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Abstract

We propose a novel approach for face tracking, resulting in a visual feedback loop: instead of trying to adapt a more or

less realistic arti"cial face model to an individual, we construct from precise range data a speci"c texture and wireframe face

model, whose realism allows the analysis and synthesis modules to visually cooperate in the image plane, by directly using

2D patterns synthesized by the face model. Unlike other feedback loops found in the literature, we do not explicitly handle

the 3D complex geometric data of the face model, to make real-time manipulations possible. Our main contribution is

a complete face tracking and pose estimation framework, with few assumptions about the face rigid motion (allowing large

rotations out of the image plane), and without marks or makeup on the user's face. Our framework feeds the feature-

tracking procedure with synthesized facial patterns, controlled by an extended Kalman "lter. Within this framework, we

present original and e$cient geometric and photometric modelling techniques, and a reformulation of a block-matching

algorithm to make it match synthesized patterns with real images, and avoid background areas during the matching. We

also o!er some numerical evaluations, assessing the validity of our algorithms, and new developments in the context of

facial animation. Our face-tracking algorithm may be used to recover the 3D position and orientation of a real face and

generate a MPEG-4 animation stream to reproduce the rigid motion of the face with a synthetic face model. It may also

serve as a pre-processing step for further facial expression analysis algorithms, since it locates the position of the facial

features in the image plane, and gives precise 3D information to take into account the possible coupling between pose and

expressions of the analysed facial images. ( 2001 Elsevier Science B.V. All rights reserved.
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1. Context

1.1. Facial animation in MPEG-4

Facial animation is currently a hot topic for the MPEG-4 standard [29], which created the Syn-

thetic/Natural Hybrid Coding (SNHC) working group [26] to mix real and computer-generated objects for
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the reproduction of real-world scenes. MPEG-4 proposes the use of a synthetic face model in a wide range of

applications, from virtual actors, video games, human}machine communication, story tellers on demand,

multimedia interactive environments, video-telephony and, as in the context of this work, virtual conferenc-

ing [17,19,28,38,40]. Facial animations are controlled by face animation parameters (FAP), which manipu-

late the displacements and angles of the face's features.

MPEG-4 de"nes a stream syntax and a decoder for the synthetic face model, but does not provide or

impose any technique for obtaining the stream of facial animations, which is where many contributions are

still possible. For example, it allows the use of text-to-speech systems for automated talking heads, or

hand-de"ned animations. However, animating a face model given the performance of a real actor or user

( face cloning), although it is an unsolved problem, remains a major issue, and could ensure the acceptance

and success of future services based on this standard.

The main contribution of this paper is a rigid motion estimation algorithm of a face in a video sequence,

that achieves near real-time performance, without any constraint on the user (no markers or makeup,

unknown lighting and no speci"c background), allowing large rotations of the head. O%ine, our framework

can be used to generate precise orientation parameters for a MPEG-4 animation stream (FAP 48 to 50),

regardless of the method used to obtain the other FAPs, be it from speech, text and hand. It can be used, for

instance, in conjunction with other algorithms extracting facial expressions from images, or the animation

rules of automated talking heads to obtain head motions with life-like timings (timings that happen to be

di$cult to obtain with key-frame animation systems by hand, even for animation experts). Online, apart from

MPEG-4 systems, it can also be integrated in a virtual teleconferencing system, recovering the head pose

during the session.

1.2. Face-cloning for virtual teleconferencing

Face-cloning techniques are particularly useful for virtual teleconferencing systems, which is the context of

this work [10]: the key idea is to provide the participants with a common meeting space as if they were all

sitting in the same physical room, and to o!er them individual points of view, in accordance with the virtual

position they occupy in the meeting space. In addition to more #exible visualization possibilities, such as the

scene restitution from di!erent points of view [15], the model-based aspect of face cloning allows the meeting

to be run over low bit-rate networks, such as the Internet, or mobile networks. However, due to the 3D and

interactive nature of the system, several constraints must be added to the face-cloning algorithm:

f the face analysis and synthesis frame-rates, and the image-processing delays, should be as low as possible;

f the synthetic clones can be rendered from any point of view, and a full 3D model is needed (not only the

frontal part of the face);

f the face cloning system should operate without colored marks taped on the performer's face;

f it should deal with unknown lighting conditions and background;

f the motions and rotations of the user should not be restricted in front of the camera;

f "nally, the clones should be visually realistic.

Several e$cient 2D face-tracking algorithms exist in the literature, such as [14]. Nevertheless, when large

motions are allowed by a face-cloning system, tracking the user's face in the video sequence without

recovering the exact position and orientation of the real face (i.e. its global motion) is pointless, "rstly because

facial expression analysis algorithms need to know the precise location of the facial features in the 2D image,

and secondly because some coupling occurs between the pose and the facial expressions: for instance,

when the performer looks downward with a neutral expression, his mouth shape will change in the image

plane, and the system is likely to misinterpret it as a smile. Being aware of the subject's pose may help

the system solve this coupling. Therefore, 2D face-tracking techniques, like color segmentation, hidden

markov models, deformable templates, FFT, etc. are more suitable for face recognition or lipreading

applications [30].
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Assuming that a face model is available (be it generic or person-dependent), we will now concentrate on the

di!erent image-processing approaches that allow the 3D rigid motion of the user to be estimated, without

any marker, voluntarily omitting 2D-tracking algorithms.

1.3. Face tracking and global motion estimation

One method to estimate the rigid motion of an object is to use some kind of motion information, like the

optical #ow, and interpret it using some shape model, even a simple one. Azarbayejani et al. [3] use feature

point tracking, and project the 2D points onto an ellipsoid to incorporate some 3D information for the rigid

motion estimation. Basu et al. [4] regularize the velocity "eld of the user's face with a 3D ellipsoidal model to

determine the best "t between the position and orientation of the model and the motion of the image pixels.

