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Abstract: Conventional displacement sensors have limitations in practical applications. This 

paper develops a vision sensor system for remote measurement of structural displacements. 

An advanced template matching algorithm, referred to as the upsampled cross correlation, is 

adopted and further developed into a software package for real-time displacement extraction 

from video images. By simply adjusting the upsampling factor, better subpixel resolution 

can be easily achieved to improve the measurement accuracy. The performance of the vision 

sensor is first evaluated through a laboratory shaking table test of a frame structure, in which 

the displacements at all the floors are measured by using one camera to track either  

high-contrast artificial targets or low-contrast natural targets on the structural surface such 

as bolts and nuts. Satisfactory agreements are observed between the displacements measured 

by the single camera and those measured by high-performance laser displacement sensors. 

Then field tests are carried out on a railway bridge and a pedestrian bridge, through which 

the accuracy of the vision sensor in both time and frequency domains is further confirmed 

in realistic field environments. Significant advantages of the noncontact vision sensor 

include its low cost, ease of operation, and flexibility to extract structural displacement at 

any point from a single measurement. 

Keywords: vision sensor; displacement; template matching; upsampled cross correlation; 

subpixel resolution; civil engineering structures 

 

OPEN ACCESS



Sensors 2015, 15 16558 

 

 

1. Introduction 

Civil engineering structures including buildings and bridges are exposed to various external loads 

such as traffic, gust and earthquake during the operational lifetime. Monitoring structural static and 

dynamic displacements can provide quantitative information for both structural safety evaluations and 

maintenance purposes. Such practice, however, is highly expensive to operate, mainly due to 

cumbersome, time-consuming, and expensive installation of sensors and their data acquisition systems. 

Sensors currently available for measuring structural displacements can be classified as contact-type  

(e.g., Linear Variable Differential Transformer (LVDT)) and noncontact-type (e.g., GPS, laser 

vibrometer and radar interferometry system) sensors [1–8]. The contact sensor requires the access to the 

object structure to install the sensor and physically connect it to a stationary reference point, which is 

often difficult or even impossible to locate. The GPS sensors are easier to install but the measurement 

accuracy is limited, usually with errors between 5 and 10 mm [1–4]. The noncontact laser vibrometer is 

generally accurate. But the limited measurement distance prevents its applications in monitoring civil 

engineering structures because longer distance measurement requires the use of a high-intensity laser beam 

that would endanger human health [4,6]. The interferometric radar system allows remote measurements 

with a good resolution. However, it requires reflecting surfaces mounted on the structure [5].  

To cope with these problems, noncontact vision-based displacement measurement systems  

have been developed recently, which are primarily enabled by the template matching/registration 

techniques [1–3,9–19]. For example, Busca et al. [12] developed a vision-based displacement sensor 

system using three template matching algorithms, namely, pattern matching, edge detection and digital 

image correlation (DIC). The vision sensor was used to measure the vertical displacement of a railway 

bridge by tracking high-contrast target panels fixed to the bridge. Song et al. [11] measured the 

displacement of a cantilever beam from a vision sensor by extracting markers using subpixel Hough 

transforms from video images. Kim et al. [9] proposed a vision-based monitoring system using DIC to 

evaluate the cable tensile forces of a cable-stayed bridge. Ribeiro et al. [3] measured the dynamic 

displacement of a railway bridge utilizing the RANdom SAmple Consensus (RANSAC) algorithm. On 

the basis of a robust orientation code matching (OCM) algorithm, the authors developed a vision sensor 

system for real-time displacement measurement by tracking natural targets on the structural surface, 

which eliminates the requirement for physical access to structures to install artificial target panels [2,20].  

In practice, one major concern for the vision sensor system is the measurement accuracy. Template 

matching technique usually gives displacement with integer-pixel resolution since the minimal unit in a 

video image is one pixel. Although in many applications the pixel-level accuracy is adequate, it is often 

far from the required in case of small structural vibrations. To improve the measurement precision, 

incorporating the subpixel registration into the template matching algorithm is regarded as the best 

choice. The interpolation technique is most commonly used subpixel approach, examples of which 

includes intensity interpolation, correlation coefficient curve-fitting or interpolation, phase correlation 

interpolation and the geometric methods [21–23]. Subpixel registration can also be formulated as an 

optimization problem and solved through heuristic algorithms such as genetic algorithm, artificial neural 

network algorithm, and particle swarm optimization, etc. [24,25]. There are also other subpixel 

techniques that are based on Newton-Raphson method [26] and gradient-based methods [27].  
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As an emerging sensor technique, there is a need to thoroughly investigate the noncontact vison sensor 

by employing different template matching as well as subpixel algorithms, and experimentally evaluating 

its performance through tests on various structures. In this study, a novel vision sensor is developed 

based on an advanced subpixel template matching technique, i.e., the upsampled cross correlation 

(UCC), which is developed into a software package for real-time displacement extraction. A series of 

laboratory and field tests are carried out to evaluate its performance.  

