration, every point in the omnidirectional image

can be associated with a unique ray through the focal point of

the camera. As a result, each robot can compute reliable esti-

mates of the direction vectors to its teammates. These directions

provide the basis for both centralized and decentralized state

observation.

A. Decentralized State Observation

The controllers described in Section II require reliable esti-

mates of the leader robot’s ( ’s) linear velocity and angular

velocity by the follower robot and their relative orienta-

tion ( ). Our algorithm estimates these quantities using

an extended Kalman filter [30] based on the range and the

bearing of the observed leader measured using the om-

nidirectional camera. The velocity of the observed vehicle is

treated as part of the state. In addition, the filter requires a sensor

model and the relative kinematics [see (1)] of the leader and

follower .

The image processing algorithms provide two observations

(16)

Next, we differentiate (16) to obtain and . Using the kine-

matic (1), our extended state vector then becomes

(17)

(18)

where , is the process noise,

is the input vector, and we assume , .

The system output with sensor noise is given by

(19)

The discrete system becomes

(20)

where is the nonlinear state transition function.

is a noise source assumed to be zero-mean Gaussian with

covariance . We use a sampling interval of ms.

The discrete (observation) output is given by

(21)

The covariance is experimentally determined. We use a

standard extended Kalman filter-based estimation algorithm

(see, e.g., [31]) to estimate and its covariance

, given and at time and the

current observation .

The decentralized state observer provides the follower with

necessary information about the velocity of the leader for feed-

forward control, in addition to the relative position and orienta-

tion. This eliminates the need for explicit communication.

B. Centralized State Observation

Approaches to the multirobot localization problem involve

estimating pose with respect to each other, the environment, or

some combination thereof [1], [32], [33]. Our centralized ob-

server adopts the former approach, relying upon information

sharing between robots to solve for the team pose (position and

orientation) in closed form. The resulting estimate is more ro-

bust than that obtained in the decentralized case, since the state

is fully observable with each observation; the need to estimate

the velocity for state prediction is eliminated. However, this

comes at the cost of communication. In our implementation, the

centralized observer uses two methods for estimating the team

pose: triangulation-based and pair-wise localization.

Using the triangulation-based method, a team of three (or

more) robots is capable of localizing in three-dimensional (3-D)

space when each can measure the direction vectors to the other

team members. In Fig. 9, the unit vectors denote the

direction between robot and robot expressed in the coordi-

nate frame of robot . Let and represent,

respectively, the translation and rotation of robot with respect

to the frame of reference of robot . These direction vectors are

derived from the images using the procedure described above.

Without loss of generality, we can choose the reference frame

of robot 1 as our base frame and recover the positions and ori-

entations of the other robots with respect to this frame.

In each frame, the internal angle (see Fig. 9) can be deter-

mined by a scalar product, e.g., . With

this angle information, the translation between the frames can

readily be determined up to a scale factor by applying the sine



DAS et al.: A VISION-BASED FORMATION CONTROL FRAMEWORK 821

Fig. 13. Follower separation distances: ground-truth versus centralized observer estimates for followers R (top) and R (bottom).

Fig. 14. Leader velocity estimation by the follower. Results are consistent with
the actual linear and angular velocities for the leader doing a constant circle
(0.4 m/s and circle radius 1.05 m).

rule to the shaded triangle in Fig. 9. Position vectors relative to

other frames can also be obtained to within a scale factor by

using the corresponding unit vectors.

We thus only require the relative orientations of the frames

and the scale factor to complete the localization procedure. To

determine the relative orientation of the frames, we note that the

vectors and should have equal magnitude, but opposite

direction when transformed to the same frame. We note a sim-

ilar relationship between the vectors ( ) and . From

these, we obtain the following pairs of equations:

(22)

With all translation vectors known to a scale factor, the problem

of solving for each rotation matrix reduces to the form

(23)

This can be rephrased as the following optimization problem:

(24)

The rotation matrix which minimizes this expression can be

computed in closed form as follows [34]

(25)

where .