DeCarlo and Metaxas [8] initialize a polygonal head model on the user's face, and also regularize the optical

#ow in terms of model displacements. Because their model has a shape closer to the real face than the

ellipsoid, their motion estimation is "ner. The main problem with these approaches is that they are `blinda, in

the sense that they have no way to ground the model to the real face, and errors in the estimation accumulate,

resulting in a lack of accuracy or tracking failures.

To prevent cumulative estimation errors, an analysis-by-synthesis feedback loop can be introduced at the

encoder, adding some texture information to the shape of the face model. Koch [21] extracts some texture

from the "rst video frame to be mapped onto a face model. Images are then synthesized from his parametric

scene description, and compared with the original input images of the camera to solve the model's motion.

Li et al. [22] use the CANDIDE model and the texture from the "rst image to iterate the motion estimation

process until the synthesis error becomes satisfactory. The strength of their algorithm is that no costly optical

#ow is computed, instead, they have a direct computation approach, based on an aggregation of data, which

is more robust to noise. Eisert and Girod [13] perform the motion estimation on the optical #ow between the

synthesized image of a realistic textured face model and the real image. In [12], they add an illumination

model to prevent breaking the brightness constancy assumption of their optical #ow computation. Although

these algorithms lead to simple formulations and fewer cumulative errors, interpreting the pixel di!erences or

the pixel velocity "eld can be costly, because of the linearization of the model 3D displacements in the 2D

image frame for each iteration. As a result, they do not claim to be real-time. Moreover, in principle, such

algorithms can deal with self-occlusions due to large rigid motion, and the coupling between the pose and

expression of the real face, but none of them report their ability to track large head rotations.

Another approach is taken by SchoK dl et al. [34]. The "rst image of the face is projected on a generic

polygonal face model, and tracking is achieved by synthesizing the face model, and computing the error with

the real images. The derivative of the error with respect to the motion parameters is mapped to the intensity

gradients in the image, and a steepest descent is iterated until a local minimum of the error is reached. This is

also a costly procedure, because the face model must be rendered at each iteration, and changes of the face

lighting, combined with the lack of precision of the shape of their model, may lead to an incorrect registration

of the synthetic image.

1.4. A novel approach based on visual realism

We noticed that in the literature, none of the face-cloning or face-tracking approaches takes advantage of

the visual realism of their face model to track and/or analyze facial deformations in a more direct manner, as

they all rely on the explicit use of all the geometric information contained in the face model to perform the

motion regularization, even at the penalizing cost implied by the linearization of the motion of the face

vertices in the 2D image plane. We believe that a better alternative to reach near real-time performance, is to

use a realistic face model, let computer graphics hardware translate the information of the 3D shape

(including self-occlusions and changes of lighting) into the 2D image plane, and work only at the image level,
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using little 3D information from the model. Con"rming the idea that a dense motion estimation is not

necessary, Jebara and Pentland [18] track a few facial features, which are extracted from the "rst video frame,

with correlation-based trackers, and a Kalman "lter estimates the 3D motion and structure of the facial

feature points. Their system works in real-time, and allows large head rotations. Because they do not have

a face model, their algorithm cannot model self-occlusions or changes of lighting due to the face pose,

resulting sometimes in incorrect registrations. To overcome these limitations, we propose to update the

tracked patterns with synthesized images of the facial feature.

Therefore, we introduce a novel approach for a visual feedback loop, making the analysis and synthesis

modules cooperate only at the image level, without explicitly handling the 3D geometric components of the face

model within the loop. Our point in this paper is to provide key elements on the advances permitted by such

a feedback, in particular to show how a realistic and precise face model, along with appropriate photometric

modelling techniques, can be used to robustly track a real face, and accurately recover its rigid motion, with an

uncalibrated camera, no markers, unknown lighting conditions, and a non-uniform background.

Section 2 outlines our rigid motion estimation algorithm, as shown in Fig. 1. The next sections describe the

technical issues that allow our analysis/synthesis cooperation in the image plane. In Section 3, we present

a reconstruction technique that creates realistic face geometric models suitable for real-time synthesis.

Section 4 introduces a novel and e$cient 3D illumination compensation algorithm while Section 5 details the

extended Kalman "lter that drives the feedback loop. Section 6 describes the reformulation of the block-

matching algorithm to track synthetic patterns in real images, including the robustness to the speaker's

background. We discuss in Section 7 the performance of our face-tracking algorithm on a synthetic sequence.

Finally, the local animation possibilities of our models are given as perspectives in Section 8, as we are

working on the extraction of facial expression parameters from images, still using the visual appearance of

our face model.

2. Outline of the tracking algorithm

We have developed a face tracking and pose determination system which relies heavily on the cooperation

between analysis and synthesis techniques in the image plane. The algorithm can be outlined as follows (see

Fig. 1, where the next numbered steps are reported):

Initialization:

(a) the user aligns his/her head with the head model, or modi"es the initial pose parameters to align the head

model with his head. This "rst alignment obviously requires some user intervention, but it has to be

performed only once per session, and we do not consider it as a major issue at the moment. Indeed, some

publications have proposed interesting automatic solutions, such as frame-"tting [1,2], or eigenfeatures

[18];

(b) when completed, a 3D illumination compensation algorithm is run, to estimate the lighting parameters

that will reduce the photometric di!erences between the synthetic face model and the real face in the

user's environment;

Main loop:

(i) a Kalman "lter predicts the head 3D position and orientation for time t;

(ii) the synthetic face model is used to generate an approximation of the way the real face will appear in the

video frame at time t; this approximation includes both geometric distortions, scales and shaded lighting

due to the speaker's pose; the black background of this rendering is used by the encoder as visual clues

about the location of the unknown environment with respect to the face facial features, and it will not be

used for the 3D parameters restitution;
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Fig. 1. System overview: initialization, and face-tracking loop } the numbered items (a), (b) and (i)}(vi) are detailed in Section 2.