The paper is organized as follows: in Section 2, the estimation of scaling factor is discussed, and the 

vision sensor system including the hardware and the theoretical background of the software is 

introduced; Section 3 evaluates its performance through a laboratory shaking table test of a small-scale 

frame structure; Section 4 presents two field tests results of a railway bridge and a pedestrian bridge, 

respectively; Section 5 concludes this study. 

2. Proposed Vision Sensor System 

The underlying principle of the vision sensor for displacement measurement is the template  

matching technique. Figure 1 shows the basic procedure of the vision sensor implementation. In the 

implementation, an initial area to be tracked is defined as a template in the first image of a sequence of 

video frames. The template can be located in the successive images using the template matching 

technique. To reduce computational time, the searching area could be confined to a predefined region of 

interest (ROI) near the template’s location in the previous image.  

 

Figure 1. Procedure of vision sensor implementation. 

2.1. Scaling Factor Determination 

In order to obtain structural displacements from the captured video images, the establishment of the 

relationship between the pixel coordinate and the physical coordinate is required (e.g., with units of 
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mm/pixel). As shown in Figure 2a, when the image plane is parallel to the object surface, the scaling 

factor in the translational direction (x axis) can be determined by: 

orknown known
pixel pixeli

known known

d d D
SF SF d d

I d f
= = =  (1)

where knownd  is the known physical length on the object surface, i

knownd  and knownI  are the corresponding 

physical length and pixel length at the image plane respectively with i

known known pixeld I d= , pixeld  is the pixel 

size (e.g., in μm/pixel), D is the distance between the camera and the object, and f is the focal length. 

 

Figure 2. Scaling factor determination: (a) optical axis perpendicular to object surface;  

(b) optical axis non-perpendicular to object surface.  

Thus the scaling factor can be obtained from one of the two methods: (1) be estimated from the known 

physical dimension on the object surface and its corresponding image dimension in pixels (i.e., knownd  

and knownI ); (2) be estimated based on the intrinsic parameters of the camera as well as the extrinsic 

parameters between the camera and the object structure (i.e., D, f and 
pixeld ).  

However, the prerequisite of Equation (1) is the perpendicularity of the camera’s optical axis to the 

object surface. Thus all points on the object surface have equal depth of fields [8,28]. Such a requirement 

would impose some difficulties in the practical implementations because small magnitude of camera 

misalignment angle can be unnoticed during the experiment setup especially when the object distance 

from the camera is relatively large. Moreover, in outdoor field tests, it is sometimes unavoidable to tilt 

the camera optical axis by a small angle in order to track the measured object surface. 

Figure 2b shows a schematic when the camera optical axis is tilted about the normal directions of the 

object surface by an angle θ. Assume line AB is known dimension on the object. Ax  and Bx  are the 

coordinates of the two points, and i

AI  and i

BI  are the corresponding pixel coordinates at the image plane. 

The scaling factor can be estimated by: 
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From the triangular geometry, Ax  and Bx  can be expressed as: 

2 2
,

cos cos sin cos cos sin

i i

A B
A Bi i
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f x f x
= =

θ − θ θ θ − θ θ
 (3)

where i i

A A pixelx I d=  and i i

B B pixelx I d=  are the coordinates at the image plane. When θ  is small  

( sin 0θ ≈ ), and and i i

A Bx f x f  , the scaling factor in Equation (2) can be further estimated and 

simplified in terms of the intrinsic camera parameters and the extrinsic parameters between the camera 

and the object structure: 

2 2 2 2

1

cos cos sin cos cos sin cos

i i
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For example, if point C in Figure 2b has a small translation Δ  along the x axis at the object surface, 

the “true displacement” is: 

,

2 2 ,
( )

cos cos sin cos cos sin

i i

C C
C C i i

C C

Dx Dx
x x

f x f x

Δ

Δ
Δ = − − Δ = −

θ − θ θ θ − θ θ
 (5)

where i i

C C pixelx I d=  and , ,i i

C C pixelx I dΔ Δ
=  are the coordinates of point C before and after translation at the 

image plane.  

(a) (b) 

Figure 3. Error resulting from camera non-perpendicularity: (a) Effect of optical axis tilt 

angle (f = 50 mm); (b) Effect of focal length of lens (θ = 3°). 

From the scaling factors 1SF  in Equation (2) and 2SF  in Equation (4), the “measured displacement” 

can be estimated by ,

1 1( )SFi i

C CI I Δ
Δ = −  or ,

2 2( )SFi i

C CI I Δ
Δ = − . In order to quantify the error resulting 

from camera non-perpendicularity, numerical studies are conducted. The measurement errors from the 

two scaling factors can be defined as: 1 2/   100% and /   100%Error Error= Δ − Δ Δ × = Δ − Δ Δ ×  . 

