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ABSTRACT
Public Clouds today provide a variety of services for data anal-
ysis such as Amazon Elastic MapReduce and Google BigQuery.
Each service comes with a pricing model and service level agree-
ment (SLA). Today’s pricing models and SLAs are described at the
level of compute resources (instance-hours or gigabytes processed).
They are also different from one service to the next. Both condi-
tions make it difficult for users to select a service, pick a configura-
tion, and predict the actual analysis cost. To address this challenge,
we propose a new abstraction, called a Personalized Service Level
Agreement, where users are presented with what they can do with
their data in terms of query capabilities, guaranteed query perfor-
mance and fixed hourly prices.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Management, Performance

1. INTRODUCTION
Many data management systems today are available as Cloud

services. For example, Amazon Web Services (AWS) [1] include
the Relational Database Service (RDS) and Elastic MapReduce
(EMR); Google offers BigQuery [5]; and SQL Server is available
on Windows Azure [2]. Each service comes with a pricing model
that indicates the price to pay based on the level of service. In this
paper, we address the challenges behind selecting a service and a
desired configuration for that service.

An important challenge with today’s pricing models is that they
force users to translate their data management needs into resource
needs (How many instances should I use? How many gigabytes
will my queries process?). There is thus a disconnect between the
resource-centric approach expressed by Cloud providers and what
the users actually wish to acquire [10]. The knowledge required to
understand the resources needed for data management workloads
is a challenge – particularly when a user does not always have a
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Figure 1: The PSLA system acts as a broker between different
Cloud-provided data management services and the user. For
each service, it generates alternative agreements with differ-
ent trade-offs between cost, performance (query runtimes), and
query capabilities. The user then selects the desired service and
agreement.

clear understanding of their data or even know what they are look-
ing for [11]. Furthermore, pricing models can be wildly different
across providers [13]. For example, AWS charges for the num-
ber and size of compute instances, while BigQuery charges per GB
processed by a query. This heterogeneity complicates the decision
behind selecting a service.

As a second challenge, although Cloud providers offer availabil-
ity through service level agreements (SLAs), they do not provide
any type of performance guarantee. Studies suggest that there ex-
ist variances in the performance of jobs executed in Cloud ser-
vices [15]. For instance, Schad et al. quantified the variance to
be close to 20% in terms of CPU, I/O, and network performance
through the Amazon Elastic Compute Cloud service [19].

In this paper, we lay out a vision for a radically new way for
users to interact with their Cloud service providers. Instead of ask-
ing the user to specify the resources that she wants or asking the
user for the exact queries she needs to execute, our proposed sys-
tem looks at the user’s data and shows the user what she can do
with the data for a set price. The focus of our proposal is to ensure
both high-performance and simplicity, two core features required
by Cloud users [20]. Our vision is based on an innovative type of
service level agreement between the user and provider as shown in
Figure 1. The key idea is for a user to simply upload her data to
a Cloud broker system and be presented with service-level alter-



natives that correspond to different points in the space trading off
query runtime performance, monetary cost, and the query capabili-
ties of the service. We call these agreements, personalized SLAs or
PSLAs, because their detailed specification depends on the data up-
loaded by the user. Additionally, we strive for cost and performance
predictability. Our PSLAs come with associated fixed hourly ser-
vice prices, guaranteed query performance, and a clear specifica-
tion of query capability limitations. The latter are shown in the
form of templates for the types of queries that the user can execute.
While prior work studied techniques that enable users to specify a
desired price-performance curve when submitting a query [21], the
approach simply rejects queries whose performance cannot be sat-
isfied. Instead, we focus on informing users about what they can
and cannot do with their data within various price and performance
bounds. Figure 2 shows concrete PSLA examples for the Amazon
Elastic MapReduce service and for Google BigQuery. We return to
these examples later in the paper.

In the rest of the paper, we present the vision and challenges of
offering PSLAs. As an initial step, we focus on PSLAs for struc-
tured data.

2. MOTIVATION
We begin with a motivating scenario to demonstrate the chal-

lenges with today’s Cloud pricing models and SLAs.

2.1 Motivating Example
Sarah is a data scientist with access to a log capturing all the

Web pages viewed by a set of users over some period of time. This
scenario corresponds to the PigMix benchmark [18]. Sarah has
access to 100GB of data but decides to explore a 10GB subset. The
schema for the data is as follows:

Users ( name, phone, address, city, state, zip )

PageViews(user, action, timespent, query_term, ip_addr,
timestamp, estimated_revenue, page_info1, page_links1 )

1 These attributes are bags of maps

Sarah has the option to analyze her data using one of many ex-
isting Cloud services. She first turns to Amazon Web Services
(AWS) [1], a popular Cloud provider today.

