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Abstract

A fundamental problem in the field of unsupervised machine learn-
ing is the detection of anomalies corresponding to rare and unusual
observations of interest; reasons include for their rejection, accommo-
dation or further investigation. Anomalies are intuitively understood
to be something unusual or inconsistent, whose occurrence sparks im-
mediate attention. More formally anomalies are those observations—
under appropriate random variable modelling—whose expectation of
occurrence with respect to a grouping of prior interest is less than
one; such a definition and understanding has been used to develop the
parameter-free perception anomaly detection algorithm. The present
work seeks to establish important and practical connections between
the approach used by the perception algorithm and prior decades of
research in neurophysiology and computational neuroscience; partic-
ularly that of information processing in the retina and visual cortex.
The algorithm is conceptualised as a neuron model which forms the
kernel of an unsupervised neural network that learns to signal unex-
pected observations as anomalies. Both the network and neuron dis-
play properties observed in biological processes including: immediate
intelligence; parallel processing; redundancy; global degradation; con-
trast invariance; parameter-free computation, dynamic thresholds and
non-linear processing. A robust and accurate model for anomaly de-
tection in univariate and multivariate data is built using this network
as a concrete application.

1 Introduction

The material and immaterial pursuit of understanding the representation
and processes of the human mind and brain has resulted in a number of
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theories. One such system of ideas of interest to the present work is that
of connectionism, otherwise known as artificial neural networks (ANNs).
In this work neurophysiological simplifications of the representation and
processes carried out by the human brain have been used to build models
of networked computational units for solving ‘intelligent’ tasks by learning
through experience and without explicit programming. The assumptions
and idealisations are many; taking some of these, along with observations
carried out in the mammalian (and amphibian) retina and visual cortex, they
are used in the present work as inspiration and the basis of a neural network
for the perception of anomalies corresponding to meaningful information.

Anomaly (or outlier) detection finds application in many domains in-
cluding cyber security, medicine, machine vision, statistics, neuroscience,
law enforcement and financial fraud—to name only a few. Anomalies were
initially searched for clear rejection or omission from the data to aid sta-
tistical analysis, for example to compute the mean or standard deviation.
They were also removed to better predictions from models such as linear re-
gression, and more recently their removal aids the performance of machine
learning algorithms. However, in many applications anomalies themselves
are of interest and are the observations most desirous in the entire data set—
which need to be identified and separated from noise or irrelevant outliers.

The objective of anomaly detection algorithms is to detect rare, unusual
or inconsistent observations from the rest of the data. It has been a his-
torically important problem for which solutions have developed from early
intuitive analysis, to statistical techniques and more recently to using com-
putational approaches. Anomaly detection was originally carried out on
small datasets using human intuition developed through domain knowledge
and experience but without formal methods. This gradually gave way to
statistical methods that were rapidly developing in the early and mid twen-
tieth century almost always under the assumption that data were Gaussian
distributed. This assumption was for theoretical convenience, ease of anal-
ysis, results about the Central Limit Theorem and as a carry on from past
dogmas [10]. However, many real world distributions are not Gaussian and
hence many of the popular outlier detection tests do not have their assump-
tions met by the data, yet continue to be used throughout the sciences. To
address the requirements of processing non-Gaussian and large datasets the
increase in computational power in recent decades has enabled the develop-
ment of heuristic based and compute intensive approaches where practical
results are prioritised over mathematically derived and well understood so-
lutions. These being mainly non-parametric are suitable to a much wider
range of data but do not necessarily outperform statistical approaches which
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have also benefited from the increased computational power.
Most anomaly detection solutions optimise modelling the normal data so

that observations that increasingly do not fit the model of normality are con-
sidered increasingly anomalous, while a small handful of solutions directly
isolate anomalies. However, as has been the case for traditional statistical
approaches, users are almost always left with the problem of deriving and
justifying critical parameters which are often data specific in unsupervised
learning problems.

Anomaly detection has always been considered to be a difficult problem
due to its subjectivity. Barnett and Lewis [5] clearly stated in their classic
book on the subject that the major problem in outlier study remains even
after surveying the vast literature: “It is a matter of subjective judgement
on the part of the observer whether or not he picks out some observation
(or set of observations) for scrutiny . . . what characterises the ‘outlier’ is its
impact on the observer (it appears extreme in some way) . . . when all is said
and done, the major problem in outlier study remains the one that faced the
very earliest workers in the subject—what is an outlier? We have taken the
view that the stimulus lies in the subjective concept of surprise engendered
by one, or a few, observations in a set of data . . . (and that) the concept is
a human one”. Barnett and Lewis [5] foresaw the difficulty of translating
the problem into a mechanised form and that “trying to teach the computer
what is surprising is difficult”.

Many definitions of an anomaly have been given with vaguely defined
terms such as ‘surprising’, ‘discordant’, ‘inconsistent’ and ‘discrepant’ at-
tempting to link the subjective human experience to objective tests for
their detection. Unsatisfied with the nebulous descriptions, parameter laden
approaches and the difficulties encountered in practical data analysis, Mo-
hammad [21] took a human centric non-parametric approach to anomaly
detection inspired by human visual perception and the Gestalt Theory of
Psychology to provide the following definition of an anomaly that is abided
by in the present work:

A grouping of interest represented by a gestalt law is perceived by the Helmholtz
principle when it is unexpected to happen (i.e., its expectation of occurrence
is < 1) in uniform random noise. Any observation that is unexpected to
occur with respect to this grouping is perceived, by the same principle, to be
an anomaly.

Under this definition and understanding Mohammad [21] developed the
unsupervised anomaly detection algorithm called the perception for univari-
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ate and multivariate data using principles of human perception; namely
Wertheimer’s Contrast Invariance, Isotropy and the Helmholtz principle [7].
In addition, the algorithm utilised elements from the study of anomaly detec-
tion by various communities in computer vision, statistics, machine learning
and data mining; thus developing a vision inspired, statistically founded,
machine learning algorithm capable of handling the computational require-
ments of modern day data mining problems. The overall approach was
motivated by the desire to have a method that is not only derived from
sound principles but also tries to follow the mode of human perception in
detecting anomalies which is both fast and accurate even on complex data,
and to provide a parameter-free anomaly detection algorithm that is simple
to implement, accurate, efficient and adaptable to the data distribution. In
practice the algorithm has extremely fast training and prediction times, and
performs relatively well in both subjective measurements and on real-world
artificially preprocessed anomaly detection data sets. Although the current
version assumes anomalies are global in nature (relative extreme deviations),
real world datasets often fit into this category; one reason being that out-
liers are normally considered as unusually large deviations for a given data
feature.

The present work seeks to establish important and practical connections
between the approach used by the perception algorithm and prior decades
of research in neurophysiology and ANNs; particularly that of information
processing in the retina and visual cortex. The idea that the brain performs
computations was first put forward by McCulloch and Pitts [20] where they
proposed that basic neural nets with threshold logic can be combined into
complex circuits, just as with logic gates, to compute anything that is capa-
ble by a Turing machine. Thus, they introduced the idea that many single
units of neurons can combine to give increased computational power. The
logical calculus made a number of physical assumptions about biological
neurons such as communication via excitatory and inhibitory connections
and that certain thresholds must be reached before a neuron itself begins to
fire excitatory impulses. The excitations were modelled as all-or-none pro-
cesses and assumed to occur through more than a single afferent synapse, so
that given a sufficient number of impulses arriving at many synapses within
a period of latent addition, a neuron can be observed to carry out summa-
tion over time between the arrival of the impulses and its own propagated
impulse. The inhibition can be absolute or relative, and thresholds fixed or
dynamic. Many of their simplifications and assumptions are foundational
and commonplace in current ANN research. However, the McCulloch and
Pitts (M&P) neuron model and nets did not provide for a learning algo-
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rithm, rather that analysis can realise any network for the computation of a
task. Rosenblatt’s perceptrons [28] were the first to demonstrate that an ap-
propriately designed single layer neural network with non-linear activation
functions could learn by experience (supervised learning) to solve perceptual
problems using Hebbian learning. Rosenblatt took a probabilistic approach
that moved away from the strictly binary inputs of the M&P neuron, and
introduced weighted connections and a simple learning algorithm with feed-
back to discriminate linearly separable classes. It was later proposed to
build stacks of such elementary units in multiple layers to learn non-linear
decision boundaries; however efficient learning algorithms were as yet un-
known in the early development of neural networks. Modern day neural
networks are largely a product of the development of the M&P neuron and
perceptrons, whether they be supervised or unsupervised.