The adopted parameters are: camera with 640 × 512 pixel resolution, 4.8μmpixeld =  , 200i

AI =   and  

160i

BI = , D = 10 m. Point C has a 1 pixel translation in the image plane from 100i

CI =  to 
, 99i

CI Δ
= . The 

effects of the optical axis tilt angle and lens focal length are investigated by considering a variable range 
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and the results are shown in Figure 3. It can be seen that the error increases as the tilt angle increases 

and the error is inversely related to the focal length. In sum, it could be concluded that in most practical 

applications the measurement errors from small optical tilt angles are acceptable. Although this study is based 

on the 1D (x axis) in-plane translation, the conclusions can be equally extended to the 2D in-plane translation.  

It is also found from the numerical study that for a fixed camera setup, the measurement error from 

scaling factor 1SF  would decrease when the measurement point C gets closer to the known dimension 

AB. Especially, the error is minimized when the measurement point is located within the region  

of known dimension. For scaling factor 2SF  in Equation (4), errors would further arise from the 

uncertainties in the tilt angle estimation, camera distance measurement and focal length readings from 

the adjustable-focal-length lens. 

In the laboratory and field tests of this study, scaling factor SF1 is adopted, which is obtained from 

Equation (2) based on the known physical dimension on the object surface (e.g., the size of artificial 

target panels or the size of the nuts and rivets known from the design drawings) and the corresponding 

image dimension in pixels. It is noted that camera calibration according to Zhang method [29] would 

reduce the effect of lens distortion [19,30], which is however not carried out in this study. 

2.2. Hardware of the Vision Sensor System 

As tabulated in Table 1, the proposed vision sensor system simply consists of a video camera, a zoom 

lens and a notebook laptop. During the test, the camera equipped with the lens is fixed on a tripod and 

placed at a remote location away from the structure. The camera is connected to a laptop installed with 

the real-time image-processing software. It is noteworthy that setting up the vision sensor, including 

focusing the lens on the targets, takes only a few minutes. 

Table 1. Technical specifications of the proposed vision sensor system.  

Component Model Technical Specifications 

Video camera 
 

Point Grey/FL3-U3-13Y3M-C 

Maximum resolution: 1280 × 1024 

Frame rate: 150 FPS 

Chroma: Mono 

Sensor type: CMOS 

Pixel size: 4.8 μm 

Lens mount: C-mount 

Interface: USB3.0 

Optical lens  

Kowa/LMVZ990 IR 

Focal length: 9 to 90 mm 

Maximum Aperture: F1.8 

Mount: C-mount 

Laptop computer 
 

Sony /PCG-41216L 

Intel(R) Core(TM) i7-2620M CPU @ 2.70 

GHz 

8192 RAM 

250 HDD 

14.1" Screen 

Tripod and Accessories Tripod, USB3.0 type-A to micro-B cable, etc. 
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2.3. Upsampled Cross Correlation for Template Matching 

In this study, the vision sensor is developed based on UCC, a subpixel template matching method 

proposed by Guizar-Sicairos et al. [31]. Consider a pair of images ( , )f x y  and ( , )t x y  with identical 

dimensions M N× , among which, ( , )t x y  has a relative translation from the reference image ( , )f x y . 

The cross correlation between ( , )f x y  and ( , )t x y  by means of Fourier transform can be defined as: 

0 0
0 0 0 0

, ,

( , ) ( , ) ( , ) ( , ) ( , ) exp 2FT

x y u v

ux uy
x y f x y t x x y y F u v T u v i

M N
R ∗ ∗   

= − − = π +    
   (6)

where the summations are taken over all image points ( , )x y ; 0 0( , )x y  is an amount of coordinate shift; 

“*” denotes complex conjugation; ( , )F u v  and ( , )T u v∗
 represent the discrete Fourier transform (DFT) 

of their lowercase counterparts, for example 

,

( , )
( , ) exp 2

x y

f x y ux uy
F u v i

M NMN

  
= − π +    
  (7)

From Equation (6), an initial displacement estimation with pixel-level resolution can be easily 

acquired by locating the peak of FTR . Subsequently, cross correlation based on a time-efficient  

matrix-multiplication discrete Fourier transform (DFT) is performed in a neighborhood around the initial 

peak to achieve a subpixel resolution.  

 

Figure 4. Flowchart of the upsampled cross correlation (UCC) implementation. 

Figure 4 shows the flowchart of the vision sensor based on the subpixel UCC, described as follows:  

Step I: Pixel-level rough search. Compute the cross correlation between the image to register and the 

reference image by means of Fourier transform, and the initial displacement can be estimated from the 

correlation peak;  

Step II: Subpixel fine search. Compute the cross correlation in a 1.5 × 1.5 pixel neighborhood around 

the initial estimate by an upsampling factor of κ . Thus a subpixel resolution within 1/ κ  of a pixel is 

achieved by searching the peak in this (1.5 ,1.5 )κ κ  neighborhood. For example, by setting 10κ = ,  

a 0.1 subpixel accuracy can be achieved. 
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In Step II, instead of computing a zero-padded FFT, a matrix-multiplication DFT operation is 

implemented by the product of three matrices with dimensions (1.5 , )Nκ , ( , )N M  and ( ,1.5 )M κ . The 

algorithm complexity for this upsampling subpixel search is ( )O MNκ , while complexity of 

conventional FFT upsampled by zero-padding ( , ) ( , )F u v T u v∗
 is [ ]2 2( log ( ) log ( ) )O MN M Nκ κ + κ κ . 

