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Abstract

Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However,

the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic

review. Recent work has shown that systematic integration of clinical phenotype data with genotype information

can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive,

analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian

Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype

and variant data into ranked diagnostic alternatives.

Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of

semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface

for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute

phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling

to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that

contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and

algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally

assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to

filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive

approach for disease gene discovery based on patient phenotypes.

Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating

performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported

variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases

with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen,

eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants.

Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by

more effectively utilizing available phenotype information, catalog data, and genomic knowledge.
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Background
Genome-wide technologies, including next-generation

sequencing, have become increasingly affordable, rapid,

and clinically utilized, particularly in comparison to sin-

gle gene screening. These revolutionary advances in data

acquisition have made large-scale genotyping an essen-

tial tool for genetic diagnostics and the identification of

novel deleterious variants potentially contributing to dis-

ease. They hold great promise for the future of molecu-

lar diagnosis and management of patients with genetic

disease [1–6]. Such technologies also provide particular

opportunity for the identification of causes of rare and

orphan diseases, which until recently have suffered from

a lack of computational tools to help bridge clinical gen-

omics and medical phenotyping and to facilitate diag-

nostics [7–10]. Despite the promise of available data, the

scale of variation presents an interpretive challenge: an

individual patient’s genome can have hundreds of rare

and putatively deleterious candidate causal variants [11].

Although in some instances diagnostic conclusions can be

made without extensive interpretation (e.g., aneuploidies

or nonsense variants in disease genes), the presence of nu-

merous potentially deleterious variants typically requires

substantial curation to identify the candidate deleterious

variant(s) that best matches the clinical phenotypes of

the patient in question [1–6, 12, 13]. The goal of inte-

grated diagnostic approaches is to bring together vari-

ant knowledge with clinically ascertained patient

phenotype characteristics to reach the best-informed

diagnostic conclusions (Fig. 1a).

Coincident with the rise of genome-wide data for diag-

nostics has been the development of standards and ca-

talogs for clinical sign-out [14–16]. Much focus has

addressed distinguishing clearly deleterious variants

from other variants with less clear contribution to dis-

ease. Central to these efforts has been the development

of compendia for matching observed variation to well-

vetted disease information [11, 17]. Some variants cata-

loged as “deleterious” can also appear in unaffected indi-

viduals, and therefore additional tools have become

necessary to identify from among the many candidate

variants in affected individuals the specific variants or

variant combinations—such as variant pairs for recessive

disease—that may explain observed phenotypes [18].

Parallel to the development of catalogs and standards

for variant analysis has been the development of system-

atic tools for representing patient information. The Hu-

man Phenotype Ontology (HPO), initially constructed in

2008, is a representation of the features of human dis-

ease and the hierarchical relationships that exist among

them [19]. A key application of this work is The Pheno-

mizer, a software tool for making comparisons of known

diseases to patient phenotypes [20]. This tool uses seman-

tic similarity methods to match patient characteristics, as

represented in the HPO, to the Online Mendelian

Inheritance in Man (OMIM) disease catalog, which is

also mapped to the ontology. The Phenomizer returns

candidates within the differential diagnosis as lists and

tables, with scores representing the quality of the

match [1–6, 20].

The goal of variant prioritization is to construct an

ordered ranking of observed genetic variation. This ob-

jective differs from that of a differential diagnosis, the

fundamental purpose of the Phenomizer. To bridge the

gap between disease rankings and gene or variant rank-

ings, extensions of this initial approach have been devel-

oped and applied to genome-wide diagnostic data. Two

such tools are PhenIX [11, 18, 21] and Phenomantics

[21], which directly leverage the Phenomizer’s semantic

similarity calculation to consider genome-wide genotypic

data. Both PhenIX and Phenomantics match query phe-

notypes to genes by collapsing phenotypes across the

diseases to which a gene’s variants have been associated.

This approach therefore effectively considers hybrid dis-

eases for use in semantic similarity calculations. Such

collapsing may be problematic because it can result in

both overestimation and underestimation of semantic

similarity matches of candidate genes to patient charac-

teristics (Fig. 1b). Furthermore, these disease diagnostic

intermediates are embedded within the computational

scheme and hidden from the user, preventing user-

informed exclusion of ruled-out diseases from diagnostic

consideration.

Phen-Gen [22] is an alternative approach that employs

a Bayesian framework to integrate semantic similarity

calculation with proteomic and variant pathogenicity

data. Although this procedure retains diagnostic inter-

mediates and does not collapse phenotypes across dis-

eases causally linked to variant genes, it still does not

permit additional data input to update or redirect ana-

lysis based on initial results. In addition, this tool is

more computationally intricate than PhenIX because it

recruits protein–protein interaction (PPI) data into its

analytic process. By including the protein interaction

neighborhood in the variant analysis, Phen-Gen relaxes

the distinction between matching a catalog of known

causal variant genes and the more exploratory process of

disease gene discovery. PHIVE is another algorithm that

combines variant pathogenicity scores and catalogs with

phenotype similarity analysis using human and mouse

data to rank variants, while hiPHIVE uses human,

mouse, and other model organism data to do so [23, 24].

Alternatively, eXtasy ranks variants by combining input

phenotype similarity scores with scores computed be-

tween input genotype data and “fused” human and non-

human genomic data, whereas Phevor combines input

phenotype data with data from human and non-human

ontologies to reprioritize externally pre-computed ranks
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[25, 26]. As with Phen-Gen, the inclusion in these analyses

of gene-to-phenotype data from non-human sources may

blur the line between disease gene discovery and clinical

application. Other tools, such as PhenoDB [12, 13, 27] and

PhenoTips [14, 28], facilitate the collection, classification,

analysis, and sharing of clinical indication data, but they do

not provide a phenotypically supported connection to par-

ticular variants detected in individual patients.

Another challenge for computational tools is the inter-

active integration of diagnostic or biomedical expertise

into the variant analysis process. Aside from brief initial

configuration settings, most available tools execute vari-

ant prioritization in a single step starting from initial

user input. Such approaches limit users from exercising

medical judgment to constrain, update, or curate algo-

rithmically determined initial results [17, 18, 21].

We hypothesized that molecular diagnostics could be im-

proved through the application of a transitive prioritization

scheme that links phenotypes to variants through medically

recognized disease intermediates (Fig. 1c). Moreover, we

A B

C

Fig. 1 Integration of phenotype with genotype in clinical diagnostics of genetic disease. a The diagnostic process is informed by both

phenotype and genotype data to arrive at diagnostic conclusions. During the clinical evaluation of patients with suspected genetic disease,

physicians observe phenotypic features, and these can be represented in controlled vocabularies (e.g., Human Phenotype Ontology, HPO),

amenable to subsequent computational analysis. Physicians also request the acquisition of blood or other tissue samples for molecular characterization

of the patient via genome-wide analyses, such as next-generation sequencing. Genotypic analysis provides high-resolution information concerning the

location, type, and zygosity of variants within the patient genome. Integration of these data identifies possible solutions that simultaneously match

both phenotype and genotype of the patient, excluding unlikely diagnostic candidates and improving differential diagnosis. b Our transitive

prioritization approach ranks genes and the variants they harbor against patient phenotype as a function of the discrete disease scores with

which the genes were previously associated. This avoids potential underweighting and corresponding ranking inaccuracies resulting from the

collapsing approach or direct term-to-gene HPO annotations. c We implemented a curatorial and visual transitive closure approach to infer

phenotypic prioritization scores for patient genotype variants. These scores are based on clinical indication similarity scores computed for

diseases in the catalog that are reportedly caused by variants in genes that contain filtered patient variants. When multiple diseases are cataloged to

result from variants in the same gene, we determine the gene’s score by aggregation of the scores of those diseases using an integrative function.