The ubiquitousness of anomaly detection has led to my position that
anomalies are what perception is geared towards due to most information of
importance and relevance being contained in them—regardless of the sensing
modality. Under our discussion of unusual deviations from randomness, this
is when a notion of expectation is formed by a perceptual grouping, and one
or more observations ‘shatters’ that expectation by taking on unexpected
values with respect to the grouping. The concept of anomaly detection
as a human endeavour can be taken a step further when we conceptualise
the perception algorithm as a unit of computation akin to the simplified
modelling of biological neurons like the M&P neuron and perceptrons (see
Figure 2 for an illustration). The proposed elementary neuron is essentially
an unsupervised learning processing unit that decides which, if any, of its
input are anomalous. A key differentiation from prior models being that
learning is without supervision as in perceptrons, and without manual or
fixed specification of a network for a desired computation as in the M&P
models. The output is also not a single response, but individual to each
input stimulus. The neuron is adaptable to the stimuli with data dependent
thresholds and every output is a non-linear function of all or a fraction of its
inputs. The outputs can be binary (all or nothing) but with each having an
associated score that can be both positive or negative; each considered either
excitatory or inhibitory respectively. The computations are ‘intelligent’, and
not simply a relay of information to some obscure higher processes (such as
the human brain).

The translation into a fundamental computational neuron enables in-
tuitive layering and stacking of multiple such units together to form an
unsupervised artificial neural network (see Figure 6 for an illustration). The
inspiration for the neural network comes from descriptions and properties
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observed about biological neurons, the human retina and cortical structures;
and is designed for the detection of meaningful events. The neural network
assumes a binary input stream arriving over a unit interval of time at each
receptor node, where the streams are summed to integers to be mapped
to a decision on whether it is meaningful or equivalently considered to be
an anomaly. The neural processing is done first by taking random variable
subsamples of the receptor outputs by a sufficiently large number of neurons
working in parallel. Each build from their experience a measure of normality
by performing local anomaly detection to eject anomalies from their subsam-
ple, and then re-learning on the subsample data that remains, so that each
neuron represents an expert partial model. The computation of an anomaly
score and decision is made for each receptor value as in the perception al-
gorithm, and such scores or decisions are summed by each output node so
that positive sums indicate an anomaly, otherwise the observation is consid-
ered normal. The neural network is uni-directional and unsupervised, only
working with the input data and presently no direct feedback from the out-
put nodes or otherwise is utilised. Robustness, redundancy, reliability and
accuracy are also maintained or improved by spreading computations across
the network. Furthermore, through the use of sufficient numbers of neurons
and variable subsampling the network is also practically parameter-free.

One could ask whether other standalone anomaly detection algorithms
can be conceptualised as a neuron model, and stacks built together into a
network of partial or full models. Indeed, we could represent any multi-
dimensional mapping of points in Rn to Rn as a neural network model sim-
ilar to that proposed in the present work provided the end responses are
binary decisions or at least numeric scores. Aside from the fact that not
all algorithms have been developed and tested as such, network models—
also known as ensembles—can present difficulties in use. Base algorithms
can be relatively slow and thus unsuitable for interactive use or real-time
application. Algorithms may also be relatively expensive in terms of perfor-
mance and storage making them unsuitable for constrained devices. This
becomes exacerbated as an ensemble. Another important consideration is
that base algorithms may require data dependent parameters to be set by
users. Given the assumption that anomaly detection, and the perceptual
learning tackled in the present work is unsupervised, it is difficult to decide
how such parameters should be set automatically for every data set encoun-
tered. Even if the effect of parameter choices can be stubbed by ensemble
techniques such as random variable subsampling, it still leaves the problem
of deciding parameter ranges, combining scores, and the setting of thresh-
olds for deciding if observations are anomalies. An important remark here
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related to parameter choice is whether base algorithms that benefit from
partial views can perform local anomaly detection to eject anomalies before
re-learning, this is an aspect that can significantly improve results. Further-
more, theoretically most algorithms model the normal data and are thus
geared to produce better fits with increased amounts of data rather than by
partial views. Finally, the amount of data required by each model of the en-
semble or network can vary so that some may end up being more expensive
than applying the base model to the entire data set. This is particularly
problematic for high dimensional or large modern day data sets.

One algorithm however that has parallels with the neural network ap-
proach of this paper is Isolation Forest [17]. In this model random sub-
samples of the data (256 points) are taken to build many isolation trees
(≈ 100) where each tree then scores every point in the data set, and the
average taken as an anomaly score. One could consider each tree as a neu-
ron model, and the forest akin to the network shown in Figure 6. However,
although Isolation Forest is practically parameter-free due to the default
setting providing largely optimal results, it is relatively slow and ultimately
a contamination ratio parameter must be provided to threshold which out-
put scores indicate anomalies. This can be automatically specified to give
good results in many cases, but it can also sometimes give unsatisfactory
or extremely poor results. The sensitivity to the size of subsamples also
requires further exploration as practically it appears to give good results,
but it can be a factor in performance as stated in the original paper. We
also note that the original isolation forest does not have scope for carrying
out local anomaly detection—should it be beneficial for its performance.

To facilitate the exposition of the neuron model and neural network
the rest of the paper is laid out as follows: Section 2 reviews unsupervised
anomaly detection using ANNs. Section 3 introduces the perception algo-
rithm as a neuron model together with the assumptions made and relations
to prior models. Section 4 describes the proposed neural network and ar-
chitecture, together with reasonings for the design choices. A number of
properties of the neural network are also discussed in relation to assump-
tions and findings in biological neural processes. Finally, section 6 concludes
the paper and ends with a discussion of thoughts for future research.
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2 A Review of Anomaly Detection using Neural
Networks

The neural network approaches to anomaly detection can be broadly cate-
gorised into three with some overlap: supervised, semi-supervised and un-
supervised. In supervised anomaly detection the assumption is that labels
for the normal and anomalous data are available. However, this approach is
not usually applicable in the field of anomaly detection due to the common
scenario of data being unlabelled and because of the class imbalance prob-
lem. Semi-supervised learning approaches are used under the assumption
that some portions of labelled data are available; this could be a combina-
tion of both normal and anomalous examples but more often than not it
is assumed only the labels of the normal class of data are available. Al-
though applicable in some scenarios, in most real world anomaly detection
problems it is unlikely that only normal labelled data is available and thus
the semi-supervised approaches are either abandoned, continued to be used
regardless or are modified so as to have some resilience to contamination
of the normal data by anomalies. Unsupervised learning algorithms are the
most common neural network based methods for anomaly detection due to
the near ubiquity of data being unlabelled and because it is difficult, if not
impossible, to characterise and label all cases of anomalies; past, present and
future. Hence the present work is concerned primarily with unsupervised
anomaly detection.

Anomaly detection using neural networks are based on autoencoders
with the replicator neural network [12] being the first to be specifically de-
veloped for this application. Autoencoders are unsupervised neural networks
that learn a compressed or lower dimensional feature representation space
of the input data; a typical example is illustrated by Figure 1. An encoder
maps the data onto a low dimensional feature space, while the decoder tries
to reconstruct the data from this space. The general approach is to design a
neural network with the same number of input nodes as output nodes, but
with a number of hidden layers. By introducing constraints such as limiting
the number of nodes in the hidden layers the network can learn interesting
structures. Autoencoders generally set the output values to be the input
values so that an approximation to the identity function, A(x) ≈ x, is learnt
using backpropagation and gradient descent on a differentiable cost func-
tion that tries to minimise the reconstruction error between the original and
reconstructed values. The learning of a non-linear function approximation
is accomplished by each hidden neuron summing its input and passing it
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through a non-linear activation function such as a sigmoid or tanh. The
network is ideally trained upon only the normal data or on data that is
contaminated with anomalies, but where it is assumed that anomalies are
relatively few; as is assumed in anomaly detection problems. The key as-
sumption of autoencoders is that due to the network learning to represent
normal data in a compressed representation, anomalies will be reconstructed
with larger errors than normal examples from the compressed space. Fur-
thermore, although the data is unlabelled, this method is more accurately
described as self-supervised learning due to it using the original input values
as the target output values.