The substantial improvement dramatically reduces computational time and memory requirement without 

sacrificing accuracy, making possible of real-time displacement measurement. 

A real-time video-processing software is developed based on UCC. The programming environment 

for the software package is Visual Studio 2010 using C++ language. During measurement, the 

FlyCapture Software Development Kit (SDK) by Point Grey Research is used to capture video images 

from Point Grey USB 3.0 cameras using the same application programming interface (API) under  

32- or 64-bit Windows 7/8 operating system. Then the frame-by-frame image are processed by the UCC 

algorithm and displayed on the screen using DirectShow library. Meanwhile, the measured displacement 

history would be shown on the screen in real time and saved to the computer. The online measurement 

avoids the time-consuming and memory-intensive task of saving huge video files. However, a tradeoff 

among measurement points, video resolution, maximum frame rate per second and template sizes is 

necessary. On the other hand, the developed software can also be used for post-processing the  

recorded video files, which enables the flexibility to extract structural displacements at more points  

from a single recording.  

3. Shaking Table Test of a Frame Structure 

The performance of the proposed vision sensor is first evaluated through a shaking table test of a 

scaled three-story frame structure in the Carleton Laboratory at Columbia University, as shown  

in Figure 5. The aluminum frame structure is bolt-connected for all the column-floor connections. 

 

(a) (b) 

Figure 5. Laboratory test: (a) Shaking table test setup; (b) Vision sensor system setup. 
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3.1. Shaking Table Test Setup 

During the testing, the shaking table (Model# APS113 by APS Dynamics Inc.: San Juan Capistrano, 

CA, USA) is driven by white noise signals. Four predesigned black and white artificial targets  

(99 mm × 75 mm) are mounted on the structure for motion tracking. Meanwhile, four bolt connections 

are used to study the performance of the vision sensor to track natural targets on the structure. As 

references, the displacements are also measured by four high-accuracy laser displacement sensors or 

LDSs (Model#LK-G407 by KEYENCE), which are installed between each floor of the frame model and 

stationary reference points. 

The visions senor system is placed 8 m away from the shaking table. During the measurement, video 

images captured by the camera are digitized into 640 × 512 pixel images in 8 bit grey scales and streamed 

into the computer through an USB 3.0 cable. Before testing, the processing time for each video frame 

by the developed software should be obtained to determine the maximum frame rate. In this test, four 

small areas from the artificial targets and four bolt-connection areas at all floors are simultaneously 

registered as templates. It is observed that a total time of 5.6 ms is needed for each video frame,  

including the reading and preparing, template matching and image displaying time. Thus, real-time 

displacement time histories at eight measurement points can be simultaneously measured with a 

sampling rate of 150 fps.  

3.2. Subpixel Resolution Performance 

Pixel-level template matching may result in unacceptable measurement errors if the displacement to 

be measured has same order of magnitude as the scaling factor. In this case, the subpixel technique 

should be adopted to make template matching fall at a fractional pixel location. To better understand 

how the subpixel technique improves the measurement precision, displacements extracted from video 

images by tracking the artificial target on the base floor are used as a demonstration. Four subpixel 

levels, namely, levels of one integer pixel, 0.5 pixel, 0.2 pixel and 0.05 pixel are chosen, with the 

corresponding resolutions tabulated in Table 2. Recall again, a desired subpixel resolution can  

be easily achieved by simply adjusting the upsampling factor κ . In this testing, the scaling factor is 

1.338 mm/pixel, providing ±0.669 mm resolution.  

Table 2. Different levels of subpixel resolution. 

Subpixel (pixel) 1 0.5 0.2 0.05 

Resolution (mm) ±0.669 ±0.335 ±0.134 ±0.034 

As shown in Figure 6a, for the integer-pixel resolution (1.338 mm), the displacement errors between 

the vision sensor and LDS can be observed clearly. On the other hand, after employing different levels 

of subpixel analysis, the displacement by the vision sensor agrees better with that by LDS as the 

resolution improves (with NRMSE errors (by Equation (8)) of 6.41%, 3.80%, 1.73%, and 1.35% 

respectively for the four zoom-in segments in Figure 6). 

It is noted that in the ideal case where video images have no distortion or noise, larger upsampling 

factor κ would yield smaller error. However, the subpixel accuracies reported in many studies vary 

within orders of magnitude from 0.5 to 0.01 pixel [21,32], as images may be contaminated by various 
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external environmental noises and system noises arising from the electronics of the imaging digitizer. 

For the following tests in this study, 20κ =  is selected. 

(a) (b) (c) (d) 

Figure 6. Subpixel resolution evaluation (a) Resolution: ±1.338 mm; (b) Resolution:  

±0.669 mm; (c) Resolution: ±0.268 mm; (d) Resolution: ±0.067 mm. 