Variants then inherit the scores of the genes in which they are located. The manual curatorial exclusion of diseases or genes from consideration for

diagnosis transitively propagates to eliminate genes and variants from the differential
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hypothesized that by coupling this prioritization to a visual

and interactive user interface, we could better recruit users’

expertise to improve the diagnostic process beyond that of

methods driven by computational algorithms alone. To

pursue this approach, we developed novel web-based

software employing methods from statistical visualization,

software engineering, and semantic similarity analysis. We

assessed our tool using the existing OMIM catalog

mapped to the HPO [19]. We examined the ability of our

scheme to recover known substructures in this catalog—in

particular, its ability to distinguish disease classes as previ-

ously defined by the Human Disease Network (HDN)

[29], as well as the OMIM Phenotypic Series [18, 29, 30].

We then applied our method to exome variant data previ-

ously analyzed by the Baylor Miraca Genetics Laboratory

(BMGL) [31]. Our work demonstrates that the visual

interactive approach is practical and produces results that

closely match those of expert review, while simultaneously

extending the framework of semantic-similarity-based

analysis. We also elaborated this tool with a clearly

separated function for variant discovery driven by se-

mantic similarity methods. Collectively, these ad-

vances represent important contributions in the area

of algorithms and software development for genome-

wide variant analysis.

Methods

Semantic similarity

Semantic similarity is a computational technique that

compares sets of terms within a domain of knowledge.

The technique relies on controlled vocabularies, such as

ontologies, to compute approximate matches between

queries and related vocabulary terms [32]. In the diag-

nostic context of human clinical phenotype analysis,

semantic similarity calculations quantitatively compare

patient phenotype term sets to sets defined by a catalog

of known diseases or syndromes. We used as the sub-

strate for our calculations the HPO mapping of the

OMIM catalog, which provides descriptions of thou-

sands of known genetic diseases and the corresponding

genes in which causative variants have been observed

[20, 30, 33–35].

A variety of semantic scoring methods have been de-

veloped. These scoring methods can be broadly grouped

into two primary categories: (a) scoring approaches that

use the ontological topology alone and (b) approaches

which explicitly depend on catalog annotations to the

ontology. Topology-only scores focus exclusively on the

relationship structures between terms within an ontol-

ogy (e.g., the HPO) [36]. Similarities are determined by

traversing the directed acyclic graph to compute charac-

teristics of shared ancestry and descendants between

collections of nodes comprising queries and the target

database. One such method is the GO-Universal method

that functions by determining the “topological reachabil-

ity” of each ontological term. Distinctly, annotation-based

methods compute scores based on catalog annotations

to an ontology. Of particular importance for these

annotation-based scores is the concept of information

content—a logarithmic transformation of rareness of

annotations at or below each term as determined by as-

sociation of the knowledge catalogs (e.g., the set of

OMIM diseases) to the ontology.

To compute annotation-based similarities, we used a

version of the Resnik method [37], as symmetrized by

Köhler, et al. [20]. In what follows, let D = an annotated

disease, Q = a queried phenotype term set, d{t} = set of

diseases annotated with term t, A{t} = set of terms t and

all their respective ancestors, C{t} = set of terms t and all

their respective children, and ||x|| = quantity of elements

in set x. Let N be the total number of disease in the

catalog that are annotated to the ontology. The symme-

trized Resnik calculation is defined:
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1
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We also implemented an ancestral term overlap

(ATO) method for computing semantic similarity. This

method sums the unique overlap between pairs of

phenotype sets, including their ontological ancestry. The

ATO differs from the previously reported term overlap

method [38] in that all ontological nodes shared between

a pair of phenotype sets are included in the calculation:

SOðD;QÞ ¼ ∥Afti∈Dg∩Aftj∈Qg∥

In an effort to optimize resolution of differences

among scored diseases, we examined weighting schemes

to extend the ATO by using catalog information content

[37] and weights determined by the topological informa-

tion specified for the GO-Universal method [39]. We

used the R statistical programming language to imple-

ment our calculations [40]. Because annotation to a

knowledge catalog is required for calculation of the

catalog-based information content, we excluded from

catalog-weighted similarity analysis all HPO terms for

which there exist no annotations to the OMIM catalog.

Conversely, owing to the nonlinearly decaying nature of

the GO-Universal calculation, a “reachability” topo-

logical position characteristic TPC of 0 was computed

for 322 low-depth HPO terms, resulting in an infinite

topological information content TIC = −log(TPC). We

compensated for this by manually assigning to these

terms a TIC of 2.225074 × 10−308, the machine minimum

for the R language.
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Semantic similarity analysis of known disease classes

We analyzed known collections of similar disease classes

previously and independently defined as disease classes by

the OMIM Phenotypic Series and the HDN [29, 30, 41].

Hypothesizing that diseases should be highly similar

within classes, but distinguishable between classes, we

used Resnik semantic similarity to calculate average scores

between disease pairs within the same classes and com-

pared these scores to those between pairs across different

classes. For each class, we computed as a signal-to-noise

ratio the quotient of mean within-class similarity and

mean between-class similarity.

Input data

The phenotypic component of the input, or query, to

our analysis is a set of HPO terms describing the clinical

presentation of a patient. The genotypic component is a

set of genes or gene variants. This genotype may be

provided as a simple gene list or in the form of a variant

call file (VCF), typically generated as a summary of next-

generation sequencing results. The provided list is

expected to be filtered to remove common variants

(e.g., >1 % population minor allele frequency [MAF])

or restricted to variant classes known to be inactivat-

ing mutations (e.g., frameshift or nonsense). Although

our software is informed by the ExAC database (v0.3)

[42] to annotate variants with observed frequencies,

our software is not currently intended to perform this

variant-frequency-based filtering step, but expects this

processed content as input.

Natural language processing of free text for phenotypes

To facilitate construction of query phenotype sets from raw

clinical notes, we used the Bio-Lark Concept Recognizer

application programming interface to provide natural lan-

guage processing for automated extraction of HPO terms

from input clinical presentation text narratives [43]. We

enabled automated export of these results in our software

to use these extracted phenotypes in subsequent semantic

similarity analysis.

Query-based disease prioritization

We used semantic similarity and HPO annotations to

estimate scores describing similarities of an input query

to the 7,746 OMIM diseases defined in terms of the

HPO phenotypes [19, 30, 44]. As described above, the

phenotypic input to our analysis is a set of HPO charac-

teristics, such as those observed during clinical examin-

ation of a patient or provided as indications for testing.