Sarah’s first choice is between using Amazon Elastic MapRe-
duce (EMR) or Amazon Relational Database Service (RDS). In
both cases, she will be able to study her data by issuing declarative
queries (Pig Latin or HiveQL in one case and SQL in the other).
The challenge, however, is that the trade-off between price, per-
formance, and capabilities for each service is not directly obvious
from the online pricing models. Amazon RDS provides Sarah ac-
cess to a commercial-grade, relational DBMS, but her analysis will
be limited to a single node and the prices are higher: e.g., $0.17 to
$1.14 an hour for a SQL Server instance. Amazon EMR enables
parallel processing and is cheaper with prices between $0.06 and
$0.40 per instance and per hour [1], but Sarah will have to select
the sizes and number of virtual machines that she needs.

This challenge is extended to the choice of Cloud providers.
Each provider offers its own services for data analysis with a dif-
ferent pricing model and feature constraints. For example, Sarah
could use Google BigQuery [5]. BigQuery is simple, as it allows
a user to upload data and quickly execute SQL queries on the data.
Currently, interactive queries are priced at $0.035 per GB processed
while batch queries are priced at $0.02 per GB processed. Because
BigQuery is column-based, the number of GB processed depends

on the number of processed columns, which will be some subset of
Sarah’s 10GB, but estimating the exact query costs is not obvious.
This pricing model thus still makes it difficult for Sarah to estimate
the cost of analyzing her data and to compare against the cost of
the analysis with the Amazon Cloud service.

Sarah decides to first try Amazon Elastic MapReduce and use
Pig Latin to write her queries. Even with this concrete choice,
Sarah still faces another set of decisions. Amazon’s pricing model
requires that she choose the number and sizes of instances in order
to analyze her data. The choice will affect the price that Sarah will
pay and the performance that she will get. The choice is thus impor-
tant. Yet, no tool is available to help Sarah make such a decision,
unless she defines a precise workload first [9].

Sarah decides to use the default configuration on Amazon EMR,
that is, 1 small master node and 2 small slaves. She stores the data
on the Amazon S3 storage and proceeds to spin up the cluster. The
total cost adds up to $0.18 per hour for the cluster and $0.95 per
month for storage. As she begins to run queries, she wonders if she
can do better. Although her queries do return answers, she does not
understand why some queries are faster than others. Would buying
more machines improve the overall performance?

Similarly, Sarah decides to also try Google’s BigQuery Cloud
service. From the pricing scheme, it is unclear how many GB she
will need to process in order to effectively explore her data. Thus,
an accurate estimate for the end cost is nearly impossible. She
will also need to keep in mind that there are certain limitations to
BigQuery’s SQL-like language. For example, operators such as
DISTINCT are disallowed. Although BigQuery provides Sarah the
ability to interactively query her data, there is no guarantee of how
long it will take a query to return a response. Regardless, Sarah
uploads her data and immediately has the option to query it. After
running a few queries, she realizes that although some queries are
fast, a self-join query on a 1GB subset of the data takes as long
as 14 minutes. Although Sarah is willing to pay more for faster
results, this option is not available through BigQuery.

This example illustrates that, today, it is difficult for users to se-
lect a Cloud provider and level of service that corresponds to a
desired trade-off between cost, performance, and query capabili-
ties. Users today need to proceed by trial and error when selecting
service levels. Even for experts, finding cost-effective methods to
process large datasets continues to be a nontrivial task [3].

2.2 Vision
To address the above challenge, we propose to re-think the in-

terface between users and Cloud services. Instead of forcing users
to translate their price, performance, and capability goals into re-
source requests, we propose to automatically perform this trans-
lation for them. In particular, we want users to simply upload
their data. The system should automatically analyze that data (e.g.,
compute statistics on the data) and describe to users what they can
and cannot do with their data based on price and performance fac-
tors. We call these descriptions, Personalized Service Level Agree-
ments (PSLAs).

3. APPROACH
We first define a PSLA more precisely and give examples

of manually derived PSLAs for a concrete use-case. We then
discuss the challenges associated with generating such PSLAs
automatically.