3.3. Measurement Evaluation by Tracking both Artificial and Natural Targets 

To evaluate the performance of the vision sensor, displacements are measured by tracking both the 

black and white artificial targets and natural targets (i.e., bolt connections) and compared with those by 

four LDSs. Here, the measurements are termed as Vision (artificial target), Vision (natural target) and 

laser displacement sensor (LDS), respectively. 

 

Figure 7. Displacement comparisons between Vision (artificial target) and LDS: (a) Base 

floor; (b) 1st floor; (c) 2nd floor; (d) 3rd floor.  

Firstly, the four artificial targets in Figure 5 are used as the tracking target for the vision sensor.  

Figure 7 shows the comparison of displacements by Vision (artificial target) and LDS. Excellent 

agreements can be observed. In Figure 8, the plotted displacements of 1st, 2nd, and 3rd floor are relative 

to the base-floor displacement in Figure 7a, and only enlarged time segments between 2 s and 4 s are 

shown for better illustration. As shown in Figure 8a, small discrepancies are observed in the 1st floor 

relative displacements by the vision sensor and LDS. However, considering the small vibration amplitude 

(a) (b) 

(c) (d) 
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(smaller than 1 mm), the errors are acceptable. As can be seen from the relative displacements of 2nd 

and 3rd floor in Figure 8b,c, the discrepancies are reduced as the vibration amplitude increases. And it 

is expected that the errors would further decrease as the amplitude of the relative vibration increases. 

 

Figure 8. Comparisons of displacement relative to base floor between Vision (artificial 

target) and LDS: (a) 1st floor; (b) 2nd floor; (c) 3rd floor. 

It is noted that the scaling factor for the vision sensor in the testing is 1.338 mm/pixel, meaning that 

the expected maximum error is 0.669 mm from a pixel-level template matching. However, since an 

upsampling factor of 20κ =  is selected to achieve a 0.05 subpixel accuracy, the vision sensor can still 

accurately capture the small relative displacements ranging from 0 to 3 mm.  

Next, instead of tracking the artificial targets, the four bolt connections on the frame structure in 

Figure 5, are used as the tracking targets. Figure 9 shows the displacement comparison of each floor by 

Vision (natural target) and LDS, respectively. Figure 10 plots the 1st, 2nd, and 3rd floor displacements 

relative to the base floor. Again, satisfactory agreements between Vision (natural target) and LDS can 

be achieved.  

 

Figure 9. Displacement comparisons between Vision (natural target) and LDS: (a) Base 

floor; (b) 1st floor; (c) 2nd floor; (d) 3rd floor. 

  

(a) (b) 

(c) (d) 

(a) (b) (c) 
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Figure 10. Comparisons of displacement relative to base floor between Vision (natural 

target) and LDS: (a) 1st floor; (b) 2nd floor; (c) 3rd floor. 

To quantify the accuracy and precision of the vision sensor, error analysis is performed using the 

normalized root mean squared error (NRMSE) 

2

1

max min

1
( )

NRMSE= 100%

n

i i

i

x y
n

y y

=

−

×
−


 (8)

where n = number of measurement data; ix  and thiy i=  displacement data at time it , measured by the 

vision sensor and the LDS, respectively; and max minmax( ), min( )i iy y y y= = . 

Table 3 tabulates the NRMSE errors of the displacement measurements in Figures 7 and 9. It is 

concluded that vision sensor demonstrates a high accuracy by tracking either artificial targets or natural 

targets, with a maximum NRMSE error of 0.6%. By tracking natural targets without requiring artificial 

targets installed on fixed locations on the structure, the vision sensor provides the flexibility to easily 

change locations for displacement measurement, thus further facilitating the testing process. 

Table 3. Measurement errors: normalized root mean squared error (NRMSE) (%). 

Floor 
Vision Sensor 

Artificial Target Natural Target 

Base 0.39 0.60 

1st 0.28 0.45 

2nd 0.27 0.35 

3rd 0.18 0.32 

4. Field Tests 

To evaluate the performance of the vision sensor in realistic field environments, field tests are carried 

out on two bridges. Specifically, the time-domain performance is evaluated through field tests of a 

railway bridge by comparing with reference LVDT, and the frequency-domain performance is evaluated 

through field tests of a pedestrian bridge by comparing with the conventional accelerometer. A sampling 

rate of 150 frames per second with a resolution of 640 × 512 pixel was adopted. 

4.1. Field Test of a Railway Bridge 

In collaboration with the Transportation Technology Center, Inc. (TTCI), field measurements are 

carried out on a state-of-the-art hybrid composite bridge, which is one of the test-bed bridges in TTCI, 

Colorado. As shown in Figure 11a, the bridge is 12.8 m long. The train used for the testing has one 

(a) (b) (c) 
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locomotive and 15 freight cars. Figure 11b shows the artificial target and natural target on the bridge. 