Again, recall that this solution has so far only required rela-

tive bearing information, but yields the pose of the team only to

a scale factor. However, in our experiments the robots were con-

strained to operations in . We exploit this and the known

robot geometry so that any robot could gauge the distance to its

teammates based on the radial image distance. As a result, we

have a means by which each robot can provide two estimates

of the scale (one for each of its visible partners). We use the re-

dundant estimates from all three to obtain the overall scale factor

and the relative pose of the team.

This solution offers an improvement over methods presented

previously, in that we obtain the relative orientation of the robot

team solely from angular measurements, and eliminate the need

for additional sensors required to measure orientation in pre-

vious implementations [32]. However, it does not eliminate the

singularity associated with linear formations. Additionally, it

requires that all three robots maintain line of sight. This is a

stringent requirement that does not hold in an obstacle-clut-



822 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Fig. 15. Follower separation and relative bearing for a feedforward controller.
Notice the jump at t � 65 s as we manually restrained the follower for 5 s. The
controller recovers within a few seconds.

tered environment. However, we note though that when the pose

problem is reduced to 2-D space, relative localization can be ac-

complished by a pair of robots. Using this fact, our implemen-

tation dynamically switches between triangulation-based and

pair-wise localization estimation, based on team geometry and

the external environment.

Consider the case of a triangular formation approaching a

narrow passage through obstacles shown in Fig. 10. A forma-

tion switch is ordered to allow the team to proceed through

the passage [Fig. 10(a)]. As the robots approach a linear for-

mation, there comes a point where the improved accuracy af-

forded by exploiting the triangle constraint is compromised by

operating in proximity to its singularity. At this point, the cen-

tralized observer automatically switches to pair-wise localiza-

tion mode [Fig. 10(b)]. Robot exchanges information with

the team leader ( ) to localize relative to the leader’s frame.

performs a similar exchange with and, as a result, deter-

mines its pose relative to . While this mode switch resulted

from the formation geometry, it can also be directly triggered

by the environment. This is shown in Fig. 10(c), where the line

of sight between two robots is occluded by an obstacle. This oc-

clusion can be detected from a global visibility matrix, resulting

in a pair-wise localization switch.

The pair-wise method serves as the secondary localization

mode for the centralized observer. In most formation geome-

tries, the constraint obtained by determining the relative forma-

tion scale—along with the redundant range measurements for

estimating the absolute scale—result in improved performance

Fig. 16. Ground plane data for formation switching, two runs. The line change
from solid to dotted corresponds to the initiation of the switch.

Fig. 17. Triangular to inline formation switch to avoid obstacles.

in the triangulation-based mode. Mean range errors were typi-

cally 3%–5%, compared with 10% for the pair-wise case.

The advantages resulting from this internal switching are

twofold. It allows the centralized observer to robustly estimate



DAS et al.: A VISION-BASED FORMATION CONTROL FRAMEWORK 823

Fig. 18. Ground truth versus centralized observer estimates corresponding to the experiment in Fig. 16.

the team state regardless of formation geometry. Additionally,

it allows the team to react to an obstacle-cluttered environment

with only a slight degradation in accuracy.

V. EXPERIMENTS

A. Hardware Platform

The cooperative control framework was implemented on

the GRASP Lab’s Clodbuster (CB) robots (see Fig. 11). The

CB platform is based on the Tamiya CB radio-controlled scale

model truck. Video signals from the omnidirectional camera

camera are sent to a remote computer via a wireless 2.4–GHz

video transmitter. Velocity and heading control signals are

sent from the host computer to the vehicles as necessary. This

reduces the cost and size of the platform.

B. Formation Control

Initial experiments in formation control were used to val-

idate the dynamic state estimator and corresponding control

approach. As a result, we first examined stable formations

following trajectories of straight lines and circular arcs. Video

data from these trials were recorded using a calibrated overhead

camera to provide ground-truth position data of the formation.

