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In this paper, a vision-based crash detection framework was proposed to quickly detect various crash types in mixed traffic flow 
environment, considering low-visibility conditions. First, Retinex image enhancement algorithm was introduced to improve the 
quality of images, collected under low-visibility conditions (e.g., heavy rainy days, foggy days and dark night with poor lights). �en, 
a Yolo v3 model was trained to detect multiple objects from images, including fallen pedestrians/cyclists, vehicle rollover, moving/
stopped vehicles, moving/stopped cyclists/pedestrians, and so on. �en, a set of features were developed from the Yolo outputs, 
based on which a decision model was trained for crash detection. An experiment was conducted to validate the model framework. 
�e results showed that the proposed framework achieved a high detection rate of 92.5%, with relatively low false alarm rate of 
7.5%. �ere are some useful findings: (1) the proposed model outperformed empirical rule-based detection models; (2) image 
enhancement method can largely improve crash detection performance under low-visibility conditions; (3) the accuracy of object 
detection (e.g., bounding box prediction) can impact crash detection performance, especially for minor motor-vehicle crashes. 
Overall, the proposed framework can be considered as a promising tool for quick crash detection in mixed traffic flow environment 
under various visibility conditions. Some limitations are also discussed in the paper.

1. Introduction

Emergency response to roadway crashes is very important for 
traffic management. On the one hand, people injured in a 
crash need to be sent to the nearest hospital in the first place 
to prevent their health condition from being worsened, on the 
other hand, serious crashes o�en cause nonrecurrent conges-
tions, if emergency response or clearance is not carried out in 
time. In order to mitigate those negative impacts, roadway 
crashes need to be quickly detected.

Crash detection can be conducted by analyzing traffic flow 
data from roadway detectors, such as loops and microwaves. 
However, such method is o�en inaccurate due to systematic 
errors caused by both algorithms and data quality [1–5]. �us, 
in practice, crashes were o�en detected by human observers 
through CCTV in Traffic Management Centers (TMC). �e 
advantage of CCTV is that it can directly capture crash scenes 
within its range. With the development of intelligent trans-
portation system (ITS), more and more CCTVs have been 

implemented in big cities and highways. Although human 
observations through CCTV can be reliable, it is sometime 
too labor-intensive and time-consuming. �us, it is very 
meaningful to develop other reliable automatic crash detection 
methods based on CCTV [6, 7].

In recent years, computer vision technologies have under-
gone a fast development and largely utilized in transportation 
field [8, 9], thanks to the increasing power of computers and 
deep learning methods. �e performance of vision-based 
object detection, based on deep learning methods, has been 
significantly improved. �us, researchers have been focusing 
on developing crash detection models based on complex deep 
learning frameworks [10, 11]. �eir results also showed the 
capability of computer vision in crash detection. However, 
sometimes a complex deep learning framework require high 
computational costs and difficult to be implemented in 
practice.

To note, previous literature mainly focused on detecting 
crashes in motorized traffic environment in developed 
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countries. In developing countries, a larger number of pedes-
trians and cyclists could share roadways with automobiles. 
�us, crash detection in mixed traffic flow environment could 
be an even more important task for those countries. Moreover, 
in order to be used in practice, a vision-based crash detection 
model needs to be robust to various conditions, especially 
low-visibility ones such as heavy rain, fog, poor lights, and so 
on. Sometimes, even deep-learning based vision algorithms 
did not perform well in those low-visibility conditions 
[12–14], due to relatively low image quality. �us, some addi-
tional efforts were o�en added to improve detection perfor-
mance, such as image enhancement methods [15–19].

Considering these, a vision-based crash detection model 
framework was developed for mixed traffic flow environment 
in this study. Regarding low-visibility conditions, an image 
enhancement method was also introduced to improve image 
quality so that a deep learning algorithm can better identify 
moving objects. Regarding quick crash detection, a Yolo v3 
model was employed to extract features from images, based 
on which a decision tree model was trained for detecting var-
ious crash types that could occur in mixed traffic flow envi-
ronment. �e paper is organized as follows: the second section 
discuss previous literature related to vision-based crash detec-
tion and image enhancement. Section 3 introduces the Retinex 
algorithm, Yolo v3, and decision tree-based framework of 
crash detection. Section 4 discusses the results of an experi-
ment. Section 5 concludes the findings of this research.