The video camera is fixed on a tripod and set up at a remote location away from the bridge. This field 

tests focused on the measurement of the vertical displacement at the mid-span point by the vision sensor. 

As a reference sensor, a conventional contact-type displacement sensor, i.e., a LVDT, is installed  

on the mid span of the bridge with one end connected to a stationary reference point on the ground 

through a string.  

 

Figure 11. Field test of a railway bridge: (a) Displacement measurement under moving 

trainloads; (b) Artificial target and natural target. 

Often in the field, it is difficult to find a location close to the structure to set up the vision sensor 

system, thus requiring to evaluate performance of vision sensor at different remote distances. Table 4 

summarizes two of the field testing cases. Test T1 is conducted with a train speed of 40.23 km/h  

(or 25 mph) and with the vision sensor system placed 30.48 m (or 100 ft) away from the bridge, and Test 

T2 with a train speed of 64.36 km/h (or 40 mph) and with the sensor 60.96 m (or 200 ft) away from the 

bridge. It is noteworthy that the camera optical axis is tilted by small angles (2° for T1 and 1° for T2) 

with respect to the normal direction of the bridge surface, the errors from which are acceptable based on 

the scaling factor discussions in Section 2.1. 

Table 4. Test cases. 

Test 
Measurement Distance 

(m) 

Camera Tilt Angle 

(°ሻ Train Speed 

(km/h) 

Scaling Factor 

(mm/pixel) 

T1 30.48 2 40.23 1.90 

T2 60.96 1 64.36 3.83 

Figures 12 and 13 plot respectively the displacement time histories for tests T1 and T2 by the three 

sensor systems, namely, the LVDT, Vision (artificial target), and Vision (natural target). In general, the 

measurements agree well with one another. Specifically, the test results show that the measurement error 

increases as the measurement distance increases, mainly caused the increased difficulty in tracking either 

the artificial target or the natural target as measurement distance increases. 

During the field tests, two other problems are recognized, which would also contribute to the 

measurement errors. Firstly, the camera vibrations caused by moving-train-induced ground motion can 

affect the measurement accuracy when the camera is placed far away from the measurement target and 

zoom lenses magnifies not only the images but also the camera vibration. This problem becomes more 

serious for the proposed compact and portable vision-based displacement sensor system, because it is 

impossible to utilize stable concrete camera base fixture to avoid the micro camera vibration. The second 
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problem is the heat haze that occurs when the air is heated, non-uniformly, by the high ambient 

temperature during the field testing. The non-uniformly heated air causes variation in its optical 

reflection index, resulting in image distortion, which would cause more measurement errors as the 

measurement distance increases, because the air thickness between the target object and the lens of the 

camera becomes large. 

 

Figure 12. Comparison of displacements: Test T1. 

 

Figure 13. Comparison of displacements: Test T2. 

4.2. Field Test of a Pedestrian Bridge 

The Streicker Bridge is a pedestrian bridge located on the Princeton University campus, NJ, USA. 

The bridge has a main span and four approaching legs. The main span is a deck-stiffened arch and the 

legs are curved continuous girders supported by steel columns [33]. This field tests are to study the 

performance of the vision sensor in frequency domain. Two sets of dynamic loading tests are carried out 

on the third span of the southeast leg. As shown in Figure 14, one artificial target and one accelerometer 

(Model#W352C67 by PCB PIEZOTRONICS Inc.: Depew, NY, USA) are installed on the mid span. It 

is noted that the camera optical axis is tilted by an approximate angle of 15° with respect to the normal 

direction of the bridge surface, However, in this field test, due to the large height between ground and 

the bridge bottom surface, it is very difficult to install a reference LVDT to compare the accuracy of the 

measured displacement time histories by the vision sensor. 

First, in order to apply dynamic loads with broadband frequency contents to the bridge, a group of 

pedestrians ran on the bridge deck randomly with different, varying speeds, rhythms and directions 

without any particular pattern. Figure 15 shows the displacement measurement from the vision sensor 

together with the power spectral density (PSD) result. Figure 16 plots the acceleration measurement 

from the accelerometer and the corresponding PSD result. By comparing the results, one dominant 
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frequency can be clearly identified as 3.08 Hz from both sensors, as well as two higher frequencies of 

3.68 Hz and 4.47 Hz, respectively.  

 

Figure 14. Field test: (a) Streicker Bridge; (b) Artificial target.  

 

Figure 15. Randomly running of pedestrians: (a) Displacement by the vision sensor;  

(b) corresponding PSD. 

 

Figure 16. Randomly running of pedestrians: (a) Acceleration measurement; (b) Corresponding PSD. 

Secondly, the pedestrian participants jumped on the mid span of the bridge deck synchronically with 

a frequency of around 3 Hz, which is close to the estimated first natural frequency of the bridge.  

Figures 17 and 18 plot the displacement and acceleration time histories obtained respectively from the vision 

sensor and the accelerometer, together with corresponding PSD results. Again, the identified frequencies 

based on the two sensors show excellent agreement. Therefore, it is concluded that the same frequency 

components can be accurately obtained from the vision sensor. 