Many variants of autoencoders have been developed using different regu-
larisation approaches. Sparse autoencoders [25] are inspired by observations
and theories that only relatively few neurons are active during neural ac-
tivity and hence they penalise activation units and encourage fewer nodes
in the hidden layer to be active. Denoising autoencoders [29] have been
developed to be robust to noisy variations in the data by learning to re-
construct data from corrupted examples instead of the clean original data.
This forces the encoder and decoder to implicitly learn the essential aspects
of the distribution of the input. Contractive autoencoders [27] introduce a
penalty term that forces the model to learn a function that changes little in
response to a slight change in the input data. Applied to the training data
this forces the learning algorithm to capture the essential information about
the training distribution. Replicator neural networks [12] are a specific type
of autoencoder utilising techniques from image compression to anomaly de-
tection. The network has three hidden layers with tanh activation functions
for the two outer hidden layers, but a staircase like activation for the middle
hidden layer that divide continuously distributed data points into a number
of discrete valued vectors. This mapping naturally places the data points
into a number of clusters enabling outliers to be further analysed by identi-
fying them with their respective groups. Variational autoencoders [14] are
an interesting theoretical and practical advancement which learn a latent
variable model for the input data. These networks learn the parameters of a
probability distribution modelling the data to enable the sampling from the
distribution to generate new input data samples. In this setup the encoder
portion learns two parameters in latent space: mean µ and variance log(σ).
Then random samples of similar points are taken from the latent normal dis-
tribution that is assumed to generate the data by z = µ + exp(log(σ))× ε,
where ε is a random tensor. Finally, a decoder network maps these latent
space points back to the original input data. The parameters of the model
are trained via two loss functions: a reconstruction loss forcing the decoded
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Figure 1: An under-complete autoencoder model with one hidden layer and
fully connected nodes between layers.
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samples to match the initial inputs (just like in our previous autoencoders),
and the Kullback-Leibler (KL) divergence between the learned latent distri-
bution and the prior distribution, acting as a regularisation term.

Autoencoders have attracted much interest because they have been con-
sidered to have the potential to solve the unsupervised learning problem by
learning feature representations via a generic learning algorithm for differ-
ent sensing modalities such as speech, audio and images. Indeed, the hidden
nodes of a multi-layer network can be analysed to show that they appear
to be learning successively higher representations of the input data. The
method learns automatically from the data without human engineering of
features which alleviates this burdensome task; however, this may come at
the cost of learning irrelevant aspects of the data, and in the case of anomaly
detection may not highlight anomalies of interest.

The use of autoencoders for anomaly detection is subject to a number
of theoretical and practical issues. Neural network based algorithms for
anomaly detection have been first proposed since at least 2002 [12], however
it is apparent from surveys, evaluation papers and personal correspondence
with industrial production teams that such an approach is rarely used in
practice [1, 9, 6]. A major reason is that neural networks have been tradi-
tionally slow to train even on specialised hardware. Indeed, data analysis is
a highly iterative process and developers are likely to favour approaches that
yield quick and in many cases near instant results—unless there is a signifi-
cant increase in accuracy which has not been clearly and universally found
to date. However, continuing algorithm and hardware development may
make the difference in speed largely inconsequential for all but the most de-
manding tasks or in environments where resources are severely constrained.
Autoencoders are also sensitive to noise and can overfit the training data
(particularly on small datasets) where getting stuck in local optima is a real
problem [6]. This reduces their performance when released in production
environments. One solution to this problem is to increase the data size,
however this may not always be sufficiently possible and an immediate con-
sequence is that training time will increase. Another solution is to use an
ensemble of autoencoders with varying random connections between layers
[6], however this can lead to slower training times and increases the number
of parameter choices that need to be made—as discussed next.

The neural network approach to the anomaly detection problem is one of
optimisation and requires the setting of a large number of hyper-parameters
such as: choice of number of hidden layers; number of nodes in each layer; the
optimisation algorithm (ADAM, RMSprop); the activation function types
for each layer (linear, non-linear); the choice of activation function (tanh,
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sigmoid, linear, relu); the learning rate; type of regularisation (dropout,
sparsity, number of nodes in a hidden layer); the type of autoencoder (com-
plete, undercomplete, overcomplete, sparse, denoising, variational); num-
ber of epochs; batch size; and when to terminate training. The setting of
the structure and the bewildering number of parameters is challenging and
somewhat considered an art, but one that is largely guided by feedback from
the training data to minimise reconstruction loss since autoencoders are self-
supervised networks. Another important parameter is the ratio of anomalies
expected to be in the dataset or equivalently the threshold at which to con-
sider observations as anomalies. As for most anomaly detection algorithms,
this is difficult to specify in advance. The correct setting of thresholds is
data dependent and hence highly variable since new data can be expected
to contain a relatively large number of anomalies, very few or even none at
all.

Some final remarks on the use of autoencoders is that they were originally
designed for compressing data, thus the anomaly detection is a by-product
of the original objective and may not be optimised for its primary task.
Autoencoders are also highly data specific and hence are applied narrowly
only on the data they are trained upon. The data specificity is to such an
extent that given a network trained in the domain of images, if for example
the training data is human faces, it will not perform satisfactorily on images
containing natural scenes. This is mainly an issue where training has been
costly and there is need for repurposing models.

3 The Neuron Model

The perception anomaly detection algorithm operates on the principle that
unexpected events with respect to a prior expected grouping are anomalies,
and it can be conceptualised as a parameter-free unsupervised neuron model
that is illustrated by Figure 2. In this version the input data is assumed to
arrive as a batch composed of a stream of indicators (0, 1 values) over a fixed
period of time δ. Each receptor performs a summation over δ-time to yield
integer xi that is provided as input to the neuron which carries out a simple
two stage computation. The first, and considered the fit or learning stage, is
to compute the count of the number of observations W which is simply the
number of input connections, the integer median x̃, and S =

∑W
i |xi − x̃|.

This is the neuron’s experience of the world over δ unit time with the median
chosen as a robust approximate measure of centrality and parameters learnt
without requiring supervision. In the original perception algorithm there is
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only one time period δ, and all the xi correspond to the entire dataset.
The neuron computes for all its input values whether any are considered

to be anomalous. In effect every input value has a corresponding output
representation on a map that records the anomalous nature of every stimu-
lus; 0 representing normal instances and 1 for anomalies. In related models
such outputs may be −1/+ 1, or additionally a range of positive and nega-
tive scores where increasingly positive scores represent increasingly anoma-
lous inputs corresponding to the meaningful. The anomaly computation is
carried out by the neuron under the a-contrario assumption that all such
atomic elements composing S are uniformly, randomly and independently
distributed amongst W windows; then given the realisation of the input data
it computes whether a particular number of atomic elements (an n-tuple)
observed in a window is unexpected to have occurred under the a-contrario
assumption. Where it is observed that the number of occurrences of the
event is not expected to occur even once, yet it has occurred, an anomaly
(by definition) is perceived (because it is unlikely to have happened in uni-
form random noise) by the Helmholtz principle. Specifically what is com-
puted is the expected value of the number of n-tuples, E(Cn), of an event
(n = |xi − x̃|) that occurs. Thus for a given observation n, the expected
count of n-tuples is computed by the following formula where any such n
that satisfies it is considered anomalous (see Mohammad [21] for full details):

E(Cn) =

(
S

n

)
1

Wn−1
< 1 (1)

Equivalently, for computational reasons and after a log transformation we
have an anomaly when

fS,W (n) = − 1

S

(
log

(
S

n

)
− (n− 1)log(W )

)
> 0 (2)

The perception algorithm, and hence the neuron model, is general enough to
handle any numerical input up to a specified level of decimal accuracy. This
is achieved by first transforming all the inputs to integers using rounding and
multiplication by an appropriate order of magnitude. Then the algorithm is
applied as described for the integer data.