2. Literature Review

In the past twenty years, researchers have conducted many 
studies on vision-based traffic crash detection, which can be 
classified into three categories: (1) modeling of traffic flow 
patterns; (2) modeling of vehicle interactions; and (3) analysis 
of vehicle activities [10].

�e first method is to compare vehicle trajectories to typ-
ical vehicle motion patterns that can be learned from large 
data samples. In this framework, if a trajectory is not consistent 
with typical trajectory patterns, it can be considered as a traffic 
incident [20–22]. However, it is not easy to identify whether 
this incident is a crash due to limited crash trajectory data that 
can be collected in the real world. �e second method deter-
mines crash occurrence based on speed change information, 
which applies social force model and intelligent driver model 
to model interactions among vehicles. �is method requires 
a larger number of training samples. �e third method largely 
depends on trackers because it needs to continuously calculate 
vehicle motion features (e.g., distance, acceleration, direction 
etc.) [23–27]. As such, aberrant behaviors [28, 29] related to 
traffic incidents could be detected. However, it is o�en difficult 
to be utilized in practice, limited by high computational costs 
and unsatisfactory tracking performance in congested traffic 
environment [30]. In general, fruitful results have been 
achieved for vision-based crash detection. However, most lit-
erature focused on motor vehicle crash instead of crashes 
involving nonmotorized modes, such as bicycle-rated and 
pedestrian-related crashes [7, 23, 31]. Moreover, many models 
are compute-intense, by constructing complicated deep learn-
ing structures.

Another practical issue for crash detection method is the 
ability to deal with low-visibility conditions (e.g., fog, heavy 
rain, dark night). Image enhancement methods were usually 
utilized to improve the robustness of video detection to 
low-visibility conditions. Image enhance methods can adjust 
digital images so that key features are more easily to be iden-
tified [32, 33]. Such technology was also used to provide 
better image quality to improve the performance of crash 
detection [34, 35]. �ere are two major types of image 
enhancement methods: physical model and tensile transfor-
mation. �e first method usually develops a physical model 
considering fog formation. Sometimes, it is difficult to guar-
antee enough accuracy under various conditions. �e second 
method normally uses histogram equalization [36], wavelet 
transform [37], homomorphic filtering [38] to enhance 
low-quality images (e.g., those with raindrops and fogs). �e 
robustness of such a method could be limited in some con-
ditions, for it requires large number of parameters and 
thresholds to be tuned.

3. Methods

In this study, a crash detection framework was proposed for 
mixed traffic flow environment. �e framework has three 
major components. First, Retinex image enhancement algo-
rithm was introduced to enhance image quality. Second, Yolo 
v3 was utilized to detect moving objects, such as vehicles, 
pedestrians, and bicyclists/motorcyclists. �ird, a decision 
tree-based framework was proposed to determine various 
crash scenarios bin mixed traffic flow environment.

3.1. Retinex Image Enhancement Algorithms. Retinex is an 
image enhancement algorithm proposed by Edwin H. Land. 
�e basic theory is that the color of an object is determined by 
the ability of the object to reflect light from long waves (red), 
medium waves (green), and short waves (blue), rather than the 
absolute value of the intensity of the reflected light. �e color 
of an object is not affected by illumination nonuniformity, but 
possesses consistency. Unlike traditional linear and nonlinear 
algorithms that only enhance a certain type of image, Retinex 
algorithm can balance dynamic range compression, edge 
enhancement and color constancy. �us, it can be used for 
the adaptive enhancements of various image types, which is a 
feasible choice in this research.

Figure 1 shows the theory of Retinex that a given image 
�(�, �) can be decomposed into two different images: a 
reflected image �(�, �) and a luminance image (also called as 
incident image) �(�, �).

�e image can be formulated as:

Convert it into logarithmic domain:

And it can be written as:

(1)�(�, �) = �(�, �) ⋅ �(�, �).

(2)�(�, �) = log�(�, �) = log �(�, �)�(�, �) .