(iii) patterns are extracted from the synthesized image, representing contrasted facial features (like the eyes,

eyebrows, mouth corners, nostrils);

(iv) a di!erential block-matching algorithm matches these patterns with the user's facial features in the real

video frame;

(v) the 2D coordinates of the found positions are given to the Kalman "lter, which estimates the current

head 3D position and orientation;

(vi) "nally, the "ltered parameters are quanti"ed, compressed and streamed to the visualization entities, and

the rigid motion of the face is recomposed by a decoder, possibly from a di!erent point of view and a new

background, or even using a totally di!erent face model.
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The strength of the visual feedback loop is that it implicitly takes into account the changes of scale, geometry,

lighting and background with almost no overload for the feature-matching algorithm: due to the synthesis

module that performs a 3D illumination compensation scheme, the synthesized patterns will predict the

geometric deformations, the lighting and the background of the user's facial features, making the di!erential

block-matching pass more robust. This enhanced analysis/synthesis cooperation results in a stable face-

tracking framework without arti"cial marks highlighting the facial features, supports very large rotations out

of the image plane (see Fig. 11), and even copes with low-contrasting lightings (see the video demo [23]).

It is clear that such a feedback loop is successful because it combines a realistic face model, e$cient lighting

modelling techniques, a carefully designed Kalman "lter to make up for the uncalibrated camera, and

a block-matching algorithm that handles the background interferences during large head rotations. The next

sections will deal with these points in details.

3. Geometric modelling

We are currently using range data obtained from cylindrical geometry Cyberware range "nders [7] to

build person-dependent realistic face models. This part is largely independent from the global motion

tracking algorithm, and in fact, any realistic face model could be integrated in the analysis/synthesis feedback

loop, as long as it is compatible with real-time visualization rates. We should mention here that other

techniques are available in the literature to obtain a textured wireframe, using structured lighting for example

[31]. In the next paragraphs, we will describe a face model construction algorithm from range data, which

provides a high degree of realism while at the same time limitting the number of 3D primitives due to an

interactive re"nement procedure.

3.1. Initial data

Cyberware scanners produce a dense range image with its corresponding color texture (see Fig. 2(a) and

(b)). This dataset is a highly realistic representation of the speaker's face. However, it cannot be used directly

in a face cloning system for several reasons. First, this dataset is very dense (an average of 1.4 million vertices)

and therefore is not well suited for real-time computations. Furthermore, due to the limitation of the

acquisition technology, the dataset is often incomplete and sometimes includes some outliers (as in Fig. 2(a)).

Finally, it is not suitable for local deformation computations: it is just a 3D surface, with no anatomical

knowledge or built-in animations for the facial features.

3.2. Mesh construction

To achieve both visual realism and real-time computation, we need a geometric model with a limited

number of vertices but with enough details in order to distinguish facial features such as the lips or the

eyebrows. We use a reconstruction system based on deformable simplex meshes [9] to build such models.

Unlike classic approaches, those deformable models are handled as discrete meshes, not relying on any

parameterization. Because they are topologically equivalent to triangulations, they can be easily converted as

a set of triangles for display purposes or standard 3D "le formats like VRML [41]. Finally, they can

represent geometric models independently of their topology and they lead to rapid computations.

The di!erent stages of construction from a Cyberware dataset, where the hair information is missing and

with some outliers, are shown in Fig. 2. The deformable model is initialized as a sphere (Fig. 2(b)) and then

deformed to roughly approximate the face geometry (Fig. 2(c)). The last stage consists in re"ning the mesh

model based on the distance between the range image and the surface curvature (Fig. 2(d)), by selecting the

areas where more modelling precision is desired.

590 S. Valente, J.-L. Dugelay / Signal Processing: Image Communication 16 (2001) 585}608



Fig. 2. Reconstruction of a geometric model from a Cyberware dataset: (a) initial range data; (b) initialization; (c) main deformation;

(d) mesh re"nement } we have interactively selected the areas of interest (chin, ears, nose, lips) where the re"nements are performed. The

resulting mesh has 2084 vertices.

The face model is then texture-mapped by computing for each vertex of the simplex mesh, its (u, v)

coordinates in the range texture image. Since the deformation of each vertex requires the computation of its

closest point in the range image, we simply use the texture coordinates of the closest point. Where no range

data is available (at the hair level for instance), we project the vertex onto the image plane through

the cylindrical transformation of the Cyberware acquisition. This algorithm therefore produces an accurate

geometric and texture face model, and has to be run only once for a given head model.

Although some authors reported that adapting a generic face model (CANDIDE) is quite feasible [32,37],

we believe that their model could not suit our analysis/synthesis feedback loop due to a low number of

primitives, mainly because it would not provide enough lighting normals, which are crucial for the

illumination compensation procedure, discussed in the next section.

4. Photometric modelling

4.1. Motivation

The goal of photometric modelling is to reduce the photometric discrepancies between the speaker's face in

the real world environment and his synthetic model directly at the 3D level within the visual feedback loop

} otherwise, the block-matching algorithm would constantly fail to match the tracked facial features, because

it assumes that the brightness distribution and the shading of synthetic patterns are close to the real facial

features, which is far from being true by default (see Fig. 4(a) and (b)). This modelling can be seen as an

alternative and elegant technique to other 2D view-based techniques, such as histogram "tting [18]. In [12],

Eisert and Girod propose an algorithm to recover the 3D position and intensity of a single in"nite light

source from a static view assuming an initial guess of the position prior to the motion estimation. Bozdagy i

et al. [6] have a more complex approach that determines the mean illumination direction and surface albedo

to be included in their optical yow equation for motion estimation. Both approaches are based on

a Lambertian illumination model (i.e. composed of ambient and di!use lighting) without specular re#ections

and cast shadows. However, in the real world, cast shadows, and specular highlights (if the user does not have

make-up), are likely to occur on a face, and will be di$cult to compensate using only a single light as in the

previous algorithms.
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In [5], Belhumeur and Kriegmann derive that the set of images of a convex Lambertian object under all

possible lighting conditions is a cone, which can be constructed from three properly chosen images, and

empirically show that cast shadows and specular re#ections generally do not damage the conic aspect of

the set.