(a) (b) 

(a) (b) 
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Figure 17. Jumping of pedestrians: (a) Displacement by the vision sensor; (b) Corresponding PSD. 

 

Figure 18. Jumping of pedestrians: (a) Acceleration measurement; (b) Corresponding PSD. 

5. Conclusions and Future Work 

In this study, a vision sensor system is developed for remote measurement of structural displacements 

based on an advanced subpixel template matching technique, namely, the upsampled cross correlation 

by means of Fourier transform. Comprehensive experiments, including a shaking table test and two 

bridge field tests, are carried out to investigate its performance. The following conclusions can be drawn: 

(1) As a significant advantage of the proposed vision sensor, better subpixel resolution can be easily 

achieved by adjusting the upsampling factor. Thus structural vibrations smaller than 1 mm can 

be accurately measured. 

(2) From the shaking table test of a frame structure, satisfactory agreements are observed between 

the multi-point displacement time histories measured at all floors by one camera by tracking bolt 

connections on the structure surface and those by four laser displacement sensors.  

(3) In realistic field environments, the time-domain performance of the vision sensor is further 

confirmed through field tests of a railway bridge during train passing; and the frequency-domain 

performance is validated through field tests of a pedestrian bridge subjected to dynamic loading.  

By tracking existing natural targets on the structure surface, the vision sensor developed in this study 

provides the flexibility to easily change locations for displacement measurement. The availability of 

such as a remote sensor will facilitate cost-effective monitoring of civil engineering structures.  

As part of our plan to improve the measurement accuracy in uncontrolled outdoor field environments, 

we are working to reduce the errors caused by the heat haze and camera vibrations. Moreover, in order 

to study the potentials of the vision sensor for structural health monitoring, we are building simply beam 

specimens with different kinds of damages. The aim is to evaluate the effectiveness of the vision sensor 

with respect to: (1) measuring full-field displacement responses using one camera; and (2) extracting 

(a) (b) 

(a) (b) 
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modal information (natural frequencies and mode shapes) from measured multi-point displacements and 

detecting damages in beam structures. 

Acknowledgments 

The field test at the railway bridge is partially supported by TTCI through Federal Railroad 

Administration. Special thanks go to Richard Joy, Dingqing Li, and Duane Otter at TTCI for their help 

in planning and executing the field test. The field test of the pedestrian bridge is organized by B. Glisic 

at Princeton University. The authors are thankful for their contributions.  

Author Contributions 

The vision sensor system is developed by D.M. Feng, under the supervision of M. Feng. Experiment 

planning, setup and measurement of laboratory and field tests are conducted by D.M. Feng, M. Feng,  

E. Ozer and Y. Fukuda. The article is written by D.M. Feng and M. Feng.  

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Fukuda, Y.; Feng, M.Q.; Shinozuka, M. Cost-Effective vision-based system for monitoring 

dynamic response of civil engineering structures. Struct. Control Health Monit. 2010, 17, 918–936. 

2. Fukuda, Y.; Feng, M.Q.; Narita, Y.; Kaneko, S.; Tanaka, T. Vision-Based displacement sensor for 

monitoring dynamic response using robust object search algorithm. IEEE Sens. J. 2013, 13,  

4725–4732. 

3. Ribeiro, D.; Calçada, R.; Ferreira, J.; Martins, T. Non-Contact measurement of the dynamic 

displacement of railway bridges using an advanced video-based system. Eng. Struct. 2014, 75,  

164–180. 

4. Kohut, P.; Holak, K.; Uhl, T.; Ortyl, Ł.; Owerko, T.; Kuras, P.; Kocierz, R. Monitoring of a civil 

structure’s state based on noncontact measurements. Struct. Health Monit. 2013, 12, 411–429. 

5. Gentile, C.; Bernardini, G. An interferometric radar for non-contact measurement of deflections on 

civil engineering structures: Laboratory and full-scale tests. Struct. Infrastruct. Eng. 2009, 6,  

521–534. 

6. Nassif, H.H.; Gindy, M.; Davis, J. Comparison of laser doppler vibrometer with contact sensors for 

monitoring bridge deflection and vibration. NDT E Int. 2005, 38, 213–218. 

7. Casciati, F.; Fuggini, C. Monitoring a steel building using gps sensors. Smart Struct. Syst. 2011, 7, 

349–363. 

8. Casciati, F.; Wu, L. Local positioning accuracy of laser sensors for structural health monitoring. 

Struct. Control. Health Monit. 2013, 20, 728–739. 

9. Kim, S.-W.; Jeon, B.-G.; Kim, N.-S.; Park, J.-C. Vision-Based monitoring system for evaluating 

cable tensile forces on a cable-stayed bridge. Struct. Health Monit. 2013, 12, 440–456. 