3.1 PSLAs
A PSLA is composed of a set of tiers R1, R2....Rk. Each tier



(a) PSLA for Amazon EMR

(b) PSLA for BigQuery

Figure 2: Example PSLAs for Amazon EMR and BigQuery.

corresponds to a unique level of service. That is, each tier offers
a specific trade-off between query capabilities, price, and perfor-
mance. No tier strictly subsumes another in the same PSLA. Each
tier Ri, 1 ≤ i ≤ k, has an hourly price Pi, a time threshold Ti, and
a set of query templates {Mi1,Mi2, ...,Miv}. Query templates
define the capabilities available in the tier. The time threshold Ti

guarantees that all queries which follow the templates will return
within the specified time. The user selects one tier from the set.
Specifically, a PSLA is a set of the form:

PSLA = {R1 = (P1, T1, {M11,M12, ...,M1v}),
R2 = (P2, T2, {M21,M22, ...,M2v}),
...,

Rk = (Pk, Tk, {Mk1,Mk2, ...,Mkv})}

We illustrate the concept of a PSLA with a concrete use-case: We
take a 10GB dataset from the PigMix benchmark [18] and manually
generate PSLAs for two different Cloud data management systems:
Amazon Elastic MapReduce (EMR) [1] and Google BigQuery [5].

To generate the query templates for the PSLAs, we consider a
variety of relational operators including selection, grouping, aggre-
gation, join, duplicate elimination, and sorting. We only consider
simple queries that use a small number of these operators at the
same time. We assume there are no indexes, and consider only
explicitly specified primary and foreign key constraints.

In order to group query templates into an interesting set of tiers
for Amazon EMR, we experiment with different numbers of in-
stances, instance sizes, and Hadoop block sizes (the latter of which
affects the degree of parallelism).

We generate three tiers for Amazon EMR. Each offers a differ-
ent trade-off between query runtime, price, and query capabilities.
Figure 2(a) shows the three tiers: Tier I offers users a cheap option
for data analysis. It corresponds to a small configuration, but that
detail is transparent to the user. In this tier, the PSLA promises the
user only two types of templates they can run. We can also observe
that this PSLA tier cannot promise any type of joins. Tier II offers
a high-performance option with query runtimes under 2 minutes.
The cost, however, is significantly higher. Finally, Tier III enables
the largest variety of query templates, but it does so for an increased
price and by relaxing the performance guarantee.

Overall, this example illustrates that one can easily derive mean-
ingful service tiers that can help a user select a desired trade-off
between price, performance, and capabilities. Most importantly,
these service tiers enable high predictability: the user pays a fixed
price, she can run a pre-defined set of queries (a query is never re-
jected if it follows the templates, unlike prior SLA proposals [21]),
and the performance is guaranteed.

Using the same query templates and the PigMix dataset, we also
manually derive a PSLA for Google BigQuery. PSLA generation
is more difficult for this service for several reasons. First, its pric-
ing model is based on GB processed. To derive a price per hour,
we assume that a user will continuously execute the most expen-
sive query in the tier. We also assume that the PSLA system can
delay query results up to the promised runtime limit and we use
this limit to determine how many queries can execute each hour.
Second, while some queries in BigQuery execute within seconds,
others, such as self-joins or queries that select an output for several
columns were much slower. Finally, BigQuery does not support



query features such as duplicate elimination. Figure 2(b) displays
the two tiers that we have derived. One tier is designed to be cheap
while the other tier enables the use of a larger variety of queries.

Building queries on the 10GB dataset brought up interesting lim-
itations as far as the type of operators that can execute efficiently
in the Cloud. For example, a query that contained a self-join on
the Users table was not able to finish under 2 hours on either sys-
tem. On the other hand, for a 1GB subset of the data, the self-join
took 14 minutes on BigQuery compared to 99 seconds on Amazon
EMR. Our PSLAs can warn users about such queries by excluding
them from the service tiers that cannot run them efficiently.

Through the PSLAs shown in Figure 2 comparing the perfor-
mance, price and query capabilities of the two Cloud systems be-
comes significantly easier. BigQuery is inarguably faster, but it
has stricter query limitations. Although the results are helpful, we
cannot manually create a PSLA for each user and their data. The
question is, how can we automatically create a PSLA based on the
user’s data and the characteristics of a Cloud provider?

3.2 Research Challenges
In this section we present some of the challenges behind PSLAs

and provide insights as to how we plan to solve them. The key
research challenges stem from the automatic generation of PSLAs.