The decisions made for every input are mapped to the output nodes,
however the neuron can also make decisions on new inputs that did not
form part of the original experience. This is illustrated by Figure 3 where
given a new input z, it is transformed to n = |z − x̃| using the median
from the learning stage and the expected value of the n-tuple is computed
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Figure 2: The perception algorithm conceptualised as a single neuron model
with an assumed binary input stream of data over δ-time i.e. the input
stimuli is assumed to arrive as quanta. Such quanta are summed and output
by the receptors. The neuron receives all such outputs to compute the
integer median x̃, and yield the parameters S and W after transformation;
these are used to compute the expected value for each input. The output
here of the neuron is binary, representing whether it deems the spatially
corresponding input as anomalous or not.
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using the parameters S and W . The output is again binary but also has an
associated score indicating the relative extremeness of the observation for
scores greater than 0.

The neuron model requires some handling and interpretation over dif-
ferent ranges of its input. Where n = |z− x̃| ≤ S, equations (1) and (2) are
well defined; however for n > S the binomial coefficients are either taken
to be undefined or subject to interpretation. Under equation (1) the bino-
mial coefficient can be taken to be 0 with the natural interpretation that
there is no way to choose n items from S given that n > S, and leads to
E(Cn) = 0, giving us a constant anomaly score and always an anomalous
decision. Hence we lose information about increasingly anomalous inputs.
However, following equation (2) which is what is used in practice to compute
the expected scores, the log of the binomial coefficient is undefined at 0; for
practical reasons log

(
S
n

)
is taken to be 0 so that the computation will be

> 0 and the function linear. Although we lose the original relation between
anomalous scores of the input with increasing n, it does preserve the increas-
ing anomalousness. Practically the anomaly decisions remain the same for
n > S, only the interpretation of the scores differ compared to the range
0 ≤ n ≤ S. Furthermore, this is all of concern where newly arriving data is
processed without learning. Where the computations are carried out afresh
there will be no binomial coefficient issue to handle as it will be defined for
all its inputs.

Figure 4 illustrates a typical example of the function fS,W over a range
where n = |zi− x̃| < S. The function graph is symmetric around the median
66.5 (which is transformed to integer 665 by the neuron), and although the
median value is below the anomaly threshold it is not the most normal input
since it is only used to approximate the data centrality. Indeed the anomaly
score dips further before accelerating higher with increasing or decreasing
zi; note the curvature of the graph. Once past the anomaly threshold score
of 0, any input value is considered anomalous with an increasing associated
score. Figure 5 illustrates a typical example of fS,W over a much larger
range of input including where n = |zi − x̃| > S and the function changes
to linear. Only the right portion of the symmetric graph is shown. As
previously noted, the function is in fact undefined over the range n > S,
but artificially modified for practical purposes to predict scores over newly
arriving input.

It is interesting to note the similarities between the neurons non-linear
function over range n ≥ 0 (including the linear component), and that of the
concept of activation functions in ANNs. Activation functions, sometimes
described as squashing functions, are an essential component of ANNs to
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Figure 3: A neuron that has experienced and gained its parameters can also
make individual predictions on newly arriving input values. An input z is
transformed using the stored median, and the expected value of the n-tuple
computed using the stored parameters S and W to yield a binary output
decision.

Figure 4: Graph of the neuron function over a portion of its defined input.
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Figure 5: The right portion of the graph of the neuron function including
where it artificially turns linear at the point where n = |zi−x̃| > S, indicated
by the vertical dashed line.

ensure the model can represent non-linear relationships in the data that a
linear classifier can then handle. Examples such as the rectified linear unit
(relu), leaky relu, parametric relu, exponential linear units, swish, gaussian
error linear unit and the scaled exponential linear unit are of interest due
to an essential similarity in shape, and it is intriguing to reflect on the neu-
ron model computation as one of activation in unsupervised and supervised
learning.

3.1 Relation to Prior Models

The inspiration for the neuron modelling comes from neurophysiology [13,
4], computational modelling [20, 28] and computer vision [18] studies of
information processing in the early stages of vision found in the retina and
visual cortex. Indeed, the neuron model has many interesting properties that
have biological counterparts which will also be elaborated upon in section
4.3 under the context of a neural network. However, for completeness the
principle assumptions and properties that borrow, add and differ from the
prior M&P neuron and perceptron models are given here:
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1. Dual activity. The present work assumes the essential firing of (at
least the relevant subset of) biological neurons to have both continuous
and discrete facets, and that individual biological synaptic endings are
specialised so that some are excitatory endings while others inhibitory.
The neuron model excitatory output is selective towards the anoma-
lous observations such that it only transmits excitation to a relatively
few output nodes and to the rest it transmits inhibition. The activity
of the neuron model is foremost an all or none process as with the
M&P neuron and perceptrons, but also has a related energy output or
score. Thus, the higher the score for a particular observation—beyond
the anomaly threshold—the more anomalous it is considered to be.

2. Discrete time intervals. McCulloch and Pitts assumed that the only
significant delay in neural activity was synaptic delay and that com-
putations are carried out in discrete time intervals. This discretisation
serves our purposes of counting arriving stimuli over a fixed length
of time (window length), enabling the probability interpretation and
derivation of the perception algorithm, and hence the neuron model.
All computations are carried out in discrete time intervals in tune with
the assumed discrete nature of the input stimuli.

3. Immediate computation. It is assumed in this neuron model that the
function is only dependent upon that which is immediately received
within a discrete period of time. Thus there are no previous inputs that
directly stimulate the neuron. This is identical to the M&P neuron,
but does differ from some perceptron models that considered longer
range connections. The idea of immediate computation is also related
to discoveries pointing to a large part of the sensory machinery residing
in the retina rather than in complex higher processes [16]. Thus the
neuron itself is designed as to perform essential discriminatory com-
putations based on its immediate input and directly from its sensory
stimuli.

4. Number of afferent synapses. The M&P neuron assumed that a cer-
tain fixed number of synapses must be excited within a period of latent
addition in order for excitation of the neuron to occur, and that no
case is known by only a single synapse. This has an interesting corre-
spondence with the neuron model since one or two input values cannot
cause the neuron to fire, but at least three input values are required
to illicit a response; and only if one is meaningfully different to the
others. The neuron is capable of firing both when there are limited
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numbers of input connections, and when there are large numbers.

5. Spatial summation. Computational models of biological neurons as-
sume a summation is carried out over its inputs. Indeed, spatial sum-
mation models have been proposed where impulses may arrive at dif-
ferent points of the cell body or dendrites, and these are summed to
trigger an impulse. Summation (after a simple transformation of cen-
tering and taking the magnitude) is also an essential component of
the neuron models learning stage (but where contrast is required for
firing). Note that a record of the stimuli is not required as only the
sum is utilised together with the median and count of the number of
afferent synapses.

6. Adaptive thresholds. Biological neurons are assumed to have thresholds
that need to be exceeded through afferent excitatory impulse summa-
tion to yield firing. Similarly the neuron model has thresholds but
which are data dependent (adaptive), inherently dynamic and selec-
tive to the output. Indeed, if there is insufficient contrast in the stimuli
then the neuron will fail to fire regardless of the intensity. Further-
more, the selection of the threshold is arrived at completely through
unsupervised means. Hence, the threshold does not have to be spec-
ified by problem analysis (as in the M&P model), nor is it learnt
through supervision using large numbers of labelled examples (as in
perceptrons).

7. Non-linear activation. It is assumed that the biological nerve impulse
is a non-linear response to stimulation, and this non-linear property
has been an essential component in the design of activation functions
for ANNs. The neuron model response to stimulation is no different
and is a non-linear function akin to a “squashing function”. This is
closer to modern neural network activation functions than the step
threshold functions used in the M&P models and perceptrons.

8. Sparsity. A widely held property of biological neural network activ-
ity is that the response of the network to stimuli is sparse i.e. only
relatively few neurons are excited. Although, this is not used directly
to arrive at the neuron model, it is nonetheless an inherent property
where firing occurs only where there are unexpected observations that
differ sufficiently from the majority of the input. Thus, either the
neuron model does not fire due to too much uniformity of signal or
noise in the input, or it fires correspondingly to only those contrastive
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and rarely occurring observations. Hence when active, only a sparse
number of output nodes are excited.