Motivated by the reconstruction possibility of an arbitrary illuminated view from several object images, we

propose to recover the face illumination from a single speaker's view by using a set of light sources at di!erent

in"nite positions. The main advantage of our algorithm is that it can rely on graphics hardware acceleration

and compensate unknown light sources with ambient, di!use and specular components at the 3D level in

real-time. A similar idea, applied to interior design, can be found in [35], where the scene's global lighting is

computed from the illumination of some objects painted by hand by the scene designer. In our algorithm,

the synthetic scene lighting is adjusted by observing the illumination of the facial features in their real

environment.

4.2. Proposed algorithm

We propose to adopt the following general lighting model, including ambient, di!use and specular

re#ections induced by N independent in"nite light sources for a 3D textured primitive, with an additional

degree of freedom (a luminance o!set ¸
0&&4%5

, which will be justi"ed in Section 4.5):

¸
3%!-

"¸
0&&4%5

#¸
5%9563%

]AA#
i/N~1

+
i/0

[(maxMl
i
) n, 0N)D

i
#(maxMs

i
) n, 0N)4)*/*/%44]S

i
]B , (1)

where ¸
3%!-

denotes the luminance of a pixel in the real image, ¸
5%9563%

the corresponding texture luminance of

the face model, A the global ambient light intensity, D
i
and S

i
the di!use and specular intensity for the ith

light, n and l
i
the object normal and the ith light source direction, s

i
the normalized bisector between the ith

light source direction and the viewing direction, and "nally `shininessa, the specular exponent controlling the

size and brightness of specular highlights.

One can readily verify that the rendered image pixels values in Eq. (1) are linear with respect to the

components of the light sources. All the unknowns (the light source intensities, and the luminance o!set if

needed) can be estimated by a simple least mean square inversion for all the face pixels. Our algorithm thus

consists of the following steps:

f manually align the synthetic model with the speaker's image;

f extract, from the real speaker's image, pixel luminance values around the facial features of interest.

Over-bright pixels are discarded to avoid areas where the camera sensor might have saturated (the

luminance of such pixels would not depend linearly on the contributions of the light sources);

f extract, from the synthetic image, the corresponding texture luminance values ¸
5%9563%

and object lighting

normals n;

f the intensities A, D
i
, S

i
and the o!set ¸

0&&4%5
are "nally estimated by solving Eq. (1) in the least mean square

sense.

4.3. Numerical evaluation on synthetic images

To validate the assumption that unknown light sources can be compensated by a set of lights at prede"ned

positions, we conducted experiments on synthetic images in order to avoid problems of misalignment

between a face model and an unknown image. To that extent, four images of the same model were created

respectively with a left di!use illumination (3(a)), an ambient and left di!use lighting (Fig. 3(b)), ambient, left

di!use and specular components (3(c)), and ambient, di!use and specular illuminations from two di!erent

light sources (3(d)).
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Fig. 3. The synthetic test images used in the validation experiments presented in Table 1. The reconstructed images are not displayed

since no signi"cant di!erences are visible } (a) left di!use illumination; (b) ambient and left di!use lighting; (c) ambient, left di!use and

specular lighting; (d) ambient, di!use and specular components from two light sources.

With these images, we performed two di!erent experiments, A and B:

(A) we compensated the face illumination with lights located at the same positions as the sources used to

synthesize the images, enabling and disabling the luminance degree of freedom of Eq. (1). Such

experiments can point out numerical di!erences between the lighting model of Eq. (1), implemented by

#oating point computations in our software, and the OpenGL lighting operations [27], implemented by

dedicated hardware;

(B) we then tried to measure the quality of the compensation using light sources that are at completely

diwerent locations from the original ones, to evaluate how well unknown light sources can be simulated

by lights at arbitrary positions: we compensated for the face illumination with all the light sources on

except the ones used for the image creation (our software has seven prede"ned lights, namely top,

bottom, left, right, and three lights around the camera).

Table 1 presents the mean error and the root of the mean square error around the model facial features. The

conclusion is twofold:

f with synthetic lights at the right positions, experiments A prove that numerical errors are marginal (but

exist) in the algorithm, and that Eq. (1) can be correctly implemented by OpenGL;

f experiments B suggest that it is fairly reasonable to expect to compensate for ambient, di!use and specular

re#ections of unknown intensities and unknown directions by a limited set of lights at prede"ned locations,

without trying to recover the lighting directions.

4.4. Experimental results on real images

Fig. 4 shows the illumination compensation for a real world case. It is clear that without the compensation

(Fig. 4(a)), it would become di$cult for a block-matching algorithm to match the synthetic facial features

S. Valente, J.-L. Dugelay / Signal Processing: Image Communication 16 (2001) 585}608 593



Table 1

Illumination compensation errors (root of mean square error and mean error in brackets) on synthetic images, for experiments

A (compensation using the same lighting directions as the original image) and B (compensation using all except the same lighting

directions as the original image)

Synthetic images Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

Without compensation 77.66 [74.25] 87.31 [79.92] 86.79 [78.84] 44.27 [36.21]

Exp. A: lights at known positions 0.24 [0.06] 0.15 [!0.02] 0.15 [!0.02] 0.36 [0.00]

Exp. B: lights at unknown positions 0.30 [0.02] 4.12 [!0.20] 3.58 [!0.43] 3.56 [!0.14]

Fig. 4. Illumination compensation on a real face: (a) the speaker's head model with no directional light source; (b) the speaker in a real

environment; and the same model with illumination compensation ((c) with and (d) without the illumination o!set ¸
0&&4%5

).

with the real ones (Fig. 4(b)), not only because of the low brightness of the real image, but also because of the

shading of the face.

