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Abstract

Rosenbaum and Rubin (1983) suggested a visual representation, that can be used as a
diagnostic tool, for examining whether the relationships between confounders and outcomes
are sufficiently controlled, or whether there is a more complex relationship that requires
further adjustment. This short commentary highlights this simple tool, providing an example
of its utility along with relevant R code.
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Despite numerous analytical methods available, the most common method for confounding
control is covariate adjustment, therefore straight-forward, user friendly diagnostics for
determining the adequacy of this adjustment are valuable. The final section of Rosenbaum
and Rubin (1983) suggests a visual representation, that can be used as a diagnostic tool, for
such an adjustment that we have not seen receive focus in research workflows or pedagogical
methods. Specifically, Rosenbaum and Rubin (1983) point out that research studies that
implement propensity score methods where the outcome is continuous and the propensity
score is estimated using a linear discriminant analysis (êi), there are many useful properties
for evaluating the fit of the final outcome model conditional on the propensity score. In this
situation, the point estimate for the treatment effect in an ordinary least squares model fit
with the adjustment covariates will be exactly equal to one fit adjusting for the propensity
score, assuming the same functional form of all covariates is used in the fully adjusted model
and the propensity score model. Therefore, a plot of the outcome (y0i and y1i) or residuals
(yti − ŷti) versus the estimated propensity score (êi) will provide a two-dimensional display
of the multivariate adjustment. In the case of an ordinary least squares model, the latter
is a function of the “residuals versus fits” plot with the key distinction that the points
are visually distinguished by treatment arm (for example with a different color or shape
or even faceted separately). A simple plot such as this could be a useful diagnostic tool
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to assess whether the relationships between confounders and the outcomes are sufficiently
controlled, or whether there is a more complex relationship that requires further adjustment,
for example non-linear relationships or heterogeneous treatment effects.

Much attention in the literature has been given to the selection of confounders(VanderWeele
2019; VanderWeele and Shpitser 2011; Shrier 2008; Rubin 2008, 2009, 2007; Pearl 2000;
Sjölander 2009; D’Amour et al. 2021; Häggström 2018; Greenland and Pearl 2011), however
once selected, the functional form of the selected covariates appears to be less emphasized.
Even under the assumption that all confounders have been adjusted for in some capacity,
if the correct functional form is not used substantial bias can be seen in the estimated
treatment effect. Similarly, the presence of non-parallel response surfaces for outcomes within
treatment groups or heterogeneous treatment effects can also bias a result if not accounted
for. These propensity score residual plots recommended by Rosenbaum and Rubin (1983)
can provide one method for evaluating whether the estimated treatment effect is distorted
by the presence of non-linear or nonparallel response surfaces. Of note, if the variance of the
covariates differs by treatment, covariate adjustment (either directly or via adjustment of
the propensity score) without properly accounting for non-linearity will yield substantially
biased results (Rubin 1973).

In this variation of the “residuals versus fits” plot, the proposed plot maps the residuals
(yti − ŷti) to the y-axis and the estimated propensity score (êi) to the x-axis. Alternatively,
one could plot the “standard” residuals versus fits plot (residuals on the y-axis and fitted
values on the x-axis) stratified by treatment such that any differences are more clearly visible
in the facets. Below is a simple example of such a plot along with the R code used to create
it. The data used for the plot was simulated such that there is a heterogeneous relationship
between a summary measure of the confounders (such as the true propensity score), X, and
the outcome, Y , based on treatment, T as follows:

Y (1) = 0.5 × X (1)
Y (0) = −0.5 × X (2)
Yobs = T × Y (1) + (1 − T ) × Y (0) (3)

As an illustration, we fit the following ordinary least squares model, and then created the
standard residuals versus fits plot (Figure 1). We added a loess line to aid in visualizing any
potential relationships.

Ŷ = β̂0 + β̂1T + β̂2X

Notice when examining this standard plot alone there is not an obvious violation of assump-
tions, if anything there appears to be a non-linear relationship between X and Y , rather
than a heterogeneous effect. Using this plot alone could lead to the investigator erroneously
adding a non-linear term rather than the appropriate interaction.