9. Reliability. The neuron model is a reliable unit that does not pos-
sess any internal random element that may introduce noise into its
computation. Any noise originates externally, and its expected value
computations are entirely determined by the distribution of the input
stimuli.

4 A Neural Network Model

Neurophysiological investigations over many decades have discovered a num-
ber of intriguing, surprising and important processes and properties of visual
systems. In particular, the organisation and neuronal processing found in
the retina and visual cortex have provided inspiration for many models in
computer vision and machine learning. The present work builds upon this
through the design of unsupervised artificial neural networks made for de-
tecting meaningful observations—or equivalently anomalies corresponding
to objects of interest. The (first of many) neural network model presented
in this paper assumes that the input data is numerical, has no particular
ordering and that normal points form a single grouping; in essence the detec-
tion is of global point anomalies represented as unexpectedly deviant values.
The network is built from stacking together many elementary neurons (de-
scribed in section 3) with the exact architecture guided by research results in
neurophysiology, neural networks, ensemble learning and exploratory analy-
sis of the behaviour of the network. The underlying goals of developing such
networks are to achieve higher detection accuracy (as measured by a suit-
able metric for unsupervised anomaly detection), to have more robustness
to data extremities, to compute in simple parallel processes that are more
natural and easier to modify, to provide redundancy to failure of sufficiently
low numbers of parallel components, to provide graceful global degradation
by failure of any components, to demonstrate only random variable subsam-
ples of the input data is required for anomaly detection and only a roughly
constant amount as data size increases, to model some aspects and assump-
tions of biological neural processes, and to show that anomaly detection can
be carried out by quasi-independent neurons that each compute simple op-
erations and gather little pieces of evidence from small experiments to be
combined by subsequent nodes.

The present section will describe the chosen architecture, detail the rea-
sonings behind the design decisions, and relate it all to hypothetical and
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factual neurophysiological and computational properties of the visual and
nervous systems.

4.1 The Model Architecture

The network architecture of an unsupervised neural network for univariate
input data (such as individual feature vectors) is illustrated by Figure 6.
This is a feed forward network with no feedback learning from its outputs;
instead unexpected variations in the data are detected directly by feeding the
input data through random variable subsampling and nonlinear processes
to immediately arrive at a ranking or a decision on if each observation is
anomalous or not. The learning is carried out by each neuron learning three
simple parameters; the sum of the subsampled transformed portion of values
it receives (the total ‘energy’), the median of these values and the number
of corresponding connections. This seemingly little information is enough
to learn a model of the world that each experiences and make predictions
on all and new stimuli.

The input layer l0 composed of n0 receptors each sum a stream of as-
sumed uniformly distributed indicators over a fixed window of time δ and
thus hold an integer value of counts xi. Any univariate data vector pre-
sented to the network is essentially assumed to have been generated by such
stimuli arriving over a unit window of time. The biological inspiration and
perspective here is of photoreceptors (being sensitive to even single quanta
on average) summing the number of photons arriving over a discrete unit of
time, which are then converted into intensity values of nonnegative numbers
corresponding to the amount of energy received.

The second layer l1 is the key processing layer composed of n1 neurons
(as in section 3), that each connect fully to l0 but only learn on a randomly
selected variable number of receptor values. Generally n1 is much smaller
than n0; empirically it is found that a small number of neurons (≈ 256) are
enough for good results. The sizes of the random variable subsamples is
taken from empirical findings to be in the region of 10 to 1000 but with a
log-normal distribution bias towards smaller values. Each neuron considers
each receptor value to be composed of counts of its constituent elements and
its processing is hence to determine if the value is unexpected or not and
to compute an associated score that is mapped to the output nodes. The
neuron is thus connected to n0 output nodes in layer l2.

The neuron computation is carried out in two phases. Firstly, it per-
forms anomaly detection only on its subsampled portion of data to eject
points considered to be anomalies and hence which may hinder learning.
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Figure 6: An unsupervised neural network for the detection of anomalies.
The one-dimensional feature data (x1, x2, ..., xn0) is assumed to be composed
of indicators arriving with a uniform distribution over unit time δ, this is
analogous to photons arriving at an array of photoreceptors then summed
over unit time. The black lines between layers l0 and l1 represent the random
input subsample from which a particular neuron learns and predicts upon,
while the grey lines indicate inputs that are received by the neuron only for
making predictions upon.
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Then upon the data that remains it learns its parameters after which it
computes for all input values. Note here that the neuron computation has
two facets; a score where anomalies have > 0 and normal points ≤ 0, and
a translation of these to binary values of {1, 0}, or in this particular net-
work it is taken to be {−1, 1}. The former effectively considers neuron firing
output to be continuous or composed of a number of quanta that can nega-
tively or positively affect, while the latter assumes the commonly assumed
simplification that neurons fire in an all or none (or inhibitory) fashion.

In the present network each output node sums all the receiving scores
from its connecting neurons. Positive values contribute to the excitation of
the node while negative values contribute to the inhibition of the node. The
total sum is used as a score to rank all the receptor values, with greater scores
being more anomalous. Summation, as opposed to taking the maximum or
median is chosen due to the belief that an aspect of neural computation is
the summation of signals, and that if this exceeds a threshold then firing
occurs. Furthermore, taking the maximum leaves the node too sensitive to
even a single rogue score while taking the median perhaps leads to a loss
of information. Empirical results using summation also provided increased
support for taking this approach. In order to arrive at an anomaly decision,
the sign of the total sum can be used such that if it is positive then the node
produces a value of yi = 1 to predict an anomaly, otherwise yi = 0 to predict
a normal observation. However, for slightly increased stability the binary
{−1, 1} computations received by each output node from the neurons are
summed instead of the scores in the present network, so that a positive sum
decides to class the observation as an anomaly, otherwise normal.

An important remark on the neural network shown in Figure 6 is that
it is easily extended to multivariate data where now each neuron is con-
nected to each feature value of every observation, but again learns only
from a subsample. The computation is largely identical to the multivari-
ate version of the perception algorithm detailed by Mohammad [21], except
that subsample anomalies are detected and ejected before re-learning. As
before, each neuron produces a score and binary decision output for every
multi-dimensional input observation.

It is interesting to compare this neural network with that of the general
structure of autoencoders (the other major type of neural network used for
anomaly detection) reviewed in section 2 and illustrated by Figure 1. While
both may look similar the functional aspects are very different. The learning
in autoencoders is typically carried out over many examples of the data and
not on an individual feature, with the output set to be the same as the input,
and weights between nodes updated by gradient descent on an optimisation
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function where the gradients are obtained by backpropagation; thus making
the network learning function bidirectional. Many hyper-parameters of the
network have to be set with the fundamental goal of obtaining a compressed
representation of the input data by the middle layer. In particular a thresh-
old is required to decide when something is anomalous which the network
does not innately provide. Although such networks work without labelled
data they are better described as self-supervised networks rather than un-
supervised. In contrast, the neural network model discovers anomalies over
entire individual feature vectors where the data is univariate (or transformed
vectors where data is multi-dimensional), with no weights between nodes or
feedback learning from labels. Rather than an anomaly being that which
cannot be reconstructed well by the compression layer of the network, it is
taken to be that which is unexpected to occur under the a-contrario model
of uniform random noise. The unsupervised learning is performed over the
input data only and predictive scores and decisions sent to the output nodes
in an essentially parameter-free and uni-directional method.

4.2 Reasonings for the Neural Network

One of the main contributions of the present work is that of conceptual-
ising the perception algorithm as an elementary neuron and the stacking
and organisation of such computational units for the purposes of anomaly
detection. Many issues can be raised in the design. One relates to whether
introducing additional neurons in the middle layer (with reference to Figure
2) can lead to significant performance improvements or desirable properties
over the single neuron model. The naive method of duplicating the neurons
provides important redundancy against failure, but the exact replication of
inputs, computation and outputs gives no improvement in detection. How-
ever, the following examples will illustrate how and why the addition of
neurons can be beneficial provided all the neuron receptive fields are ‘diam-
eter limited’ in the sense of random fractions of the input space, and hence
learning from different portions of the data.