System Architecture - We envision three possible deployments
for the PSLA system. (1) Each Cloud provider can offer an inte-
grated PSLA interface directly on top of its own data management
services. This deployment enables the most accurate PSLAs, but
requires that the user uploads her data to each cloud service sep-
arately and pays the associated storage costs. (2) An alternative
option is to run the PSLA as a broker system as shown in Figure 1.
The user first uploads her data to this broker, which then interacts
with the various Cloud providers to generate one PSLA per Cloud.
The user then chooses a desired PSLA. To support such a PSLA
broker, Cloud providers can either (a) offer a PSLA interface based
on statistics about data. The PSLA broker then only uploads the
schema of the dataset and a set of locally collected statistics; or (b)
offer no special PSLA-related functionality forcing the PSLA sys-
tem to compute PSLAs using only the unmodified, existing Cloud
interfaces. (3) Finally, the PSLA broker can run as a client-side ap-
plication instead of a separate service. This approach removes the
step of uploading data to the broker but burdens the user with in-
stalling the necessary software. In the rest of this paper, we assume
the PSLA Broker deployment.

Query Template Selection - Given an input database compris-
ing a set of relations, the number of queries that can be posed over
the data is unbounded. The PSLA system, however, must show
users a bounded set of query templates through each service tier.
The key question is how to select good query templates. A small
number of templates facilitates tier comparisons. However, keeping
the number of templates small requires either (1) showing only tem-
plates for simple queries or (2) making the templates more generic.

Showing templates only for simple queries is the approach that
we took for the PSLAs in Figure 2. Based on our prior experi-
ence working alongside domain scientists, we find that providing
templates even for simple queries covers a significant amount of
data processing needs. For example, the templates for Amazon
EMR in the first tier correspond to selection queries, the following
templates add joins, while the final set of templates add aggrega-
tion and sorting. Basic templates, however, may be insufficient for
users with advanced data processing needs. The alternate approach
of utilizing more generic templates also poses problems, though.
In particular, generic templates reduce the number of possible tiers

since some tiers are cheaper or faster because they give up certain
query capabilities.

The key open questions associated with the selection of query
templates are thus the following: (1) how many templates should
suffice for each tier? (2) what is the trade-off between showing
more precise templates that cover a smaller number of queries or
broader templates that cover larger numbers of queries? (3) which
queries should be covered by the templates and which queries can
be omitted?

A promising approach that we are exploring is to refine query
templates interactively. The system first shows tiers with simple
templates as shown in Figure 2. If the query templates are not suffi-
cient, the user can request to navigate stepwise into additional more
complex templates. The detailed nature of this interactive template
generation and the way the system enables user navigation, how-
ever, remain open problems.

Tier Selection - The input data can range in size from small
(Gigabytes) to large (Terabytes), the set of possible query templates
is unbounded, and the back-end Cloud service offers a large variety
of configurations with different price/performance characteristics.
Together, these three properties complicate the selection of service
tiers. We observe, however, that each service tier is determined
by three properties: (1) capabilities in the form of supported query
templates, (2) performance in the form of runtime guarantee for
queries that follow the templates in the tier, and (3) a price per hour.
A good set of tiers should show alternatives at different points in
this three-dimensional space.

The question then becomes which points to show? The approach
that we advocate is to interactively refine this set of points, similarly
to the interactive query template generation: For tiers, we propose
to show users an initial set of points far apart in the 3D space. Then
allow the user to “zoom in” on some regions of the space to see
additional tiers in the subspace of interest. For example, a user
may “zoom in” to see additional tiers that enable interactive data
exploration (i.e., all query times below 5 min) under $1/hour but
giving up query features to a different extent.

The key research challenge with this approach is to develop al-
gorithms that effectively and efficiently explore the 3D space of all
possible tiers as the user zooms in or out in different regions of the
space. In particular, the system should produce the skyline of best
configurations at any time. By skyline, we refer to the operator
that helps solve multicriteria decision making [16]. Given a set of
PSLA tiers R1, R2, ..., Rk, the skyline returns all PSLA tiers Ri

such that Ri is not dominated by another PSLA tier Rj .
Service Configuration Selection - When generating service

tiers, another challenge is how to explore the set of possible cluster
configurations and how to predict query runtimes in each setting.
Accurate query runtime prediction remains an open problem, es-
pecially in multitenant settings [19]. The PSLA system must thus
handle inaccurate query runtime estimates. Additionally, even with
accurate estimates, queries expressed with the same template can
have significantly different runtimes depending on template param-
eters and the resulting query plans. One approach to managing this
variance is to raise runtime guarantees in the service tiers to ac-
count for prediction inaccuracies and expected runtime variances
between queries for a single template. This ensures that all (or al-
most all) queries execute within the guaranteed time. The problem
with this approach, however, is that a small number of outliers can
skew the guarantees that the system can make rendering the pro-
posed tiers useless. An alternate approach is to make guarantees
probabilistic. For example a PSLA tier could guarantee that 90%
of queries will execute under 1 min, 95% of queries will run under
5 min and 99% of queries will run under 10 min.