To calculate diagnostic rankings of disease, we compute

similarity scores via Resnik, ATO, ATO weighted by the

GO-Universal information content, or ATO weighted by

annotation-based information content algorithms. For

each query, scores are computed for 7,746 diseases. We

optionally limit the ranked disease list to diseases that

also have OMIM Morbidmap [30] annotations, are re-

stricted to particular genetic models (e.g., have only

dominant or recessive inheritance), contain user-defined

required phenotypes, or are causally linked in OMIM

Morbidmap to genes identified as having candidate

variations in the patient.

Transitive prioritization of variants

We use a transitive closure approach to infer scores for

the input variant gene set based on scores matching

phenotype queries to disease. The scores are restricted

to diseases in the catalog that are mapped by OMIM to

genes harboring variants in the input set. For all diseases

d{G} cataloged to result from variants in a gene G, we

use an integrative function F to determine the transitive

diagnostic relevance score ST for G against phenotype

query Q by aggregating the d{G} similarity scores:

ST G;Qð Þ ¼ F S
Di∈d Gf g

Di;Qð Þ

� �

We tested the mean, maximum, and sum as aggrega-

tion alternatives for F. To permit comparison between

the transitive prioritization approach and alternatives,

we implemented the direct gene scoring approach used

by Phenomantics [21], which analyzes the HPO term-

to-gene annotations, and that used by PhenIX [18],

which analyzes the unions of phenotypes collapsed

from all diseases associated with each gene via the

OMIM Morbidmap [30].

Genetic models

Our software implements an optional feature to im-

pose constraints determined by models of inheritance

of genetic disease. This feature rules out differential

intermediate diseases whose variant attributes do not

meet inheritance requirements. For autosomal domin-

ant disease, a single heterozygous variation is suf-

ficient to cause disease; when recessive disease is

suspected, both copies of an autosomal gene must be

impacted for disease to result. Invoking the logic of

the recessive model, the software restricts differential

matching consideration to diseases causally linked to

genes with homozygous variation or where compound

heterozygous variation is possible based on the pres-

ence of two or more qualified variants within a gene.

Once imposed, the inheritance model dictates disease

filtering that transitively propagates to variant

prioritization in the tool. The default mode of our

software imposes no constraint for suspected model of

inheritance.
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Global visualization

To create a global visualization of all 7,746 phenotype-

annotated diseases in the OMIM catalog, approximating

their similarities to each other and to individual patients,

we applied classical multidimensional scaling (MDS) to

semantic similarity calculations. MDS is a well-established

statistical procedure that has been extensively docu-

mented [45] and requires semantic-similarity-derived

dissimilarities as input. To transform similarity to dis-

similarity, we subtracted each score from the maximum

observed score, so that the maximum similarity be-

tween a pair of diseases has a corresponding dissimilar-

ity of 0 and the minimum similarity has the largest

dissimilarity. MDS determines a low-dimensional pro-

jection as output. This procedure renders the n × n

dissimilarity matrix into an n × k matrix, and for k ≤ 3

can be visualized as a low-dimensional best-fit map of

OMIM diseases [45].

To contextualize a patient on this map, we calculated

a convex combination of coordinates as the similarity-

weighted location determined by nearest m semantic

neighbors (e.g., the top five diseases most similar to the

query). To make the weights sum to one, weights of

each neighbor are determined by dividing each disease

similarity by the sum of similarities of the k-nearest

neighbors. The choice of m is a user-defined parameter,

defaulted at 5.

Local visualization: radar plot

To create a local visualization of only the top n semantic

disease matches to a phenotype query, we constructed

an alternate two-dimensional visual display. This local

map utilizes distance from the center to strictly repre-

sent diseases according to their exact similarities to the

query. We place the query itself at the origin and linearly

transform disease similarity scores into dissimilarity

distances via the equation below. In what follows, the

radius rD of disease D is calculated as a function of the

similarity S of a query Q to itself and to D.

rD ¼
S Q;Qð Þ−S Q;Dð Þ

S Q;Qð Þ

The circumferential placement of diseases is deter-

mined by a one-dimensional MDS analysis of the n can-

didate diseases and represents the best one-dimensional

approximation of the similarities of the n candidates to

each other. To circumferentially spread the n candidates

according to their similarities to each other, we scale the

observed range of MDS across 360 degrees. To overlay

attribute data for input variants in genes causally linked

to the n candidates by the OMIM Morbidmap [30], we

logarithmically scale candidate point size by variant

frequency in the ExAC database [42] and linearly scale

candidate point color by variant pathogenicity score

computed by MutationTaster [46]. We manually assign a

pathogenicity score of 1 to all exonic frameshift variants

for which MutationTaster scores are not returned.

Owing to its appearance, we refer to this local two-

dimensional representation as a “radar plot.”

Diagnostic curation

The identification of differential intermediate disease

rankings in our transitive prioritization approach pre-

sents a unique opportunity for clinicians to interact with

and curate results through our visual tool. Via the toggle

interface embedded into the radar map of our interactive

software, users can click diseases to “exclude” from the

differential the candidates that they are able to rule out.

Subsequently, the variant-associated ranking of diseases

excluded or “ruled out” from diagnostic consideration

are not included in the calculation of gene-level

scores, directly modifying the transitive prioritization

of variants.

To enhance this curatorial process, we implement a

“hovered disease” functionality to provide an instantan-

eous, detailed display of input variants in genes associ-

ated with the hovered disease as well as available MAF

and variant pathogenicity data. The hover function also

presents for the disease the complete set of known HPO

phenotype associations, that is, the subset of phenotypes

shared between the disease and query, incorporating

ontological ancestry to perform approximate matches

between phenotypes.

Phenotype suggestion

Analysis of phenotype and genotype queries can narrow

the differential to a subset of disease candidates that are

distinguished by particular phenotypic characteristics.

We implemented a procedure to propose that such diag-

nostically informative phenotypes be considered for

addition to the query. For each phenotype query, we

calculate these suggestion characteristics as the rarest

non-query phenotypes annotated to the diseases most

similar to the query.

Analysis of exome data

We evaluated the performance of our transitive

prioritization approach on the exome variants re-

ported for a previously published cohort of genetic

disease patients [31]. We obtained the detailed data

from the Whole Genome Laboratory at BCM, now

BMGL. Patient phenotype information was encoded

into the HPO by manual review of input clinical

forms for 245 cases. Filtered variant gene sets were

obtained for 49 (96.1 %) of the 51 cases with re-

ported diagnoses and 158 (81.4 %) of the 194 cases

without reported diagnoses. Allele-specific variant
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details were obtained from Exome VCF files for 47 (92.2

%) of the 51 cases with reported diagnoses and 157 (81.0

%) of the 194 cases without reported diagnoses. For each

of these cases, we integrated the encoded phenotype data

with the VCF data to compute transitive prioritization

ranks for the reported variant gene(s). We limited our

transitive evaluation to the 47 solved cohort cases with (1)

reported molecular diagnoses of variants in OMIM Mor-

bidmap [30] genes, (2) exome data available in VCF files

(median quantity of variant genes = 464), and (3) signed-

out variant cataloged in ClinVar [17]. For analysis by our

program, “OMIM Explorer” (OE), gene symbols were ex-

tracted from VCF data and ranked via transitive

prioritization; for HPO-direct and Morbidmap-collapse

analysis, these gene symbols were ranked directly via

Resnik semantic similarity; and for comparator tool ana-

lysis, case phenotype and VCF data were provided to

Phen-Gen [22], eXtasy [25], PhenIX [18], PHIVE [23], and

hiPHIVE [24] to rank variants. To convert gene aliases

into approved HUGO Gene Nomenclature Committee

gene symbols for comparator analysis, we used the org.H-

s.eg.db package (November 2015 release) for the R statis-

tical programming language. This step was accomplished

by mapping each gene symbol to its Entrez Gene identifier

and then mapping the Entrez identifier back to the corre-

sponding official gene symbol. This approach was used to

check and remap gene symbols as reported by the BMGL

as well as those annotated by the comparator tools.