To convey how accuracy and robustness can be improved, consider first
the unlabelled Galton height dataset composed of 898 observations whose
distribution is illustrated by Figure 7. The single neuron model is capable
of producing good results (decided subjectively) on the dataset to return
the anomalous set of observations {56, 57, 57.5, 76, 76.5, 78, 79}. However,
the introduction of a single extreme anomaly {700} can have unintended
consequences on the neuron output where it now only finds the following
anomalies: {78, 79, 700}. The extreme anomaly has in effect enlarged the
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decision boundary and hence its presence has masked the other anomalies.
This can also be understood from the perspective of precision and recall,
where the former can increase at the cost of the latter, assuming obser-
vations get increasingly anomalous moving away from the central mass of
points. While such an event may appear contrived and could be identified by
a domain expert exploring the data for removal or accommodation, the au-
tomated analysis and detection of anomalies is required where data streams
are too numerous, large or complicated to be all handled by human experts.
Furthermore, the extremeness of anomalies need not be so drastic as to make
their identification clear and obvious using rule sets. For example, two ex-
treme anomalies of {200, 250} can alter the single neuron model results—all
be it with less effect—to yield the anomalous set {56, 76.5, 78, 79, 200, 250}

A second example to illustrate the effect of extreme anomalies is ex8data1
[22] that records the labelled behaviour of 307 servers measuring the through-
put (mb/s) and latency (ms) of response. The distribution is illustrated by
Figure 8 and overlaid are the results of the single neuron model. Consider-
ing only the Area Under the ROC Curve (AUC) metric, the single neuron
model achieves an excellent score of 0.93. However, with the introduction
of some extreme anomalies the visualisation of the data changes (see Figure
9), and the single neuron model now achieves an AUC score of 0.71. Note
the perfect precision but decrease in recall.

The proposed solution to increase robustness of the network and hence
accuracy is composed of three parts: (1) the introduction of additional neu-
rons that each perform the same computations, (2) that each neuron learns
from a random variable subsample of the input data after ejecting anoma-
lies, yet produces scores and binary {−1, 1} predictions for all inputs, and
(3) that subsequent nodes in layer 2 sum the output scores and binary pre-
dictions to enable anomaly ranking and decisions for all inputs, respectively.
Neural network type architectures such as this are important for unsuper-
vised learning because of the limited availability of ground truth to update
parameters that better reflect beliefs about the environment. Large num-
bers of partial models provide stability and accuracy likened to supervised
learning methods where massive amounts of labelled data are used to guide
function approximation. Taking an ensemble of neurons approach we can
obtain a reduction in the variance of the sums computed by the output
nodes in the neural network. An illustration of typical variance reduction
as the number of neurons increases is shown by Figure 10 where the AUC
score settles towards a specific value or range. Empirically it has been found
that 256 neurons is enough to provide stable, reliable and accurate results.
In addition Figure 11 shows the variance reduction of the network output
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Figure 7: The Galton height data set shown as a scatter plot and histogram.
The observations at the fringes of either end of the distribution are consid-
ered candidates for being anomalies. The data is unlabelled.

score for a single anomaly and normal example as the number of neurons in
the network increases.

The random variable subsampling component of the model is also impor-
tant to provide increased robustness and hence accuracy to the anomaly de-
tection. This is because the single neuron model (the perception algorithm)
can be adversely affected by extreme anomalies that can effectively enlarge
the decision boundary (points inside considered normal, and those outside
anomalous) and thus lead to increased false negatives; often described as the
masking phenomenon in outlier detection. Even without extreme anomalies
the diversity introduced by different neurons subsampling different portions
of the data can lead to better results. Indeed, variable subsampling is chosen
rather than a constant subsample size for each neuron due to the bias effect
that sample size has on anomaly detection. The AUC scores can vary consid-
erably over the entire subsampling range for different data sets, where near
constant performance is achieved for larger subsamples that approach or
match the single neuron model. Examples of the graphs of AUC scores over
different fixed subsample sizes is shown in Figure 12 for different datasets.
Such findings motivated the use of variable subsample sizes in the region of
{min(10, N),min(1000, N)} (where N is the length of the dataset) but over
a log-normal distribution (µ = 3, σ = 2) to give more probability to lower
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Figure 8: The behaviour of 307 servers measuring the throughput (mb/s)
and latency (ms) of response from data set ex8data1 [22]. A central mass of
points is observed with anomalies being generally distant from the cluster.
Overlaid are the results of the single neuron model which achieves an AUC
score of 0.93. The neural network model achieves only 0.88 on average
(keeping in mind the relatively small size of the data).

27



Figure 9: A plot of dataset ex8data1 [22] with additional extreme anomalies.
Overlaid are the single neuron model results. Not only does the visualisation
perspective change but also the anomaly scores of the observations such that
the single neuron model achieves an AUC score of 0.71 and detects only the
more extreme anomalies that were introduced. The neural network model
by contrast achieves an AUC score of 0.94.
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Figure 10: A typical example of the reduction in variance of the AUC score
as the number of neurons in the network increase.
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Figure 11: A typical example of the reduction in variance of the network
output score for a single anomaly (top graph) and normal example (bot-
tom graph). Note that predicted anomalies and normal examples are given
positive scores and negative scores, respectively.
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subsample sizes. The random variable subsampling with this distribution
bias reduces the masking problem because each neuron learns from different
portions of data and since anomalies are rare the majority of subsamples will
be populated mostly by the normal data and without the extreme anoma-
lies. Empirically this also provides a better AUC score using partial models
and removes the requirement for users to specify a subsample size parameter
that is unknown in unsupervised learning problems for optimal performance.
Thus the neural network is kept practically parameter-free.

An ensemble of independent neurons using random variable subsamples
of the data to carry out parallel computations of the input stimuli implies
that each neuron experiences a likely different view before computing all
the independent predictive scores. This design gives two important prop-
erties of redundancy and graceful global degradation. The former implies
that removal or failure of sufficiently few neurons and connections keeps the
network performance practically the same. The latter property implies that
degradation of the network performance is the same—on average—with the
continuous removal or failure of any neurons or connections, and the net-
work still able to perform reasonably well provided enough remain. Both
these properties are illustrated by Figures 10 and 11 where it can be seen
that reducing the network by a modest number of random neurons from 256
still maintains the network performance and score in a reasonable range.
An ensemble of neurons working in such a manner thus provides redun-
dancy without exact replication for the simplified modification, repair or
failure of the units. Indeed, in addition to handling inaction of a neuron,
working in simple parallel processes enables individual neurons to compute
more complex and local functions that can be combined for global solutions.
Furthermore, the formation of collective experiences and properties of re-
dundancy and global degradation has utility and advantages for distributed
processing applications.

An interesting consequence of the use of random variable subsamples
and ≈ 256 neurons is that as the data size increases only an approximately
constant fraction of total samples are required. While this may be relatively
large for smaller data sets, it can be a small fraction for larger ones. For
example, given a data set of 1000 examples the total number of samples is
in the order of 103 which is considerably more than the size of the data.
However, this remains the same for a data size of 100, 000 examples where
we have a 10 fold reduction in data usage. A single neuron model would
utilise the entire data set in both cases whereas the neural network can
provide better results with considerably less data. This indicates that for
anomaly detection not only is all the data unnecessary for learning, but also
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Figure 12: Plots of AUC score over fixed subsample sizes of the neural net-
work for two different data sets. Note that performance differs at different
subsample sizes but approaches that of the single neuron model as the sub-
sample size increases. Furthermore, the correlation between AUC score and
subsample size can be seen to differ between different data sets.
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that connections between input, computational units and output need not
be entirely reliable since performance can in fact increase by using random
variable subsamples (taken over the entire data set!).

Coming back to the Galton dataset with extreme anomalies, the results
set found by the neural network is {56, 57, 57.5, 58, 75, 76, 76.5, 78, 79, 700}
and for ex8data1 with more extreme anomalies (Figure 9) the AUC score is
0.94. Both examples illustrate the robustness of the network against extreme
anomalies and the possible improvement in detection and performance over
the single neuron model. However, it is important to keep in mind that
these are only illustrative examples and that they are not necessarily the
ideal data sets to apply the network model to due to their relatively small
sizes. Other small data sets experimented with in private indicate a similar
trend but in some instances the neural network always gives similar results
to the perception algorithm, and for others it already performs better with
and without adding extreme anomalies.