(3)�(�, �) = log�(�, �) − log[�(�, �) ∗ �(�, �)].
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where �(�, �) is the output image, ∗ is convolution operator, 
and �(�, �) is surround function. �e surround function, 
�(�, �) is given as:

where c is the scale that control the extent of the surround. 
Mathematically, solving �(�, �) is a singular problem that can 
only be calculated by mathematically approximated estimates. 
�e steps of Retinex are as follows:

Step 1.  Read in the initial image �(�, �), and separate �, �, 
and � channels of the image;

Step 2.  Convert the pixel values of each channel from 
integers to floats and convert them to the logarithmic 
domain;

Step 3.  Input the scale c, and calculate the value of λ which is 
equal to 1/(∬�(�, �)����);

Step 4.  Calculate the value of �(�, �) of each channel;
Step 5.  Convert �(�, �) from logarithmic domain to real 

domain;
Step 6.  Stretch �(�, �) linearly and output in the 

corresponding format.

3.2. Yolo v3. YOU ONLY LOOK ONCE (YOLO) is a state-
of-the-art, real-time object detection system. �e core idea 
of Yolo v3 is to use the picture as a network input, which is to 
return to the position of the bounding box and its subordinate 
categories (e.g., vehicles, trees, or pedestrians etc.) directly 
in the output layer. �e overall stages of Yolo v3 which is 
consisted of four periods are illustrated below.

3.2.1. Bounding Box Prediction. Sum of squared error loss 
is used to predict the coordinate value, so the error can be 
calculated rapidly. Yolo v3 predicts the score of an object for 
each bounding box by logistic regression. Each bounding box 
needs four values to represent its position of the images: (��, ��, 
��, ℎ�), which respect separately: (the � coordinate of center 
point, the � coordinate of center point, weight of bounding 
box, height of bounding box).

(4)�(�, �) = ��(−(�
2+�2))/�2 ,

where ��, �� are the coordinate offsets of the grid, �� and �ℎ, 
are the side lengths of the preset anchor box, the resulting 
frame coordinates are ��, ��, ��, �ℎ and the network learning 
goals are ��, ��, ��, �ℎ.

If the bounding box prior overlaps a ground truth object 
by more than any other bounding box prior, then the value is 
1. If the overlap does not reach a threshold (setting 0.5), the 
prediction of bounding box will be ignored, and it is displayed 
as no loss.

3.2.2. Class Prediction. To classify different kinds of objections, 
independent logistic classifiers are used instead of a So�Max. 
When training, binary cross-entropy loss is used for the class 
predictions.

A�er learning by Logistic regression classifier, there are a 
set of weights: �0, �1, . . . , ��, and the � features of each sample 
can be written as �1, �2, . . . , ��, when the data of test samples 
are input, which can be combined with the weights linearly:

�e sigmoid function is:

�e prediction probability in sigmoid function can be 
expressed as:

where g(�) is �.

(5)

�� = �(��) + ��;
�� = �(��) + ��;
�� = ����� ;
�ℎ = �ℎ��ℎ ,

(6)� = �0 + �1�1 + . . . + ����.

(7)�(�) = 11 + �−� .

(8)�(� = 1|�) = �(�) = 1
1 + �−�(�)

.

(9)�(� = 0|�) = 1 − �(� = 1|�),

Reflective
object R

Incident
light L

CameraS(x,y) = R(x,y) . L(x,y)

S(x,y)

Figure 1: Schematic diagram of Retinex principle.
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type of crashes. Moreover, since the computational cost of 
object detection and tracking has already been high, an even 
more complex framework by integrating other deep learning 
models (e.g., recursive neural network) would become 
too compute-intensive. �us, in this paper, we consider a 
simplified framework for quick crash detection that can be 
implemented in practice.

Decision tree model was considered for crash classifica-
tion, based on features obtained from Yolo v3. It has several 
advantages: (1) the cost of using the tree (i.e., predicting data) 
is logarithmic; (2) it requires little data preparation and can 
handle both numerical and categorical data; (3) it is simple to 
understand and to interpret.

Given training features Xi and label y, a decision tree recur-
sively partitions the space:

where � representing the data at node �, is a candidate split 
consisting of a feature � and threshold ��, �����, and ���gℎ� are 
subsets partitioned by the decision tree at node �.

�e impurity at m can be calculated by an impurity func-
tion � (), the choice of which is based on the task being 
considered:

If it is a classification task with outcomes from 0 to � for node 
�, representing a region �� with �� observations, let

(11)
�����(�) = (�, �)

������� <= ��
�����,

���gℎ�(�) = �
�����(�)
,

(12)�(�, �) =
−�����
��
�(�����(�)) +

−���gℎ�
��
�(���gℎ�(�)).