Table 2 displays the numerical errors, before and after the compensation. Our algorithm greatly minimizes

the gap between the synthetic and real images (Fig. 4(c) and (b)) by reducing the root of the mean square error

by a factor of 6.7, although the enhancements are not as good as for the experiments on synthetic images

only. We believe that this is mainly due to the misalignment between the face and the synthetic model, which

cannot be perfectly matched `by handa, to the uncalibrated acquisition camera, which does not realize the

same perfect perspective projection as the one implemented in our synthesis module, and "nally to the

texture map of the face model: this texture map should actually correspond to the user's face viewed in

ambient lighting, but the scanning device has built-in bright light sources which create parasitic di!use and

specular re#ections on the user's face during the texture acquisition. These unpredictible di!erences are the

reason why the brightness o!set ¸
0&&4%5

was introduced in Eq. (1).
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Table 2

Illumination compensation error (root of mean square error and mean error in brackets) between a real and synthetic image

Real image (Fig. 4(b))

Without compensation (Fig. 4(a)) 62.42 [51.40]

With compensation (Fig. 4(c)) 9.31 [!0.02]

Table 3

Illumination compensation errors (root of mean square error and mean error in brackets) on synthetic images, without using the

illumination o!set. These results should be compared to Table 1

Synthetic images Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

No compensation 77.66 [74.25] 87.31 [79.92] 86.79 [78.84] 44.27 [36.21]

Exp. A: known positions, without ¸
0&&4%5

0.11 [!0.01] 0.09 [!0.01] 0.09 [!0.01] 0.36 [!0.04]

Exp. B: unknown positions, without ¸
0&&4%5

0.39 [0.15] 4.12 [0.04] 3.56 [!0.02] 3.55 [!0.02]

Table 4

Illumination compensation error (root of mean square error and mean error in brackets) between a real and synthetic image, without the

illumination o!set. These results should be compared to Table 2

Real image (Fig. 4(b))

Without compensation (Fig. 4(a)) 62.42 [51.40]

With compensation, no ¸
0&&4%5

(Fig. 4(d)) 15.12 [!3.98]

4.5. Justixcation of ¸
0&&4%5

We removed the term ¸
0&&4%5

from the lighting model, and reran the compensation algorithm. In Table 3,

we see that removing the o!set does not bring any signi"cant degradation of the error on synthetic images,

which means that Eq. (1) without ¸
0&&4%5

corresponds to the lighting operations made by OpenGL to render

the synthetic test images.

However, for the compensation on a real image, removing ¸
0&&4%5

introduces a higher error (see Table 4),

which can be seen in Fig. 4(d), leading to a face model more constrasted than the real face. In this case, the

root of the mean square error is only reduced by a factor of 4.1. ¸
0&&4%5

is therefore an appropriate degree of

freedom, which can be seen as an additional compensation for a di!erence in mean illumination level between

the real and synthetic views, making up for the non-ambient texture of the face model and imprecisions due

to the face model's misalignment and the uncalibrated camera.

4.6. Concluding remarks about the illumination compensation

We do not claim that the proposed algorithm recovers the exact illumination of the scene, but it helps

smooth out the photometric discrepancies around the facial features (not the whole face) between the

feedback loop and the video input. Fig. 4 shows that the distributions of dark and bright areas on the real and

synthetic views are coherent. The main advantage of our algorithm is that the estimated lighting intensities

can be directly injected at the 3D level within the face synthesis module, taking advantage of hardware

accelerations that are more and more common on entry-level graphics boards. Furthermore, the lighting
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2OpenGL can perfectly deal with negative lights.

parameters estimation is straightforward and not CPU-demanding, since it does not need to be constrained

to output positive light intensities.2

To set up the light positions in practice, we found a convenient solution by de"ning an interface where the

user can switch on and o! various light sources at prede"ned positions like the ceiling, the camera, on the left

and right hand side2 according to his/her environment. As a conclusion, even if it requires some user

intervention, we do not think it damages the face-tracking system usability, since it has to be done only once

at the beginning of the session. Furthermore, it contributes to the realism of the model (with respect to the

speaker's real view), and therefore makes the tracking of real facial features from synthetic patterns by

di!erential block-matching feasible, as described in the next sections.

5. Kalman 5lter

Kalman "lters [20] are often used in head tracking systems for two di!erent purposes: the "rst one is to

temporally smooth out the estimated head global parameters, as in [33], the second one is to convert the 2D

facial features positions observations into 3D estimates and predictions of the head position and orientation

[3]. In our application, the Kalman "lter is the central node of our face-tracking system, since it has three

di!erent objectives: it recovers the head global position and orientation, it predicts the 2D positions of the

feature points for the block-matching algorithm, and } this point is new } it makes the synthesized model

have the same scale, position and orientation as the speaker's face in the real view, despite the acquisition by

an uncalibrated camera.

5.1. Extended Kalman xltering theory

Let us "rst de"ne a few notations. What we want to estimate is the state vector W
t
of a system at time t.

W
t
cannot be measured directly. Instead, we have access to measurements s

t
that depend non-linearly on the

state vector by the relation s
t
"h(W

t
), and we have a general idea about the evolution of the system by

W
t`1

"a(W
t
). To re#ect the uncertainty of the observations and the dynamic evolution of the system, two

Gaussian white noises are introduced, denoted *
t
and w

t
, of covariance matrices R and Q, and we have the

system observation and evolution equations:

s
t
"h(W

t
)#*

t
, W

t`1
"a(W

t
)#w

t
. (2)

The measurement and evolution functions are linearized respectively around the a priori estimate W
t@t~1

and

the a posteriori estimate W
t@t

with

h(W
t
)+h(W

t@t~1
)#H

t
(W

t
!W

t@t~1
), a(W

t
)+a(W

t@t
)#A

t
(W

t
!W

t@t
), (3)

by denoting H
t
"(Lh/LW)DW

t/W
t@t~1

and A
t
"(La/LW)DW

t/W
t@t
, the Jacobians of the measurement model and of

the dynamic model. After some matrix manipulations, the a posteriori estimates and their error covariance
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matrices P
t@t

are given by the "ltering equations:

K
t
"P

t@t~1
HT

t
(R#H

t
P
t@t~1

HT
t
)~1,

W
t@t

"W
t@t~1

#K
t
(s
t
!h(W

t@t~1
)),

P
t@t

"(I!K
t
H

t
)P

t@t~1
,

(4)

and the a priori estimates with their error covariance matrices P
t`1@t

by the prediction equations:

W
t`1@t

"a(W
t@t

), P
t`1@t

"A
t
P
t@t

AT
t
#Q. (5)

5.2. Interpretation of the equations

By considering the equations in (4), the "lter produces W
t@t

by rectifying the predicted estimate W
t@t~1

by

the correction term K
t
(s
t
!h(W

t@t~1
)), based on the di!erence between the real observations s

t
and the

predicted ones h(W
t@t~1

). An interesting interpretation of the Kalman "lter behavior is that it iterates to make

the system state vector W
t@t
xt both the observations s

t
and the dynamic evolution model represented by

the equations in (5).

This `di!erential "ttinga interpretation helps to understand why, with a carefully chosen measurement

model, the Kalman "lter is able to align the synthesized images with the speaker's image even though the

video camera is not calibrated: the idea is to derive the observation function from the synthesis operations, so

that s
t
"h(W

t
) is the vector of the 2D positions of the synthetic facial feature points in the image plane. In this

case, W
t

includes the 6 degrees of freedom of the synthetic face in the synthetic world, and the "lter will

modify W
t
to output the 2D positions of the tracked facial features, thus aligning the speaker's face and the

synthetic model.

5.2.1. Dynamic model

The 6 parameters needed to render the synthetic head are

S"(t
X
, t

Y
, t

Z
, a,b, c)T,

representing the 3 translations and the 3 rotations with respect to the X,> and Z axes, and they are included

with their "rst- and second-order time derivatives in the "lter state vector,

W"(ST, SQ T,SQQ T)T,

for the dynamic model of the system evolution, simply based on Newtonian physics under a constant

acceleration assumption,

S
t`$t

"S
t
#SQ

t
dt#1

2
SQQ

t
dt2. (6)

5.2.2. Measurement model

Although the viewing camera is not calibrated, the observation model of the Kalman "lter mimics

a perspective projection of focal length F (see Fig. 5). The actual value of F is not sensitive for the tracking

algorithm, as the Kalman "lter will adapt its state vector computation to "t the observations, as if they had

been viewed by an ideal camera of this focal length.

Considering the rigid transformation applied by the OpenGL library on the 3D facial feature localization

(x, y, z)T in head mesh coordinates, the "nal 2D measurement (x
I
, y

I
)T in the image plane given the parameters
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Fig. 5. Camera analogy for the view model, with P
O

"(X,>,Z, 1)T, and p
I
"(x

I
,y

I
)T"(XF/(F!Z),>F/(F!Z))T (only the

negative part of the Z axis is seen by the camera).

S"(t
X
, t

Y
, t

Z
, a,b, c)T and (x, y, z)T is

A
x
I

y
I
B"A

F

N
(c

b
c
c
x!c

b
s
c
y#s

b
z#t

X
)

F

N
((s

a
s
b
c
c
#c

a
s
c
)x#(!s

a
s
b
s
c
#c

a
c
c
)y!s

a
c
b
z#t

Y
)B , (7)

with N"(!c
a
s
b
c
c
#s

a
s
c
)x#(c

a
s
b
s
c
#s

a
c
c
)y#c

a
c
b
z#t

Z
!F (for clarity reasons, c

a
, s

a
, c

b
, s

b
, c

c
and

s
c
, respectively, stand for cos a, sin a, cos b, sinb, cos c and sin c).

6. Tracking

6.1. Diwerential block-matching

The main complications encountered by a block-matching (or pattern correlation) algorithm are, on the

one hand, the local geometric distortions, scales of facial features and changes of lighting due to the speaker's

3D motions, and on the other hand, the large rotations out of the image plane: in this case, the facial features

might not "t in rectangular blocks, and the reference patterns are matched against portions of other objects

in the background. Both issues are addressed by tracking synthetic facial features in the real speaker's

view, as long as the block-matching procedure is able to allow some photometric di!erences between the

synthetic and real patterns, and to be aware of the background pixels that are likely to interfere in the

correlation score for extreme head poses. Extending the theory presented in [16], we propose that a classic

di!erential block-matching formulation be adapted to be robust to the photometric model failures on

synthesized features in Section 6.1.1, and support non-rectangular patterns and extreme orientations in

Section 6.1.2.

6.1.1. Photometric robustness

The di!erential block-matching algorithm is derived by considering that a reference pattern, denoted

I(l"0, q"0)"(p
1
,2, p

m
)T (all pixels are placed in a column vector), undergoes some perturbations

l"(k
1
,2, k

n
)T (most often displacements in the image, with sub-pixel precision). Writing a Taylor series

expansion for small perturbations between two consecutive frames, we have

I(l, q)+I(0, 0)#Ml#I
t
q , (8)
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3 In practice, the background is drawn in black at the encoder level within the feedback loop, to be easily segmented from the face

regions.

with

M"A
LI

Lk
1

(0, 0) K2K
LI

Lk
n

(0, 0)B and I
t
"

LI

Lt
(0, 0).

Solving for l in the least mean square fashion yields

l"!(M TM)~1M TI
t
, (9)

which may be rewritten by identifying the lines of !(M TM)~1M T as

A
k
1

F

k
n
B"A

r
1

F

r
n
B I

t
. (10)

In Eq. (8), the l perturbations are general enough to represent a local pattern rotation or scaling [11], and to

integrate a luminance scale and o!set perturbation in the case of a photometric model failure for a syn-

thesized feature

A
LI

L
-6.. 4#!-%

(0, 0)"I(0, 0) and
LI

L
-6..0&&4%5

(0, 0)"(1,2, 1)TB.
The luminance o!set degree of freedom de"ned in the photometric model (Eq. (1)) is taken into account, and

need not be explicitly recovered during the matching procedure, since only the translation parameters

k
1
"r

1
I
t
and k

2
"r

2
I
t
are computed from (9) to be given to the Kalman "lter: the only overhead implied by

additional degrees of freedom takes place during the computation of !(M TM)~1M T, but they do not mean

more computations during the iterative estimation of k
1

and k
2
.