Novel gene and variant discovery

Patients may present with variants in genes that are not

cataloged as previously known to cause disease. We

developed an algorithm for semantically driven disease

gene discovery to provide a facility for discovering new

gene-to-disease associations, an operation distinct from

catalog-based variant prioritization. First, we transitively

use patient phenotype-to-OMIM similarity scores to

identify the set of genes mapped to diseases most similar

to the patient phenotypes. We then use an external

knowledge source—in our case, the PINA 2.0 PPI

network [47]—to identify candidate genes as those genes

that are variant in the patient and highly connected to the

training genes. We explored a variety of scores to rank

candidates, including quantity of connections to training

genes and percentage of total connections of a candidate

that are training genes. The latter determines the default

ordering of gene results in our tool.

Variant reference data

Variant frequency data were obtained from the ExAC

Exome Aggregation Consortium (ExAC, v0.3), Cambridge,

MA, USA [42]. Variant pathogenicity data was computed

by MutationTaster and accessed via the Bioconductor

package rfPred [46, 48].

Webtool

We used RStudio Shiny [49], a web application framework

for the R statistical programming language, to create an

interactive, stateful implementation of our transitive vari-

ant prioritization and disease gene discovery workflow.

We have named this novel software “OMIM Explorer”

(OE) and made it available at http://www.omimexplorer.

com. Links at the site also provide access to detailed tutor-

ial videos describing the intended use of software features

and providing step-by-step instructions.

Session statefulness

The state of an OE session includes the visualization

settings, discovery settings, phenotype sets, variant sets,

free text clinical summary content, and user-supplied

curation to exclude specific disease from the differential.

The state of an OE session determines the ranking of

diseases, variants, and disease gene discovery candidates

via the semantic-similarity-based transitive closure logic.

Changes in session state immediately propagate to

changes in the ranking of diseases and variants. Users

can save, download, and share OE session files. These

files can also be archived for future use.

Results
Semantic similarity analysis of known disease classes

To assess the performance of semantic similarity, we

conducted analyses using known classes of related

disease defined by the OMIM Phenotypic Series and the

HDN classes. We restricted analysis to Phenotypic Series

groups comprising six or more disease entries that were

annotated to the HPO, ensuring meaningful comparisons

[30]. We performed within-versus-between calculations

for these disease classes. We found that within-class simi-

larities were substantially higher than those between

classes: signal-to-noise ratios were consistently well above

one, indicating strong signal in the semantic scores. The

mean similarities between classes were consistently low

and uncorrelated with class composition. We observed

similar tendencies with disease groups defined by the

HDN [29] (Additional file 1: Figure S1A, B).

Visualization of disease catalogs and differential

diagnosis via semantic similarity

The differential of potential disease diagnoses is essential

to the logic of transitive prioritization. We hypothesized

that visual engagement with these diseases would clarify

their role and help improve molecular diagnostics and

disease gene discovery. We used MDS of our high-

dimensional similarity calculations in semantic space to

generate a low-dimensional projection—a global map in

visual space—of the 7,746 diseases in the OMIM catalog

annotated with HPO phenotypes, making inter-disease re-

lationships easier to conceptualize (Fig. 2a). The resulting
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approximate visualization of the relationships between all

pairs of diseases and between each disease and the case

successfully maintained the within-group relationships for

known HDN and OMIM Phenotypic Series disease classes

in semantic similarity space (Additional file 2: Figure S2).

Additionally, we observed in three-dimensional visual

space the colocation of strictly-defined Phenotypic

Series classes (e.g., specific eye and skeletal diseases)

within their more broadly defined HDN class counter-

parts (e.g., all eye and skeletal diseases, respectively)

(Additional file 3: Figure S3).

We projected into this map a case from our published

exome cohort [31], in which bradykinesia, developmen-

tal regression, dystonia, motor delay, delayed speech and

language development, and ptosis were reported. We

computed coordinates for the case location as the convex

combination of the coordinates of the five diseases most

similar to the reported phenotypes. We then identified an

ordered differential of diseases potentially causing the

observed phenotypes in the case by highlighting all 174

diseases linked to filtered exome variant data. We linked

the diseases to variants through OMIM Morbidmap [30]

indications that suggested the 174 diseases were previ-

ously observed to be caused by variants in genes that also

contained potentially pathogenic rare variant alleles in the

personal genome of the patient (Fig. 2a). Overall, global

map projections were relatively accurate (Additional file 4:

Figure S4A), and allowed for simultaneous representation

of the proband, together with all 7,746 annotated diseases.

We observed, however, that diseases very similar to the

reported phenotypes in semantic space were neither con-

sistently nor sufficiently close in visual space, and vice

versa (Additional file 4: Figure S4B). In conjunction with

our convex combination coordinate projection, the MDS-

inherent mathematical compromises responsible for these

inadequacies therefore yielded maps that were too in-

accurate for inferring exact diagnoses from visual relation-

ships between a projected patient and differentials.

To remedy the limitations of the global map, we devel-

oped the local “radar map” alternative display. This plot

places the top differential intermediate diseases at

semantically accurate dissimilarity distances from the

phenotype input for a case (Fig. 2b). It also presents the

approximate semantic similarity relationships among can-

didates as determined by one-dimensional MDS, which is

represented in the circumferential spacing of points. The

one-dimensional MDS retains relatively accurate approxi-

mations of the relationships that exist among the diseases.

A B

Fig. 2 Visual representations of differential disease spectra. In this case selected from a retrospective genetic disease cohort, bradykinesia,

developmental regression, dystonia, motor delay, delayed speech and language development, and ptosis were reported. a The global map: a

visual map representation of the relationships between the phenotypic features of the case (yellow triangle) and all 7,746 cataloged Online

Mendelian Inheritance in Man (OMIM) diseases (gray circles). The two-dimensional space x,y is defined by the first two multidimensional scaling

(MDS) components computed from Resnik similarities between all pairs of diseases. A projected map location is calculated for the case via a

weighted convex combination of the coordinates of the diseases with the top five similarities to the complete patient phenotypes. The genotypic

spectrum of disease for the case, comprising the 174 diseases with known causes in genes variant in the filtered patient exome, is highlighted in

orange and is clustered throughout the visual space. b The local/radar map: an improved visual map representation of the relationships between

the phenotypic features of the selected clinical case and the 174 genotypic spectrum diseases. The case is placed at the center of the map. The

circumferential disease distribution across 360 degrees θ is a linear scaling of the first MDS component computed from Resnik similarities

between all pairs of diseases. Radial dissimilarity distance r is computed for each disease as the linear transformation of its similarity to the patient

phenotypes. The size and color of disease points indicate the ExAC [42] and MutationTaster [46] pathogenicity of case variants harbored in genes

causally linked to top differential intermediate diseases. The map can be progressively filtered to reflect mandatory aspects of clinical phenotype

and genotype or manual curation of differential intermediates, as performed by clinicians
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Furthermore, rather than highlighting a subset of the

entire catalog corresponding to the input genotypic and

phenotypic spectra of diseases, the radar map progres-

sively filters its contents to these spectra as defined by the

user and modifies both the size and color of disease points

to represent disease similarity to the patient, the MAF and

pathogenicity of input variants in causally associated

genes, and manual curation of differential intermediate

diseases performed by clinicians.