A question is whether the user could help the system decide how
to handle outliers. A solution adopted by other research projects
[21] is to reject queries that cannot execute within the guaranteed
time and to compensate the user. However, a more useful approach
might be to automatically scale resources, consequently increasing
the costs for the user. Perhaps the user is willing to spend some
limited amount of extra money in this fashion. The questions here
are (1) When is it possible to detect inaccurate query runtime esti-
mates? (2) How to scale resources in order to guarantee the perfor-
mance threshold? (3) What if the system fails to meet the perfor-
mance goals even after adding extra resources?

Cloud Heterogeneity and Evolution - Each Cloud service
provider has specific features important to our context: price, per-
formance and query capabilities. At the same time, some impose
constraints on what is possible, restricting the possibilities in the
3D space of the PSLA (Figure 1). Furthermore, those providers are
constantly evolving. The PSLA system should automatically lever-
age all the features and understand all constraints. It is important
for this to be performed behind the scenes, which means the user
does not need to be aware of Cloud service provider capabilities.

As examples from our experiments with Amazon EMR and
Google BigQuery, we can cite as a feature that Amazon EMR al-
lows one to tune the system by choosing the number and types of
machines. As examples of constraints, Amazon EMR limits users
to 20-node clusters and BigQuery does not support the keyword
DISTINCT in queries. As an example of evolution (we captured
during our experiments) BigQuery started to support joins between
relations of any size by adding the EACH keyword right after JOIN;
before that, it was only possible to use small right-side relations on
the join (8MB of compressed data).

The research challenge here is how to automate the PSLA sys-
tem in order to deal with all the features and constraints of different
service providers. It is clear from the examples above that the fea-
tures and constraints change the way the PSLA algorithm is able
to generate all possible tiers in the 3D space. One possible solu-
tion to this problem is to create a formal declarative language to
describe features and constraints of service providers. However,
we still have open questions if we go further in this direction. Who
is responsible to translate each Cloud service provider features and
constraints into that language? How can we automatically detect
and handle evolving features and constraints?

4. RELATED WORK
Significant research investigates how to build elastic DBMSs us-

ing Cloud infrastructures [4, 7, 8, 6]. Those systems, however,
focus only on the overall performance of the DBMS, but not its
SLAs. The ActiveSLA system [21] provides an admission con-
trol framework based on SLAs that tries to maximize profit given
the SLA rules and rejects queries that cannot meet SLA objec-
tives. In contrast, our PSLAs tell users what they can and cannot
do with different price-performance choices. Hence, we never re-
ject queries. The XCloud System [17] provides a formal language
(grammar) for specifying users’ performance needs by combining
specific database metrics and operations. Our PSLAs hide system
details from users. Zhao et al. [22] propose a framework to define
and control database specific SLAs using a specific XML dialect.
Their approach, however, focuses on OLTP workloads and their
SLAs are then expressed in terms of replica freshness and trans-
action response times. Lang et al. [12] and Liu et. al. [14] study
the problem of resource sharing across tenants in a multi-tenant
environment and the impact on per-tenant SLA guarantees (either
transactions per second or query latency). Multitenancy is a com-
plementary problem to the one we present in this paper.

5. CONCLUSION AND OUTLOOK
We present a vision and associated research challenges for a new

interface between users and data management Cloud services. Our
core idea is to examine the concrete data that a user wants to pro-
cess and to generate a personalized service level agreement (PSLA),
which shows templates for the types of queries the user can execute
on her data for a given price and within a given runtime threshold.
PSLAs thus enable users to focus on their main concerns of query
performance, cost, and capabilities, freeing them from the current
resource-centric approaches. The next step to enable this vision is
to develop a method to generate good query templates and enumer-
ate potential PSLA tiers given a specification of the capabilities of
a Cloud service.
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