Sensors 2015, 15 16574 

 

 

10. Schumacher, T.; Shariati, A. Monitoring of structures and mechanical systems using virtual visual 

sensors for video analysis: Fundamental concept and proof of feasibility. Sensors 2013, 13,  

16551–16564. 

11. Song, Y.-Z.; Bowen, C.R.; Kim, A.H.; Nassehi, A.; Padget, J.; Gathercole, N. Virtual visual sensors 

and their application in structural health monitoring. Struct. Health Monit. 2014, 13, 251–264. 

12. Busca, G.; Cigada, A.; Mazzoleni, P.; Zappa, E. Vibration monitoring of multiple bridge points by 

means of a unique vision-based measuring system. Exp. Mech. 2014, 54, 255–271. 

13. Santos, C.A.; Costa, C.O.; Batista, J.P. Calibration methodology of a vision system for measuring 

the displacements of long-deck suspension bridges. Struct. Control. Health Monit. 2012, 19,  

385–404. 

14. Debella-Gilo, M.; Kääb, A. Sub-Pixel precision image matching for measuring surface 

displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 

2011, 115, 130–142. 

15. Lee, J.J.; Shinozuka, M. A vision-based system for remote sensing of bridge displacement.  

NDT&E Int. 2006, 39, 425–431. 

16. Lee, J.-J.; Ho, H.-N.; Lee, J.-H. A vision-based dynamic rotational angle measurement system for 

large civil structures. Sensors 2012, 12, 7326–7336. 

17. Park, H.; Kim, J.; Kim, J.; Choi, S.; Kim, Y. A new position measurement system using a  

motion-capture camera for wind tunnel tests. Sensors 2013, 13, 12329–12344. 

18. Wu, L.-J.; Casciati, F.; Casciati, S. Dynamic testing of a laboratory model via vision-based sensing. 

Eng. Struct. 2014, 60, 113–125. 

19. Sładek, J.; Ostrowska, K.; Kohut, P.; Holak, K.; Gąska, A.; Uhl, T. Development of a vision based 

deflection measurement system and its accuracy assessment. Measurement 2013, 46, 1237–1249. 

20. Feng, M.; Fukuda, Y.; Feng, D.; Mizuta, M. Nontarget vision sensor for remote measurement of 

bridge dynamic response. J. Bridg. Eng. 2015, doi:10.1061/(ASCE)BE.1943-5592.0000747. 

21. Pan, B.; Xie, H.-M.; Xu, B.Q.; Dai, F.L. Performance of sub-pixel registration algorithms in digital 

image correlation. Meas. Sci. Technol. 2006, 17, 1615. 

22. Foroosh, H.; Zerubia, J.B.; Berthod, M. Extension of phase correlation to subpixel registration. 

IEEE Trans. Image Process. 2002, 11, 188–200. 

23. Berenstein, C.A.; Kanal, L.N.; Lavine, D.; Olson, E.C. A geometric approach to subpixel 

registration accuracy. Comput. Vis. Graph. Image Process. 1987, 40, 334–360. 

24. Pilch, A.; Mahajan, A.; Chu, T. Measurement of whole-field surface displacements and strain using 

a genetic algorithm based intelligent image correlation method. J. Dyn. Syst. Meas. Control 2004, 

126, 479–488. 

25. Li, L.; Chen, Y.; Yu, X.; Liu, R.; Huang, C. Sub-pixel flood inundation mapping from multispectral 

remotely sensed images based on discrete particle swarm optimization. ISPRS J. Photogramm. 

Remote Sens. 2015, 101, 10–21. 

26. Bruck, H.A.; McNeill, S.R.; Sutton, M.A.; Peters, W.H., III. Digital image correlation using 

newton-raphson method of partial differential correction. Exp. Mech. 1989, 29, 261–267. 

27. Davis, C.Q.; Freeman, D.M. Statistics of subpixel registration algorithms based on spatiotemporal 

gradients or block matching. Opt. Eng. 1998, 37, 1290–1298. 



Sensors 2015, 15 16575 

 

 

28. Hijazi, A.; Friedl, A.; Kähler, C.J. Influence of camera’s optical axis non-perpendicularity on 

measurement accuracy of two-dimensional digital image correlation. Jordan J. Mech. Ind. Eng. 

2011, 5, 373–382. 

29. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 

2000, 22, 1330–1334. 

30. Dworakowski, Z.; Kohut, P.; Gallina, A.; Holak, K.; Uhl, T. Vision-Based algorithms for damage 

detection and localization in structural health monitoring. Struct. Control Health Monit. 2015, 

doi:10.1002/stc.1755. 

31. Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. 

Opt. Lett. 2008, 33, 156–158. 

32. Tian, Q.; Huhns, M.N. Algorithms for subpixel registration. Comput. Vis. Graph. Image Process. 

1986, 35, 220–233. 

33. Abdel-Jaber, H.; Glisic, B. Analysis of the status of pre-release cracks in prestressed concrete structures 

using long-gauge sensors. Smart Mater. Struct. 2015, 24, doi:10.1088/0964-1726/24/2/025038. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