Application to exome data

Of the 245 genetic disease cases in a retrospective

cohort of individuals referred for whole exome sequen-

cing, we analyzed the 51 for which a molecular diagnosis

was reported [31]. The molecularly diagnosed cases

tended to have more phenotypes and higher similarities

to the OMIM disease catalog, while those undiagnosed

tended to have higher quantities of variant genes after

frequency and synonymy filtering (Fig. 3a–c). However,

both classes of case were equally distributed in the visual

space of the global disease map (Fig. 3d). For 47 of these

51 cases, the reported variant genes were associated with

diseases via the OMIM Morbidmap [30]. With the

assistance of the Bio-Lark Concept Recognizer [43], we

manually reviewed the clinical notes for these 47 solved

cases and updated their phenotype annotations to a

more recent instance of the HPO. We used these up-

dated annotations to compute cumulative distribution

curves to evaluate the performance of OE across each of

the 47 solved cases (Fig. 3f ). We employed our transitive

maximum as the integrative aggregation function be-

cause the maximum, rather than mean or sum, associ-

ated disease similarity score determined gene ranks that

best matched those generated by the diagnostic labora-

tory (Fig. 3e). We observed that our transitive maximum

prioritization approach implemented in OE computed

median ranks of 2 via the term overlap method and a

median of 3 via symmetrized Resnik similarities for the

previously reported variants in these cases (Fig. 3f ).

Given that the median quantity of filtered variant genes

identified in each of the 47 cases was 464 (Fig. 3c), the

transitive maximum overlap and Resnik similarity ap-

proaches assigned to the reported variants median ranks

in the top 1 % of all filtered variants (Fig. 3f ).

We compared the performance of the OE transitive

maximum to that of Phen-Gen [22], eXtasy [25], PhenIX

[18], PHIVE [23], and hiPHIVE [24]. Because the latter

three were implemented via Exomiser, which allows for

variant filtration by MAF, we applied a filter of 1 %

MAF. Because eXtasy limits the quantity of phenotypic

inputs to 10, we input the phenotypes with the top 10

information content scores to eXtasy for each of the 47

cases analyzed. We observed that for our cohort, OE

returned scores for reported variant genes for more

cases and had lower median ranks for the reported genes

than did four of the five comparator tools. Phen-Gen

failed to return scores for the clinically reported gene

variants in 32 of the 47 cases (68.09 %); however, when

Phen-Gen returned scoring results for the reported gene

variants, it performed the best among all tools, with a

median rank of 1.5 across these 15 of 47 cases (31.91 %).

We also observed that the OE Resnik transitive maximum

algorithm outperformed the best-overall-performing com-

parator tool, PhenIX, which yielded a median rank of 5 for

the reported results on the test cases. OE returned a top

ranking for the causative variant in 16 of the 47 cases

(34.04 %) and a ranking in the top five for 30 out of 47

cases (63.83 %), while PhenIX returned a top ranking

for 15 out of 47 (31.91 %) and a ranking in the top five

for 24 out of 47 (51.06 %; Additional file 5: Figure S5

and Additional file 6: Table S1).

Case study

The radar plot implements curatorial interactivity using

semantic similarity to identify candidate diagnoses. This

plot presents accurate semantic similarity relationships

of cases to differential disease candidates and visually

distributes them according to their pairwise relation-

ships. The web-based interactivity of this plot provides

heads-up display information identifying each candidate,

describing its phenotypic match to the query and dis-

tinction from alternate candidates, and presents corre-

sponding variant information. To examine the plot’s

performance in detail, we analyzed a single solved case

from the retrospective cohort [31]. The patient in that

case exhibited phenotypes of sinus bradycardia, pericar-

dial effusion, delayed central nervous system myelin-

ation, epileptic encephalopathy, gastroesophageal reflux,

encephalopathy, microcephaly, intellectual disability, and

seizures. Whole exome sequencing of DNA extracted

from whole blood led to the identification of 928 candi-

date variants in 837 genes, after filtering for variant

frequency and changes to protein coding. Of these

genes, 145 were cataloged in the OMIM Morbidmap

[30] to harbor disease-causing variants. The BCM diag-

nostic laboratory reported as potentially causal a nonsy-

nonymous variant detected in the SCN8A gene, in which

defects cause early infantile epileptic encephalopathy

(MIM #614558) and cognitive impairment with or

without cerebellar ataxia (MIM #614306) [31].

The transitive maximum similarity analysis used the

overlap score to automatically assign a rank of 4 to

SCN8A (Fig. 4a, f ) by restricting the differential inter-

mediate to the 229 diseases causally linked via the

OMIM Morbidmap to genes variant in the patient

exome (Fig. 4b, c). The OE visual curation interface was

then used to manually enforce a mandatory phenotype

filter, limiting the candidate differential to the 29 patient
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Fig. 3 Solved and unsolved cases in the BMGL cohort. In 245 exome cases, 51 had reported molecular diagnoses. The solved cases tended to

have (a) more Human Phenotype Ontology (HPO) phenotypes, including ontological parent terms (Wilcoxon p = 0.0302); b higher average

similarity to the Online Mendelian Inheritance in Man (OMIM) catalog (Resnik similarity, Wilcoxon p = 0.0387); and (c) lower quantities of filtered

variant (Wilcoxon p = 0.2177). d Visualization. Multi-dimensional scaling representation of the 51 solved (yellow spheres) and 194 unsolved (red

spheres) cohort cases in a three-dimensional map of all 7,746 cataloged OMIM diseases (gray spheres). Solved and unsolved cases appear

similarly distributed in the visual space. e Transitive method comparison. Across the 47 solved cases with reported Morbidmap genes, we

tested maximum, mean, and sum as aggregation function alternatives; semantic similarity was calculated using symmetrized Resnik, unweighted

ancestral overlap, and versions of ancestral overlap weighted by OMIM catalog information content and the topological information specified for the

GO-Universal method [39]. Globally, the transitive maximum achieved the lowest median rank. f Comparison of relative performance. Phenotype and

filtered genotype data for 47 cohort cases with reported molecular diagnoses were analyzed via the transitive maximum OMIM Explorer algorithms,

phenotype-collapsing alternative algorithms, and comparator tools. A minor allele frequency (MAF) filter of 1 % MAF was applied in PhenIX,