Data from two trials are shown in Fig. 12.

We next compared the state observer estimates with the

ground-truth position data. As an example, in the trial on the

left side of Fig. 12, the desired formation was an isosceles

triangle where both followers maintained a distance of 1.0 m

from the leader. Fig. 13 contrasts the measured leader-follower

separation distances with those calculated by the centralized

state observer. Results are for the most part satisfactory, with

mean separation errors of 3.2% and 5.5% for the two followers.

Discontinuities in state observer estimates are due to corrupted

image data resulting from the remote video transmission.

Typical image corruption rates were 15%–20% for each robot,

Fig. 19. Distributed manipulation demonstration.

leaving periods of time where no localization was possible.

Also worth noting is that the actual separation distance of the

robots is always greater than desired. This is due to the pure

feedback controller used with the centralized observer.

Additional experiments with the decentralized observer,

which includes velocity estimates, were also conducted. Shown

in Figs. 14 and 15, the lead robot executes a circle while the

follower attempts to maintain 0.6-m separation and a relative

bearing of 180 . The controller response is significantly im-

proved as a result of the feedforward terms from the estimator.

We also examined the robustness of the estimator by manually

restraining the follower at s. As can be seen from the

plots, the system recovered quickly.

These results suggest that both observers provide sufficiently

good state estimates. However, despite the superior estimator

performance, the control response for the centralized case is

compromised by the lack of a feedforward component. We are

currently integrating a velocity estimator to address this.
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C. Switching Formations

In these experiments, the lead robot is to perform an ex-

ploratory mission while the formation shape changes in a

decentralized fashion as required by the environment. We use

a simple reactive obstacle avoider [24] on the leader, while

allowing the team to choose between either an isosceles triangle

or inline convoy formation. In the presence of obstacles, the

followers switch to an inline position behind the leader in

order to negotiate the obstacles while following the leader. See

Figs. 16 and 17. The internal mode switching in our centralized

state observer is also shown in Fig. 18. Approximately 3 s

into the run, the leader detects the obstacles and triggers

a formation switch (triangle to inline). The observer mode

switches internally from triangular to pair-wise depending on

the geometry of the formation.

D. Coordinated Manipulation

The ability to maintain a prescribed formation allows the

robots to “trap” objects in their midst and to flow the formation,

guaranteeing that the object is transported to the desired posi-

tion. With this in mind, we proceeded to apply this technique

to a manipulation application. Experiments were conducted

using a box as the object to be manipulated. In Fig. 19, the

initial team configuration is centered around the box, with the

goal to flow the now-encumbered formation along a trajectory

generated by the leader. By choosing a constraining formation

geometry, the box is kept in contact with all three robots during

the formation flow. Several snapshots from a sample run are

shown in Fig. 19. Despite the control strategy not accounting

for changes in the object pose, the formation was typically

successful in its manipulation task over the tested trajectories.

These experiments, while not an exhaustive investigation

of distributed manipulation, demonstrate the potential for a

vision-based formation control application.

VI. CONCLUSION

In this paper, we propose a framework for the development

of intelligent multirobot systems by composing simple sensing,

estimation, control, and coordination blocks in a bottom-up

approach. The main contributions are a suite of control and

estimation algorithms, and a paradigm for switching that allows

a group of robots to maintain a prescribed formation (shape and

size) while following a planned trajectory. The switching para-

digm also allows the robots to change formation in the presence

of obstacles. A distinguishing feature of our work is the fact

that each robot relies only on a single omnidirectional camera

for sensory information. We have demonstrated our framework

in cooperative tasks like exploration and manipulation. Because

our controllers and estimators can be decentralized and the

framework allows the selection of the best controller and

estimator in a given situation, our framework can potentially

scale to groups of tens and hundreds of robots. Analyzing the

effect of communication constraints, deciding the optimality

of formation choices for a given environment, sensor planning

for cooperative active vision, and implementing multirobot

coordination tasks with a larger number of robots are also

important directions for our future work.
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