4.3 Relations to Biological Neural Networks

The neural network proposed in this paper does not claim to model complex
biological neural networks. However, it does take inspiration from such
networks and seeks to model certain elementary and simple aspects that may
increase its applicability and improve performance. Thus it is worthwhile
relating some of the network properties and exploring how these can be
beneficial for anomaly detection and those problems that may be desired to
be addressed in future.

1. Random, parallel and independent processing: It has been observed
that the connections amongst cells and neurons in the retina and vi-
sual cortex for the purposes of perception and learning is not identical
from one organism to another at birth; rather the connections appear
random but with some spatially organised distribution of components.
This may be uniform in the case of distributing different feature detec-
tors across the retina, or it may show concentrations of certain types
of cells such as the increased density of cones in the fovea and the cor-
responding small receptive fields of the ganglion cells. Furthermore,
given the nature of the input signal a parallel system is used to opti-
mally process the huge amount of signals received at the millions of
photoreceptors. It is simply not the case that a single neuron processes
all input data but that many neurons do so in parallel, connecting to
varying numbers of input cells. Importantly, the number of neurons
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thought to be carrying out complex processing is far fewer in number
than the size of the input. The neuron function is also assumed to
largely be independent of most other neurons, although there may be
some relations with those that are near.

The neural network connections between the input layer l0 and neu-
ron layer l1 take the general idea of random connections into account
so that relatively fewer neurons randomly sub-sample the entire input
space with replacement. The motivation for random variable subsam-
pling is to reduce overfitting by increasing the variance of what each
neuron learns about the input data. The sampling is also carried out
over a lognormal distribution so that smaller subsamples are biased,
making it unlikely that anomalies will contaminate most samples. (It
may be noted that the random subsampling has parallels with the use
of ‘drop out’ in Deep Learning where connections between layers of
neurons are randomly dropped as a method of regularisation.) The
neurons process the input data in parallel and independently of each
other; each learning from its experience of the world. However, the
prediction scores and binary decision are summed up at the output
nodes to summarise the results of each computational unit. This not
only has benefits for anomaly detection over an unordered data set
but also for distributed processing applications.

2. Immediate Intelligence: In early exploration of the visual system the
retina was assumed to be a simple data capturing device that relayed
information to the brain. However, it was demonstrated by the works
of Hartline [11], Kuffler [15], Barlow [2] and especially that of Lettvin
et al. [16], that the retina was already doing something intelligent.
Barlow discovered that the eye provides the brain with information
that is already, to a degree, organised and interpreted, instead of sim-
ply transmitting an image. While Lettvin’s works suggested that a
large part of the sensory machinery involved in a frog’s feeding re-
sponse may actually reside in the retina, with ganglion cells presumed
to be simple ‘feature detectors’ that responded immediately, quickly
and reliably to certain stimuli related to the organism’s environment.
Thus, rather than the cells and neurons in the retina acting as conduits
for the light stimuli, individual neurons perform intelligent operations
and early visual processing is simply not just a mapping to higher
regions in the brain that are less accessible.

Inspired by some of the properties of ganglion cells the neurons in the
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l1 layer perform computations that are not just a simple summation of
values and thresholding with a non-linear activation function. Instead,
intelligent decision making is already being carried out straightaway
on the input values to decide which are considered meaningful (anoma-
lies) parameter-free and without supervision. Indeed, each neuron first
performs local anomaly detection using only its subsample to eject
anomalies, and the learning is then carried out over the data that re-
main. The intention of such processing is to remove contaminants from
the learning process. The neuron computations (initialisation, learn-
ing and prediction) are carried out on the immediate signal received
and in real-time (no costly comparisons are carried out or the building
of partition trees). Furthermore, viewing the individual neurons as
simple but powerful computational units that act on the immediate
signals received, and which work as quasi-independent units that each
gather little pieces of evidence from small experiments to be combined
by subsequent nodes, opens the door to consider more biologically in-
spired and plausible computational models of early sensory processing.

3. Sparsity of activation and contrast invariance: In 1961, Barlow [3]
wrote a seminal article where he asked what the computational aims of
the visual system are. He concluded that one of the main aims of visual
processing is the reduction of redundancy. While the brightnesses
of neighbouring points in images are usually very similar, the retina
reduces this redundancy. Single neurons are regarded as the prime
movers of these mechanisms with activities of neurons conjectured to
quite simply be thought processes. His work was thus central to the
field of statistics of natural scenes that relates the statistics of images
of real world scenes to the properties of the nervous system. The
study of neurons in the retina have shown that it is not the actual
intensity values—corresponding to the number of photons arriving at
the photoreceptors—that are important, but rather the specific and
sparsely occurring contrasted patterns such as points, lines, bars and
edges. Indeed, cells have been found to continue to respond to the
same trigger feature in spite of changes in light intensity over many
decades of investigations. Light is the agent, but it is the detailed
pattern of light that carries the information—the overall illumination
level is disregarded [19].

Sparse coding is a natural consequence of building a neural network us-
ing the perception algorithm as individual components. Each neuron
only fires sparsely in that there must be rarely occurring observations
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in its input subsample. Furthermore, the output nodes that sum up
the signals also have a sparse representation in that the continuous val-
ued sums and the binary value sums are rarely positive to indicate an
anomaly. The network calculations also adhere to Wertheimer’s princi-
ple of contrast invariance which states that the actual grey level values
of an image are not important, rather it is the difference in intensity
values that carries the essential information; and this is sparsely occur-
ring in its nature. Thus, the network will continue to largely respond
with the same output to the same essence of its stimulus regardless of
the overall variation in the intensity of values calculated at the input
layer.

4. Activation under noise or constant stimuli: Humans do not perceive
structure or meaning in randomly distributed signals or where there is
uniformity in value according to the Helmholtz principle. An example
of the former is an ever changing uniformly random noise image of
black and white pixels where it is not expected that a subject would
perceive anything meaningful or be able to recall an image with clarity.
An example of the latter is an image simply of one intensity or colour
(although in this case it could be argued that a grouping of pixel inten-
sities or colour is observed no further perception occurs). The neural
network, and indeed the neuron models are designed such that they do
not fire any excitatory outputs for such random or uniform input and
this corresponds to the network not transmitting information to sub-
sequent processes when patterns of data of relevance are not observed.
The network perceives no meaningful structure that corresponds to
unexpected observations and hence does not flag any as anomalies.

5. Mass Action, Equipotentiality and Redundancy: In neuroscience, the
Mass Action principle suggests that the proportion of the brain that
is injured is directly proportional to the decreased efficiency and abil-
ity of the processing. The related principle of Equipotentiality on the
other hand suggests the apparent capacity of any functional part of
the brain to carry out the functions which are lost by the destruc-
tion of other parts. Although areas of specific functionality have been
found in the brain, this still may hold true within regions or for certain
aspects of cognition. This suggests a universal algorithm or process
amongst all or specific parts of the brain. In light of these principles it
is interesting to note that the neural network is not reliant on any sin-
gle node or pathway, rather its computations are distributed and the
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network is equally affected on average by any portion of neurons fail-
ing. This ensures that the parallel processing can continue to perform
anomaly detection unto a gradual or critical breakdown of neurons
and connections. Furthermore, in both the biological and distributed
computing sense it also enables regeneration or replacement of failing
nodes while the network continues to perform—with new neurons and
nodes effectively taking over the roles. While this redundancy and
resiliency may appear irrelevant to our model calculations on a single
computing device, it is built into the network naturally so that for
any distributed models or applications where there can be a loss of
nodes, connections or the signal itself, the network can still continue
to achieve its global task. Indeed, new nodes can be co-opted to per-
form the computations since each is essentially carrying out the same
function but over different subsamples of the input data.