PHIVE, and hiPHIVE. Because eXtasy limits the quantity of phenotypic inputs to 10, we supplied eXtasy with only up to the 10 phenotypes

with the highest information content (i.e., rareness in the OMIM catalog) scores for each case. Via OMIM Explorer, transitive maximum aggregation

(Resnik) returned a top ranking for 16/47 = 34.04 % of the cohort and a ranking in the top five for 30/47 = 63.83 %; the overall best alternative, PhenIX,

returned a top ranking for 15/47 = 31.91 % and a ranking in the top five for 24/47 = 51.06 %
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Fig. 4 OMIM Explorer radar map performance on a solved clinical case study (unweighted overlap similarity). The patient in the case (yellow

triangle) had indications of sinus bradycardia, pericardial effusion, delayed central nervous system (CNS) myelination, epileptic encephalopathy,

gastroesophageal reflux, encephalopathy, microcephaly, intellectual disability, and seizures. The filtered exome identified candidate variation in

145 Online Mendelian Inheritance in Man (OMIM) Morbidmap genes. Variants were ranked via transitive maximum unweighted ancestral term

overlap similarity. a Top candidate diseases (TCDs) of the differential intermediate. The 500 TCDs by semantic similarity (colored circles) are

represented in the radar map. The reported SCN8A variant [ClinVar: SCV000245399.1] present in the patient is transitively ranked at 4 via the MIM

#614558 rank of 13. b TCDs with cataloged causal variants. The 500 TCDs are filtered to those with causal gene variants cataloged in the OMIM

Morbidmap. The SCN8A variant is transitively ranked at 4 via the MIM #614558 rank of 12. c Exome-linked TCDs. The Morbidmap TCDs are filtered

to 229 diseases associated with genes variant in the patient. The SCN8A variant is transitively ranked 4 via the MIM #614558 rank of 4. d Exome

TCDs with mandatory phenotypes. The 229 exome TCDs are filtered to 29 known to present with intellectual disability as observed in the patient.

The SCN8A variant is transitively ranked 3 via the MIM #614558 rank of 3. e Interactive curation of exome TCDs. Medical knowledge is used to rule

out 16 of the 29 remaining TCDs from the differential owing to the absence of their hallmark features. This improved the transitive rank of the

SCN8A variant from 3 to 1. f Display of the variant gene. Early infantile epileptic encephalopathy is caused by variants in SNC8A, which is

variant in the patient. The detected variant is rare and has high pathogenicity. g Display of a curatorially excluded TCD. Carpenter syndrome,

caused by variants in RAB23, is excluded because characteristic features of skull, hand, or foot abnormalities were not reported
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exome-linked diseases cataloged to present with the

intellectual disability observed in the patient (Fig. 4d).

Using medical knowledge to guide additional curation,

16 of these 29 diseases were further excluded from the

differential intermediate for this case owing to the ab-

sence of their hallmark features in the patient, including

short stature (microcephalic osteodysplastic primordial

dwarfism [MIM #210720], Carpenter syndrome [MIM

#201000], Rubinstein-Taybi syndrome [MIM #180849],

Wiedemann-Steiner syndrome [MIM #605130]); hand,

foot, or nail abnormalities (Carpenter syndrome [MIM

#201000], Rubinstein-Taybi syndrome [MIM #180849],

Temple-Baraitser syndrome [MIM #611816]); hypoglycemia

(hyperinsulinemic hypoglycemia [MIM #256450]); and brain

or renal tumors (tuberous sclerosis 2 [MIM #613254]).

These interactive curation steps improved the rank of

the reported causal variant gene SCN8A from 4 to 1

(Fig. 4e, g). A similar performance was observed via a

transitive maximum similarity analysis using the Resnik

score (Additional file 7: Figure S6).

Disease gene discovery

If no adequate diagnostic match is identified via the

similarity-driven transitive variant prioritization approach,

we provide a novel phenotype–gene association discovery

tool that uses the neighborhood of diseases most pheno-

typically similar to patient phenotypes to determine a

phenotypic neighborhood training gene set. We then use

prior knowledge in the form of PPI networks to identify

candidate genes both variant in the patient and connected

in “genomic-annotation space” to the phenotypically im-

plicated training gene set. We used the PINA2 PPI

network to perform this analysis [47]. To evaluate the

performance of our PPI-based transitive disease gene

discovery approach, we applied its algorithm to the HPO

representation of OMIM diseases and their corresponding

genotypic attributes recorded in the OMIM Morbidmap

[35]. We observed that the protein products of genes

causative of diseases nearest in semantic similarity space

are also closer in PPI space than those of typical disease

genes (Kolmogorov–Smirnov p < 2.2 × 10−16) (Fig. 5a),

suggesting the utility of such an approach. A validation

example of using the tool to “discover” a gene known to

cause human diseases is presented in Fig. 5b.

Interactive Webtool

We implemented the algorithmic concepts described

above into a software system. Our tool also implements

A B

Fig. 5 Disease gene discovery via semantic similarity and protein–protein interaction network. a Our semantically driven disease gene discovery

approach using external omic knowledge. This approach establishes the semantic neighborhood of a patient to identify a relevant known disease

gene set, and then recruits prior knowledge of relevant gene–gene relationships to intersect with patient variations. This integration of the

disease catalog with omic knowledge results in potential variant discovery and phenotypic extension of known disease genes. As shown in this

example, a patient phenotype query determines training genes: those variant in the patient and known to contain variants causing cataloged

diseases most similar to the query. The biological subnetwork implicated by these training genes is then realized in “omic space.” For this

example, proteomic space, as defined by the PINA2 protein–protein interaction network, is used. This process identifies candidate genes that are

variant in the patient and connected to training genes in the protein interaction network. In this figure, an additional constraint has been applied,

in which genes must directly interact with at least two training genes to be considered candidates. b To validate this procedure we performed a

global analysis across the entirety of Online Mendelian Inheritance in Man (OMIM). In protein interaction network space, the variant genes of

nearest semantic neighbor diseases are typically closer to each other than to those of all diseases
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the Bio-Lark natural language processing engine [43] to

automatically extract HPO terms from clinical narratives

for use in semantic similarity calculation, and a word-

cloud feature that sizes each input query term according

to its relative information content, in comparison to that

of other input phenotype terms. Additionally, our tool

supports session statefulness, which allows users to save

and load their work and share it within collaborative

diagnostic teams. Our tool was developed using the

RStudio Shiny web application development framework

[49]. Shiny uses the R statistical programming environ-

ment together with Node.js [50]. This platform allows

Shiny, and software developed with it, to take advantage

of an event-driven, non-blocking I/O model, which has

little computational overhead. OE is an example of a

data-intensive, real-time application running across dis-

tributed devices. The tool, and links to detailed tutorial

videos of example use cases, are publically accessible at

http://www.omimexplorer.com.

Discussion

Genome-wide data interpretation is a central challenge

of genomic medicine, and will likely continue to be for

years to come. Biomedical software plays a fundamental

role in meeting this challenge. We have developed an

interactive visual tool to meet this challenge. Our tool is

distinctive in several ways. First, our tool allows users to

input clinical information as free-text notes that are

translated into HPO terms. Second, our analytic ap-

proach uses transitive prioritization to rank subject phe-

notypes against their variant genes using the cataloged

associations with known genetic diseases. Third, the tool

allows users to update, or fine tune, these ranks using

their medical expertise to rule out particular diseases or

to impose phenotypic constraints or additional filters.