6.1.2. Background robustness

Used together, the Kalman "lter and the synthetic patterns can predict the background position near the

participant's facial features due to the 3D pose: in Fig. 6, the synthesized model is rendered on a black

background, which appears in the extracted rectangular nose pattern for this particular head orientation.

The pattern pixels are classi"ed into 2 subsets, I D
F

and I D
B
, whether they belong to the face or to the

background area.3 We restrict the computation of the temporal gradient I
t
in Eq. (10) to I D

F
, so that the

potential background objects in the real view have no impact on the correlation.

Hence, the synthetic patterns are turned into visual clues to match only the potential feature areas in the

real speaker's image, and our tracking algorithm "nds the correct best match despite other objects in the

features neighborhood (see also Fig. 11 for extreme head rotations).

Restricting I
t
in Eq. (10) to the I D

F
pattern subset, we get our modi"ed block-matching algorithm giving the

2D displacement (d
x
, d

y
)T of each feature area:

A
d
x

d
y
B"A

r
x

r
y
BA

g
1

F

g
m
B with G

g
i
"p3%!-

i
!p4:/5)%5*#

i
if p4:/5)%5*#

i
3I D

F
,

g
i
"0 if p4:/5)%5*#

i
3I D

B
.

(11)
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Fig. 6. For this typical rotation, the synthetic background used by the encoder appears in the tracked nose area. As its pixels would lead

to a wrong match in the real image, they are discarded by the tracker for the computation of the temporal gradient I
t
. As a result, the

tracker restricts itself only to the potential face pixels in the video frame, and is able to "nd the right match despite the unknown

background in the real world.

Fig. 7. The 12 facial features used to evaluate the tracking algorithm: (a) feature positions; (b) sizes of the tracked areas } Each eye

represents 2 facial features, once with the eyebrows, and once without them.

7. Numerical evaluation of the global motion tracking

To assess the accuracy of the estimation of the global motion, we ran our algorithm on a synthetic video

sequence, where the parameters to be recovered are known, using 12 tracked areas surrounding the main

facial features, shown in Fig. 7. The face in this sequence oscillates around its initial position, undergoing

respectively 3 translations along the X, > and Z axes, 3 rotations around the same axes, and a combination

of all degrees of freedom (see the video on the web [25]).

This sequence lasts 20 s, at 30 frames per second, for a total amount of 600 frames, and its resolution is

320]242 pixels. To make this evaluation more signi"cant, a background image has been inserted behind the

face model to mimick the real world case shown by Fig. 8. The images were rendered using an ideal

perspective camera, with a focal length of 2. The global motion parameters used to synthesize the face model

were obtained using a polynomial interpolator of third order between 23 keyframes, without enforcing the

constant acceleration assumption of the Kalman "lter. The maximum rotations are depicted in Fig. 9, and

are large enough to verify the behavior of the tracking algorithm when the background is likely to interfere

with the face patterns. Rotations are expressed in degrees, and translations in the face model coordinates: as

the face vertices are scaled in the range [!1, 1], a translation of #3 means a translation of about 1.5 times

the face size.
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Fig. 8. The real-world sequence, which inspired the synthetic sequence of Fig. 9 made to assess the tracking accuracy.

Fig. 9. Maximum amplitude of the parameters used to evaluate the tracking algorithm, with respect to the initial position. The X,> and

Z axes of rotation are local to the head model (i.e. they are not related to the camera).

We plotted the recovered parameters against the true ones for the 600 frames in Fig. 10. It can be seen that

the algorithm successfully recovers the rigid motion of the face in the video sequence, but not surprisingly, the

most di$cult parameters to be recovered are the rotations around the X and > axes, since they lead to

non-a$ne diplacements in the 2D image plane, and are solved by the linearization of the observation model
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Fig. 10. Real and recovered X>Z positions and orientations for the 600 frames.

computed by the Kalman "lter at each frame. One may also notice that the recovered parameters are noisy,

especially when the true parameters do not change. This is due to the Kalman "lter, which does not

su$ciently smooth out the a posteriori estimations. We could have obtained smoother results if we had

incremented the noise level of the observations in the "lter. However, there is always a compromise to be
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Table 5

Statistics about the tracking accuracy on a synthetic test sequence

Max. Abs. Error Mean error Variance 10 log
10

SNR

Translation

/X 0.0681 (frame 510) 0.0231 2.0372]10~4 18.49

/> 0.0421 (frame 444) 0.0147 8.1550]10~5 19.70

/Z 0.4235 (frame 589) !0.0567 3.9956]10~3 30.51

Rotation

/X 3.4551 (frame 445) 0.9130 0.5732 15.43

/> 5.4403 (frame 531) !1.9609 1.5645 12.44

/Z 1.7035 (frame 529) 0.0606 0.2428 25.87

made between the smoothing capability of a Kalman "lter (by decreasing the uncertainty of the predictions),

and its reactivity to new situations (by decreasing the uncertainty of the incoming observations): for instance,

with the noise settings used in this evaluation, it can be seen on the plots that the "lter already tends to

overestimate the parameters after a rapid transition (see frame 500 for the rotation around the > axis on

Fig. 10) whereas the estimates lack some stability (from frame 0 to 300, when no rotation around the > axis

should be detected).

Table 5 contains some statistics about the errors, and the signal to noise ratios (SNR) of the estimated

parameters. They show that the global motion parameters are recovered quite well. The mean error is about

0.5% of the face scale for the translation parameters, and about 1 or 2 degrees for the rotation parameters,

which makes the results quite fair. The largest errors are obtained during or after rapid transitions, indicating

that the prediction model of the Kalman "lter, assuming a constant acceleration, may not be the most

appropriate.