5 Experimental Results

This section provides results of the neural network against the percep-
tion algorithm [21], the brilliantly performing isolation forest algorithm [17]
(sklearn implementation [23]), and the fast HBOS algorithm [8] (pyod im-
plementation [30]). All algorithms are used with their default parameters
and the experiments are carried out on a set of publicly available data sets
provided by Rayana [26] and Pozzolo et al. [24]; the names and proper-
ties are shown in Table 1. The chosen metric is the AUC-score due to its
widespread use in evaluation and because it corresponds to how well anoma-
lies are ranked at the top of a list (which is thought to be beneficial to end
users). It is important to note however that this is not necessarily the best
or most appropriate way to measure algorithm performance. Indeed, better
methods need to be investigated in future. For additional comparison the
F1-scores are also provided as a summary of the decision boundary result-
ing in precision and recall scores. The runtime is also given because it is
an important factor in many applications and for usability. The results are
shown in Tables 2, 3 and 4 with the best performing algorithm for a given
data set highlighted in bold.

The results clearly demonstrate the improvement—often significant—in
the AUC-scores achieved by the neural network over the single neuron model
(original perception algorithm) on almost all the data sets. The performance
is however similar to the isolation forest algorithm and HBOS. In the case
of the F1-scores however, the perception algorithm performs generally the
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Name # examples # features % anomalies

pima 768 8 34.90
credit-card 284807 29 0.17
cardio 1831 21 9.61
shuttle 49097 9 7.15
musk 3062 166 3.17
http 567498 3 0.39
smtp 95156 3 0.03
thyroid 3772 6 2.47
lympho 148 18 4.05
wbc 378 30 5.56
mammography 11183 6 2.32
glass 214 9 4.21
satimage-2 5803 36 1.22

Table 1: Names and properties of data sets selected for experiments that
show the varying numbers of examples, features and percentages of anoma-
lies.

best and often times by a considerable margin over the other algorithms.
It gives a better decision boundary that balances the precision and recall
scores better. The neural network—although it gives a higher recall than
the perception algorithm—its precision is overly poorer which results in an
overall lower F1-score. This aspect of the neural network requires improve-
ment. Regarding the speed of the algorithms, the perception algorithm is
usually fastest but similar to HBOS. However, the neural network takes con-
siderably more time than both of these, but faster than isolation forest. This
is simply due to running more neuron computations over the data which is
currently done in serial fashion with only some basic python numpy optimi-
sation. However, note that the neural network runs fast for many practical
applications, even when the data set size runs into hundreds of thousands
of examples due to its use of subsampling, and the underlying simplicity of
the neuron computations.
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Dataset HBOS IsolationForest NeuralNetwork Perception

cardio 0.85 0.93 0.92 0.77
credit-card 0.95 0.95 0.95 0.93
glass 0.71 0.71 0.74 0.58
http 0.99 1.0 1.0 1.0
lympho 1.0 1.0 0.99 0.95
mammography 0.83 0.85 0.89 0.72
musk 1.0 1.0 1.0 1.0
pima 0.71 0.67 0.66 0.57
satimage-2 0.98 0.99 0.97 0.93
shuttle 0.98 1.0 0.99 0.98
smtp 0.8 0.91 0.8 0.8
thyroid 0.95 0.98 0.94 0.86
wbc 0.96 0.94 0.95 0.76

Table 2: AUC-scores. There is a general and significant improvement
achieved by the neural network over the perception algorithm. However,
the results of the network against Isolation Forest and HBOS are largely
similar.

Dataset HBOS IsolationForest NeuralNetwork Perception

cardio 0.451 0.524 0.626 0.455
credit-card 0.03 0.078 0.031 0.061
glass 0.065 0.125 0.065 0.095
http 0.097 0.074 0.11 0.26
lympho 0.571 0.197 0.545 0.714
mammography 0.142 0.171 0.242 0.305
musk 0.48 0.52 0.919 0.942
pima 0.325 0.319 0.249 0.125
satimage-2 0.202 0.202 0.312 0.487
shuttle 0.798 0.761 0.527 0.931
smtp 0.005 0.004 0.008 0.012
thyroid 0.323 0.382 0.302 0.362
wbc 0.542 0.536 0.405 0.56

Table 3: F1-scores. The neural network has generally poorer F1-scores than
the perception algorithm. This aspect of the network requires improvement
where although it achieves higher recall in general than the perception al-
gorithm, its precision is much lower, resulting in a lower F1-score.
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Dataset HBOS IsolationForest NeuralNetwork Perception

cardio 0.008 0.718 0.299 0.007
credit-card 0.747 23.354 10.405 0.432
glass 0.003 0.169 0.176 0.001
http 0.203 27.128 12.659 0.635
lympho 0.005 0.168 0.175 0.001
mammography 0.013 0.889 0.405 0.015
musk 0.063 1.025 0.653 0.011
pima 0.007 0.414 0.218 0.001
satimage-2 0.021 0.739 0.492 0.008
shuttle 0.05 4.603 1.127 0.063
smtp 0.036 4.868 1.923 0.111
thyroid 0.007 0.630 0.310 0.009
wbc 0.011 0.535 0.261 0.001

Table 4: The total initialisation, training and prediction runtime in seconds
by the anomaly detection methods. The perception algorithm and HBOS
complete fast. The neural network (and isolation forest) is slower by com-
parison but would benefit from a parallelised implementation.

6 Conclusion

The present work establishes practical connections between the approach
taken by the anomaly detection algorithm of Mohammad [21], and prior
decades of research in neurophysiology and computational neuroscience.
The algorithm is conceptualised as a neuron model that receives indica-
tor streams at each of its receptor nodes which are summed over a unit
time interval akin to counting photons by photoreceptors in the retina. The
neuron learns a model of the world that it experiences and outputs scores
and decisions for each of its inputs indicating whether they are anomalous
or normal. The neuron performs a non-linear function for each of its inputs,
is fast to compute, responds only to contrast, computes on immediate in-
put in discrete time intervals, has adaptive thresholds, is parameter-free, is
an internally reliable component, is stable in the presence of external noise
and activates sparsely. Stacks of such computational units are constructed
together to form a uni-directional neural network showing how anomaly
detection over unordered data can be carried out as parallel neural compu-
tations. The neural network is practically parameter-free and processes in
parallel units that can learn independently and fire in the presence of rarely
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occurring unusual values. It has properties of redundancy and global degra-
dation, and robustness to data extremities that can mask lesser anomalies.
The network also demonstrates that only random variable subsamples of
the input data is required for accurate anomaly detection according to the
AUC-score metric. The network contrasts with the plethora of autoencoders
applied to anomaly detection where it operates in an unsupervised manner
without feedback learning from the outputs, is parameter-free and without
specification of thresholds. For larger data sets an important observation (as
has been similarly pointed out by Liu et al. [17]) is that all the data is not
necessary to be used for optimal or satisfactory performance. Rather, for
point anomaly detection only an approximately constant number of samples
is required provided the random subsamples are taken over the entire data
set.

The empirical results on a wide range of data sets are encouraging.
This first neural network extended simply for multidimensional data, has
a marked increase in AUC-score over the single neuron model (perception
algorithm) and is competitive against the isolation forest and HBOS algo-
rithms. However, its decision thresholds result in poorer F1-scores in general
over the perception algorithm, where there is often high recall but low pre-
cision. Hence for making automated thresholded decisions the perception
algorithm performs better, but the neural network provides better ranking.
An end user using the results of these methods could choose one over the
other depending on his requirements, or even take the best of both. Future
work will aim at improving the neural network decision boundary. Further-
more, although the empirical results of the network on anomaly detection
problems are promising a thorough evaluation on real-world production data
is still required. I believe that real naturally occurring anomaly detection
data sets will differentiate algorithm performance the best. With regards
to speed the neural network is significantly slower than the perception algo-
rithm due to the additional subsampling, computational units and connec-
tions. However, the parallel nature of the network construction signals the
potential of implementing it in parallel computing architectures and thus
improving the speed.

This neural network has taken inspiration from visual processes, and
having conceptualised the perception algorithm as computational neurons
and applied the network to the problem of anomaly detection over unordered
data, the path to consider real-world signals such as those experienced by the
human retina has been opened. Indeed, it will be intriguing to investigate the
spatial organisation of the modifiable units and connections for the detection
of low level features of visual scenes and other sense modalities—all with
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anomaly detection as the primary functional aim.
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