Fourth, curation is driven by a novel visual interface that

is both stateful and visually interactive. This visual and

interactive approach is iterative, and therefore funda-

mentally different from previous work that has relied

more on single-step computational analysis. Finally, our

tool permits the saving of session files for sequential

effort, archival, or data sharing.

Although our work may increase the efficiency and

effectiveness of human users, it is not a command line

tool intended for automated high-throughput use in

larger computational pipelines without the interaction of

human users (Table 1). While we believe other alterna-

tives in this space are better suited for full automation,

such implementations may exclude the contribution of

real-time, adaptive medical expertise from the variant

prioritization process. Collectively, we believe that our

approach better recruits biomedical and clinical experts

into the variant analysis workflow, but with the tradeoff

that this interactivity requires active input from users.

Transitive prioritization

Our tool uses transitive prioritization to link genetic

variations to phenotypic traits through differential inter-

mediate diseases. The retention of differential intermedi-

ate diseases plays an important role in the facilitation of

our visualization scheme and curatorial process: because

they can be visualized, users can exclude disease alter-

natives deemed diagnostically irrelevant. This curation

can in turn further improve the performance of tran-

sitive prioritization. Importantly, algorithms such as

PhenIX [18] employ phenotypic collapsing to map

genes to phenotype sets. As depicted in Fig. 1b, col-

lapsing phenotypes across diseases can result in poten-

tially flawed semantic scores. Our results show that

transitive prioritization has better performance and

retains this curatorial functionality.

Visualization of semantic relationships

The HPO [19] is a high dimensional feature space for

representing the complexity of pathologies that are

observed in human disease. Representing points in this

space in a low-dimensional map is a difficult computa-

tional challenge. Our attempts to use classical MDS to

represent these data reveal the challenge of dimension

reduction for these data. Although the global plot reveals

gross features of disease relationships, the error of inter-

point distances in the low-dimensional projection results

in loss of semantic relationships, making it difficult to

use this global projection in diagnostics. As an alterna-

tive, we developed the radar plot. This local view retains

an accurate representation of the semantic similarity of

differential intermediate diseases to the case’s phenotypes

using distance from the proband placed at the center of

the graphic. The relationships between diseases are used

to construct an approximate circumferential arrange-

ment of points. Research to explore other approaches

to two-dimensional representations of semantic similarity

is warranted.

Semantic similarity

Our tool relies on semantic similarity to analyze patient

indication content against genetic variation and prior

knowledge. As in previous work, we employed the

Resnik metric [37] in addition to alternatives. The

Resnik method takes a weighted combination of lowest

common ontological ancestor matches among query and

target phenotypes to assign scores. A simpler approach,

ATO [38], counts the unique overlap of terms, including

their ontological ancestry. This simple overlap of terms

performed better rank estimation in our analysis of

reported human exomes (Fig. 3f ). Although the Resnik

similarity metric has been extensively employed in this

field, our results suggest that alternative metrics should

be explored, and we observe that Resnik might not be
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optimal in all situations. We propose that the Resnik score

may suffer from certain limitations. First, to compute the

similarity score, the information content of the least-

commonly-annotated common ancestor phenotype across

all pairs of query and disease phenotypes is averaged. This

averaging can dilute or overestimate term contributions to

scores for densely or sparsely phenotyped diseases because

the quantities of terms annotated to each disease can vary.

Second, the weighting of terms in the Resnik calculation

uses information content, defined as the negative logarithm

of frequency of an ontological term in the ancestry among

all cataloged diseases [37]. This choice of weights may be

suboptimal because of the strongly non-linear nature of the

log-transformation that causes the most rare terms to have

extremely high weights. Third, under Resnik, each query

term makes an independent additive contribution to simi-

larity, but the same nodes in the ontological tree may be

recruited across multiple terms. Therefore, this additive

approach permits the same nodes in the ontology to con-

tribute to query scoring multiple times. This stands in

contrast to the more direct overlap approach in which each

phenotype contributes only once to each score [38].

Table 1 Comparison of tool features

1. Ranking of input variants. 2. Ranking of genes containing input variants. 3. Ranking of diseases. 4. Identification of gene candidates for causal association with input

phenotypes. 5. Identification of phenotypes that may help clarify or distinguish among top rankings. 6. Acceptance of variant sets as VCF (variant call format) files.

7. Inclusion of multi-nucleotide (insertion/deletion/frameshift) variants in computational prioritization. 8. Support for integration of family VCFs to distinguish between

transmitted and de novo variation. 9. Acceptance of phenotypic query descriptors as HPO (Human Phenotype Ontology) terms. 10. Absence of limit on

quantity of input phenotypes (HPO terms) supplied. 11. Acceptance of unstructured text from which input phenotypes are computationally extracted.

12. Accessibility via a web browser. 13. Accessibility via a command line API (application programming interface), which facilitates automated batch

submission of distinct case queries. 14. Immediate update of outputs in response to changes in input or analysis configuration, including diagnostic

exclusion, without repeating the entire input and analysis process. 15. Pictorial representation of output, in addition to tabular representation. 16. Graphical or

tabular juxtaposition of outputs with input-specific catalog data (input variants hosted by gene, causal links between diseases and gene, phenotypes annotated to

disease, known modes of inheritance of disease, etc.). 17. Export of input and configuration data in a file that can be subsequently imported and modified, and from

which result outputs can be regenerated. 18. Restriction to use of only human data catalogs (known direct and ontological associations between diseases, genes, and

phenotypes) in differential disease diagnosis and variant rank estimation for clinical decision support. 19. Calculation of disease and variant rankings without the use of

externally-computed phenotype-based rankings. 20. Deductive-reasoning-based variant ranking through inference of host gene phenotypic relevance from semantic

similarities of intact diseases to which genes are causally linked
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Annotation data recruitment of additional information to

improve variant prioritization

The approach presented in this paper does not explicitly

use deleteriousness scores based on considerations from

structural biology, such as those generated via PolyPhen

or SIFT [51, 52], to transitively rank variant genes. It

does, however, recruit variant pathogenicity scores and

frequencies, and it represents this information in dis-

plays using the color and size, respectively, of radar plot

points for diseases to which the variant host genes are

causally linked. We include this content as metadata in

the visual display so that users can incorporate it into

their curation. Future extensions that more explicitly

incorporate these approaches may further improve the

accuracy of variant gene prioritization. These areas

present opportunities for future research.

Disease gene discovery

An additional feature of our tool is discovery driven by

the synthesis of semantic matching to the known catalog

with prior gene knowledge in the form of protein inter-

action networks. The approach increases the likelihood

of identifying possible disease-causing variants not

matched to OMIM entries and of identifying novel

gene-to-phenotype relationships that can be associated

with existing disease genes. Our approach leverages

known causal gene associations in phenotypic neighbor-

hoods of top semantic matches to select phenotypically

matched genes for discovery of candidates. This ap-

proach exploits known inter-gene relationships defined

in the PINA2 PPI network [47]. Additional data sources,

such as gene expression, gene annotation (GO), or tran-

scription factor binding databases could be used to

extend the power of phenotypically guided disease gene

discovery [53–55]. This area also merits further inquiry.