8. Conclusions about the face-tracking algorithm

In the previous sections, we proposed a face-tracking framework which has the possibility to feed the

feature-tracking procedure with synthesized facial patterns, implementing a visual feedback loop, thus solving

the problems of lighting, scale and geometric deformations of the face implied by its rigid motion, with no

explicit manipulation of the 3D geometry of the face model, unlike in other optical #ow-based techniques.

Our face cloning module is designed to work in real-world lighting, with few assumptions about the speaker's

motion (allowing large rotations out of the image plane), and without marks or makeup on the user's face (see

Fig. 11). To that purpose, we presented geometric and photometric modelling techniques to make the

synthesized patterns closer to their real counterparts. We also reformulated a block-matching algorithm to

make it work with synthetic input data, and showed how to handle the presence of the speaker's background

in extreme positions. It is important to note that such an analysis/synthesis cooperation is successful because

of the realism of our modelling techniques, and the design of the Kalman "lter to drive the synthetic images.

Our system is independent of any facial expression estimation algorithm, and can be used to generate

a global animation stream for MPEG-4 encoders with life-like timings, leaving the task of facial expression

animation to other methods.

The result of the tracking algorithm on a real face can be seen in a video sequence available on the WWW

[23]. The original analyzed sequence lasted 30 s, and was captured in a 320]242 resolution at 10 frames per

second. The analysis/synthesis speed mainly depends on the workstation graphics hardware acceleration and
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Fig. 11. Head rotations supported by our face tracking system, needing neither markers nor uniform lighting.

its video acquisition speed. On a O2 SGI workstation, the analysis frame rate using 12 facial feature areas is:

f 1 image per second, when synthesizing patterns, computing the product !(M TM)~1M T, and updating the

Kalman "lter for every frame;

f 10 frames per second, when disabling synthetic pattern calculation for every frame, but still enabling the

Kalman "lter } in this case, large face rotations might cause the system to lose the user's head;

f full frame rate, when disabling both pattern synthesis and the Kalman "lter } the system just tracks

the facial features in 2D, without recovering the head 3D pose, and becomes very sensitive to

rotations.

One of the questions that might be raised about the robustness of the tracking is what happens when the user

closes his eyes, or has a facial expression that di!ers from the static expression of any feature area. In such

a situation, some of the individual trackers may lose their facial feature, but there are enough tracked features

to allow the outliers to be minimized by the Kalman "lter. The prediction of the positions of the features in

the next frame brings the trackers back in the right area until they produce correct matches. It is clear that

the system will be even more robust if it can take into account the user's facial expressions, be they

obtained by image analysis, or other means (like processings on the audio signal to infer the animation of the

mouth).
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Fig. 12. Examples of facial animations: (a) neutral (initial) face model; (b) mesh deformations; (c) displacements of texture coordinates;

(d) texture sliding; (e) texture blending.

8.1. Perspectives: synthesis of facial expressions

Now that we have a robust algorithm to track a human face and estimate its pose, our current work

focuses on the synthesis of facial expressions (local animations), and their analysis by image processing only,

still without any marker.

The face models constructed in Section 3 are unanimated. To e$ciently generate facial expressions, we

implemented several original or well-known animation techniques, operating on the 3D vertices, the texture

coordinates attaching the vertices to the texture image, or the texture image itself:

Mesh deformations: by applying mesh morphing, it is possible to deform the face shape, to close the eyelids

or squeeze the mouth of the face model (see Fig. 12(b));

Displacements of texture coordinates: extending the concept of mesh morphing to texture coordinates

morphing, we can make the texture slide over the face model, without deforming the shape of the 3D

wireframe. This technique is used to animate the eyebrows (Fig. 12(c));

Texture sliding: instead of adding new primitives for each eye-ball, we created holes in the texture image (via

the transparency channel), and two separate textures behind the main one can be displaced to alter the

model's gaze direction (Fig. 12(d));

Texture blending: beside moving some texture portions, it is possible to blend several textures together to

produce a new one, for example to fade expression wrinkles into the model texture at low-cost in terms of

real-time animation, instead of hard-coding them in heavy spline-based meshes (Fig. 12(e)).

All these techniques, of course, can be combined together to produce more complex facial expressions (see

the video sequence [24]). We are now considering porting our displacements of texture coordinates and

texture animations into an existing proprietary MPEG-4 viewer [36], in order to bene"t from the streaming

and networking capabilities of the standard (de"ned by the Digital Media Integration Framework, DMIF),

while respecting the FAP syntax [29] to ensure our face models are MPEG-4 compliant.

8.2. Analysis of facial expressions

In conjunction, we are also investigating an original view-based approach to relate the analysis and the

synthesis of facial expressions: using our realistic face model, we sample the visual space of facial expressions

across various poses, via a set of l vectors containing facial animation parameters. Image patches for the

facial features of interest (like the eyes, eyebrows and the mouth) are extracted, to produce distinct datasets of

training examples. Then, a principal component analysis is performed over those training datasets, to extract

a limited number of images optimally spanning the training space. These images (called eigenfeatures) allow

us to characterize the facial expression of the user's face via a simple correlation mechanism, yielding

a compact k vector. And "nally, a linear estimator will be designed to map the analysis scores k to the face
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Fig. 13. Some analyses of facial expressions: each image of the left column was quanti"ed by some eigenfeatures, giving a k vector.

A linear estimator mapped k to the animation parameters l, which were rendered into the images of the right column.

animation parameters l. The major advantage of this approach is that all degrees of freedom permitted by

the synthetic face can be precisely, automatically and systematically exploited by the training strategy.

Fig. 13 shows some preliminary results concerning the analysis of synthetic facial images using a linear

estimator trained over the responses of the eigenfeatures, which are reported in [39]. We are currently

extending this strategy to the analysis of real facial images.
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