3.2.3. Predictions Across Scales. Yolo v3 predicts different boxes 
at three different scales. Yolo v3 uses FPN (feature pyramid 
network) to extract feature from scales, and finally predicts a 
3-D tensor, containing the bounding box information, object 
information, and class information.

3.2.4. Feature Extractor. Yolo v3 uses a complex network for 
performing feature extraction, which has 53 convolutional 
layers, called Darknert-53. �is new network is much more 
powerful than Darknet-19 but still more efficient than 
ResNet-101 or ResNet-152.�e loss function of YOLO is:

�e flow chart of YOLO is shown in Figure 2.

3.3. Decision-Tree Based Crash Detection Framework. In 
mixed traffic flow environment, crashes could occur between 
motorists and nonmotorists. �us, a motion-based method 
(e.g., modeling of vehicle interactions, analysis of vehicle 
activities, etc.) may not have full capability to detect such 

(10)

Loss function =������
�2

∑
�=0

�
∑
�=0
������ (�� − �̂�)2 + (�� − �̂�)2

+ ������
�2

∑
�=0

�
∑
�=0
������ (√�� − √�̂�)

2
+ (√ℎ� − √ℎ̂�)

2

+
�2∑
�=0

�∑
�=0
������ (�� − �̂�)2 + ������

�2∑
�=0

�∑
�=0
�������� (�� − �̂�)2

+
�2∑
�=0
������ ∑
�∈�������
(��() − �̂�())2.
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Figure 2: Yolo v3 flow chart.
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types observed, including multi-vehicle crashes, pedestrian-
vehicle crashes, and cyclist-vehicle crashes. Moreover, many 
low-visibility conditions were included in the dataset, such as 
dark night with poor lights, heavy rains, and foggy days. In 
this study, 15000 crash frames and 40000 normal frames were 
used to create training samples, while the remaining frames 
were used for model testing.

4.2. Results and Discussion. First, Retinex was utilized to 
improved image quality. Figure 5 provides some examples of 
image enhancement. It can be found that more image details 
can be seen a�er the enhancement.

A�er image enhancement, Yolo v3 was used for detecting 
objects from images. In the training dataset, crash samples 
were extracted from videos including fallen people, fallen 
bicycle/motorcycle, and vehicle rollovers. �ose samples were 
then distorted and scaled to further enlarge the crash sample 
size. Normal people, bicycle, motorcycle, and vehicles were 
also collected as normal samples. Figure 6 provides some 
examples in the training dataset.

A�er 5000 iterations, the model became convergent. 
Figure 7 provides the real-time detection performance based 
on Yolo v3. �e training and testing accuracy of the Yolo 
model are shown in Figure 8. According to the graph, the 
training model has no overfitting issue.

�ree crash types were observed in the current video data-
set, including:

 (1)  Pedestrian/cyclist related crash: If this type occurs, 
fallen people, fallen cyclists, stopped vehicle, stopped 
people, and stopped cyclists could be detected in the 
scene.

(2)  Minor motor-vehicle crash: If this type occurs, vehicle 
overlapping, stopped vehicles, and stopped people/
cyclists could be detected in the scene.

be the proportion of class � observations in node �.
Gini Index is o�en used to measure impurity:

Entropy is another commonly used indicator of impurity:

where �� is the training data in node �.
Parameters are selected such that the impurity can be 

minimized:

�e framework is shown in Figure 3.

4. Experimental Evaluation

In order to validate the framework, an experiment was con-
ducted on a computer with specification Intel(R) Core (TM) 
i5-4200 CPU @ 2.50 GHz (4 CPUs), ~2.5 GHz, 8 GB RAM with 
NVIDIA Corporation GeForce 840 M.

4.1. Dataset Used. We collected large number of CCTV 
videos from online since there is no public database for crash 
detection. Figure 4 shows the samples of the video data. In 
general, a video clip records 10–20 s before and a�er a crash. 
Our dataset has 127362 frames, in which 45214 contain crash 
scenes and 82148 are normal frames. �ere are various crash 

(13)��� =
1
��
∑
��∈��
�(�� = �),

(14)�(��) =∑
�
���(1 − ���).

(15)�(��) = −∑
�
���log(1 − ���),

(16)�∗ = argmin��(�, �).