Conclusions
Our visual approaches represent a new scheme for variant

prioritization in genome-wide diagnostics. We explored

algorithmic alternatives, compared our work with other

available software, and encapsulated this work in our

novel tool, called OMIM Explorer. The tool is fundamen-

tally structured around a visual map of known genetic

diseases based on semantic similarity. Patient phenotype

and variant information, as well as additional external

information on variant class, frequency, and pathogenicity,

are superimposed on this map. This approach provides

visual guidance to the diagnostician or physician for evalu-

ation. The tool also directs additional informative pheno-

typing, helps provide rationale for possible co-occurrence

of multiple diagnoses, and facilitates the discovery of novel

gene-to-phenotype associations. We validated our tool

using existing catalogs of known diseases, and we evalu-

ated performance using a previously published cohort of

exome cases from the BMGL diagnostic laboratory [31].

Ultimately, this software promises to positively impact

efficiency and communication between clinicians and

molecular diagnostics laboratories. Our online tool and

links to detailed tutorial videos of example use cases are

freely available at http://www.omimexplorer.com.

Additional files

Additional file 1: Figure S1. Signal-to-noise ratios of known disease

classes in semantic space. Signal is computed as the mean semantic

similarity between all pairs of diseases within a known (A) HDN or (B)

OMIM Phenotypic Series class (gray bars). Noise is computed as the mean

similarity between all pairs of diseases in each class C and those not in

C (black line). Scores are relativized to the highest within-class average.

Signal-to-noise ratios were consistently above one, indicating high accuracy

in the semantic scoring process. (PDF 338 kb)

Additional file 2: Figure S2. Performance of global map visual

projection. Semantic space signal-to-noise ratios of known disease classes

are recovered in MDS visual space. Signal is computed as the mean

semantic similarity between all pairs of diseases within a known (A) HDN or

(B) OMIM Phenotypic Series class (gray bars). Noise is computed as the

mean similarity between all pairs of diseases in each class C and those not

in C (black line). Scores are relativized to the highest within-class average.

Signal-to-noise ratios were consistently above one, indicating retention of

pre-MDS semantic space relationships in post-MDS visual space. (PDF 259 kb)

Additional file 3: Figure S3. Validation of global map visualization via

clustering of phenotype, genotype, and known disease class spectra. (A)

Disease spectrum for the gene FGFR2 (9 OMIM diseases). (B) Disease

spectrum for the phenotype “Craniosynostosis” (47 OMIM diseases). Note

that seven diseases with this phenotype are also in the FGFR2 spectrum.

(C) HDN class “Ophthalmological” (broad eye diseases). (D) OMIM Phenotypic

Series “Night Blindness, Congenital Stationary” (specific eye diseases). (E) HDN

class “Skeletal” (broad bone diseases). (F) OMIM Phenotypic Series “Epiphyseal

dysplasia, multiple” (specific bone diseases). (PDF 1628 kb)

Additional file 4: Figure S4. Semantic neighborhood preservation in

visual space of global map. The nearest neighborhood in visual space (A)

correlates positively with the nearest neighborhood in semantic space,

but (B) insufficiently to facilitate visual detection of exact diagnoses from

the global map via the coordinate-dependent convex combination

method of projecting patients into the global map. (PDF 940 kb)

Additional file 5: Figure S5. Causal variant gene prioritization in solved

clinical cohort cases and semantic algorithm score comparison. OE

transitively computed a median rank of 3 (top 1 %) for host genes via

maximum annotated Resnik similarity score, and 2 (top 1 %) via maximum

ancestral overlap. As comparator metrics to the transitive prioritization

approaches, we computed scores using direct HPO term-to-gene annota-

tions and unions of phenotypes collapsed from the all diseases associated

with each gene via the OMIM Morbidmap. The cumulative distribution

curve demonstrates the quality of solutions within a given rank as the

percentage of the 47 cases with variant genes correctly ranked at a given

threshold. We report the median because it robustly separates the top half

of a sample from the bottom half. The transitive maximum ancestral overlap

method achieved the lowest median rank, while the transitive maximum

OMIM catalog-weighted ancestral overlap method achieved the highest

median rank percentile. (PDF 9 kb)

Additional file 6: Table S1. Tabular summary of comparison of relative

performance. Phenotype and filtered genotype data for the 47 cohort cases

with reported molecular diagnoses were analyzed via the transitive maximum

OE algorithms, phenotype-collapsing alternative algorithms, and an array of

comparator tools. While OE assigned to the reported variant genes median

ranks of 2 to 3, the comparator tools assigned median ranks of 1.5 to 54. OE

returned reported variant gene scores for more cases, and with lower median

ranks, than did 4 of the 5 comparator tools. Phen-Gen did not return scores

for the reported variant gene in 32 of the 47 cases (68.09 %), but

outperformed OE, with a median rank of 1.5, across the 15 cases
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(31.91 %) for which it did return scores for the reported variant

gene. (PDF 27 kb)

Additional file 7: Figure S6. OE radar map performance on an

individual solved clinical case study (Resnik similarity). A case (yellow

triangle) with indications of sinus bradycardia, pericardial effusion,

delayed central nervous system myelination, epileptic

encephalopathy, gastroesophageal reflux, encephalopathy,

microcephaly, intellectual disability, and seizures. The filtered exome

identified candidate variation in 145 OMIM Morbidmap genes.

Variants were ranked via transitive maximum unweighted ancestral

term overlap similarity. (A) Top candidate diseases (TCDs) of the

differential intermediate. The 500 TCDs by semantic similarity (colored

circles) are represented in the radar map. The reported SCN8A variant

[ClinVar: SCV000245399.1] present in the patient is transitively ranked

at 3 via the MIM #614558 rank of 54. (B) TCDs with cataloged causal

variants. The 500 TCDs are filtered to those with causal gene variants

cataloged in the OMIM Morbidmap. The SCN8A variant is transitively

ranked at 3 via the MIM #614558 rank of 42. (C) Exome-linked TCDs.

The Morbidmap TCDs are filtered to 229 diseases associated with

genes variant in the patient. The SCN8A variant is transitively ranked

3 via the MIM #614558 rank of 4. (D) Exome TCDs with mandatory

phenotypes. The 229 exome TCDs are filtered to 29 known to

present with intellectual disability as observed in the patient. The

SCN8A variant is transitively ranked 1 via the MIM #614558 rank of 1.

(E) Interactive curation of exome TCDs. Medical knowledge is used to

rule out 16 of the 29 remaining TCDs from the differential due to

absence of their hallmark features. (F) Display of the variant gene.

Early infantile epileptic encephalopathy is caused by variants in

SNC8A, which is variant in the patient. The detected variant is rare

and has high pathogenicity. (G) Display of a curatorially excluded

TCD. Carpenter syndrome, caused by variants in RAB23, is excluded

because characteristic features of skull, hand, or foot abnormalities

were not reported. (PDF 1629 kb)
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