Extract image
Retinxe

CCTV videos Detect accidents Input image

Detection

Validate

Crash or not
Decision tree

training
Yolo v3

Root

Root split

2nd Child split1st Child split

Features

Figure 3: Crash detection framework for mixed traffic flow environment.
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gain of the tree model, some features were found as important 
including: fallen people, IOU duration, stopped people, 
stopped vehicle, and vehicle rollover.

Based on the findings, three empirical rule-based models 
were also developed as follows:

Rule 1:  If fallen people or fallen nonmotorized vehicle is 
continuously detected during a period (e.g., 10 s), 
the condition can be determined as a crash.

Rule 2:  If two vehicles are detected as overlapped during 
a period (e.g., 10 s), and other stopped people are 
detected around the vehicles, the condition can be 
determined as a crash.

Rule 3:  If a car rollover is detected during a period (e.g., 
2 s), the condition can be determined as a crash.

Rule 1 model could detect crash types related to pedestri-
ans and cyclists (e.g., bicycles, motorcycles). A relative long 
period time detection may avoid miss-detection of those occa-
sionally fallen off. Rule 2 model was designed for nonserious 

(3) Serious motor-vehicle crash: If this type occurs, vehi-
cle rollover, stopped vehicles, and stopped people/
cyclists could be detected in the scene.

In order to detect those three crash types, a set of features were 
developed based on Yolo v3 outputs, including: number of 
moving vehicle (the number of moving vehicles), number of 
stopped vehicle (the number of stopped vehicles), number of 
stopped people (the number of moving pedestrians and 
cyclists), number of moving people (the number of stopped 
pedestrians and cyclists), fallen people (the number of fallen 
people), vehicle rollover (the number of vehicle rollover), 
intersection of union (IOU), and IOU duration. IOU is o�en 
used to measure the overlap between two bounding boxes 
(e.g., two vehicles). Note that in this study, IOU represents the 
maximum IOU values that remain unchanged over the obser-
vation period, while IOU duration indicates the longest time 
period that IOU remains changed. A decision tree was trained 
using these features as inputs, as shown in Figure 9. �e aver-
age precision is 0.95. According to entropy and information 

(a) (b) (c)

Figure 4: Sample frames from the video dataset used to evaluate the accident. �e dataset contains videos of accidents during the various 
environmental conditions such as (a) daytime (b) night (c) rain or fog, as well as from different cameras and view angles.

Figure 5: Images before and a�er Retinex.
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(a)

(b)

Figure 6: Training samples of Yolo v3. (a) Crash samples and (b) normal samples.

Figure 7: Yolo v3 results.
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the intersection of vehicle motions. Rule 3 model can detect 
serious motor-vehicle crash types.

All model performances were compared, as shown in 
Figure 10. Figure 10(a) provides the ROC curves of all those 

crash types, including minor multivehicle and single-vehicle 
crashes. In those situations, vehicles may not be damaged seri-
ously or no fallen objects could be detected. According to 
previous literature, such types could be detected by analyzing 
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Figure 9: Trained decision tree model.
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5. Conclusions

�e paper proposed a vision-based crash detection framework 
for mixed traffic flow environment considering low-visibility 
conditions. Retinex algorithm was introduced to enhance 
image quality of low-visibility conditions, such as night, foggy, 
and rainy days. A deep learning model (i.e., Yolo v3) was 
trained to detect objects in mixed traffic flow environment 
and a decision tree model was developed for crash detection, 
considering various crash scenarios between motorized and 
nonmotorized traffic. �e proposed method achieved a hit 
rate of 92.5% and a false alarm rate of 7.5%. Interesting find-
ings include: (1) the proposed model outperformed empirical 
rule-based detection models; (2) image enhancement method 
can largely improve crash detection performance under 
low-visibility conditions; (3) the accuracy of object detection 
(e.g., bounding boxes prediction) can impact crash detection 
performance, especially for minor motor-vehicle crashes.

Overall, the results are encouraging and the framework is 
promising. Admittedly, there are still some issues that can be 
further addressed. First, different image enhancement meth-
ods could be tried to improve the overall performance. Second, 
other deep learning method can be used and compared to 
original Yolo v3 model. �ird, other more complex deep learn-
ing structure can be examined and compared to the current 
framework, in terms of accuracy and computational speed.
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