Based on the recommendation in Rosenbaum and Rubin (1983), we will create this same
figure, stratified by treatment assignment. We can either do this by selecting a different
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Figure 1: Standard Residuals versus Fits Plot (Misspecified Model)
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color for treatment arm and overlaying the plots (Figure 2) or faceting the plots, creating a
separate one for each treatment group (Figure 3).
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Figure 2: Residuals versus Fits Plot, colored by treatment arm (Misspecified Model)

Observing these figures, the lack of fit is much more obvious and would likely lead the
researcher to re-fit the model accounting for the heterogeneous relationship. Additionally,
the estimated causal effect for the misspecified model (β̂1) is 0, which is a biased estimate,
compared to the “true” causal effect, which is dependent on the value of X. We could now
fit the following correct model and recreate the stratified residuals versus fits plot (Figure 4).

Ŷ = β̂0 + β̂1T + β̂2X + β̂3T × X

. Summary

When estimating causal effects using covariate adjustment, a sensible and straightforward
diagnostic plot to use is the residuals versus fits plot stratified by treatment assignment.
Ideally these plots would be generated during the exploratory phase of the modeling
process and once in the confirmatory phase the correct relationship between the treatment,
confounders, and outcome would be well understood allowing the correct model to be pre-
specified. The use of this graphical tool could also be incorporated into routine diagnostics
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Figure 3: Residuals versus Fits Plot, faceted by treatment arm (Misspecified Model)
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Figure 4: Residuals versus Fits Plot, colored by treatment arm (Correct model)
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that are used when assessing the performance of propensity score models in statistical
inference.

. Code

Below is the R code used to simulate the scenarios described in the paper as well as create
the figures.
library(tidyverse)
## Simulate data

set.seed(8)
n <- 1000
x <- rnorm(n)
t <- rbinom(n, 1, exp(x) / (1 + exp(x)))
y1 <- 0.5 * x + rnorm(n)
y0 <- - 0.5 * x + rnorm(n)
y_obs <- t * y1 + (1 - t) * y0

d <- tibble(
y = y_obs,
p = predict(lm(t ~ x)),
t = as.factor(t),
f = predict(lm(y_obs ~ t + x)),
r = resid(lm(y_obs ~ t + x)),
f_correct = predict(lm(y_obs ~ t*x)),
r_correct = resid(lm(y_obs ~ t*x))

)

## Create standard residuals vs fits plot on the misspecified model

p_naive <- ggplot(d, aes(x = f, y = r)) +
geom_point(alpha = 0.25) +
geom_smooth(

color = "black",
method = "loess",
formula = y ~ x,
se = FALSE,
span = 1

) +
theme_minimal() +
labs(x = "Fitted value",

y = "Residuals")

p_naive
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## Create residuals vs fits plot colored by treatment arm on the
## misspecified model (Figure 2)

p2 <- ggplot(d, aes(x = f, y = r, color = t)) +
geom_point(alpha = 0.25) +
geom_smooth(

method = "loess",
formula = y ~ x,
se = FALSE,
span = 1

) +
theme_minimal() +
scale_color_manual(values = c("orange", "cornflower blue")) +
labs(color = "Treatment",

x = "Fitted value",
y = "Residuals")

p2

## Create residuals vs fits plot faceted by treatment arm on the
## misspecified model (Figure 3)

p3 <- ggplot(d, aes(x = f, y = r, color = t)) +
geom_point(alpha = 0.25) +
geom_smooth(

method = "loess",
formula = y ~ x,
se = FALSE,
span = 1

) +
facet_wrap( ~ t) +
theme_minimal() +
scale_color_manual(values = c("orange", "cornflower blue")) +
labs(color = "Treatment",

x = "Fitted value",
y = "Residuals")

p3

## Create residuals vs fits plot colored by treatment arm on the
## correct model (Figure 4)

p4 <- ggplot(d, aes(x = f_correct, y = r_correct, color = t)) +
geom_point(alpha = 0.25) +
geom_smooth(

method = "loess",
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formula = y ~ x,
se = FALSE,
span = 1

) +
theme_minimal() +
scale_color_manual(values = c("orange", "cornflower blue")) +
labs(color = "Treatment",

x = "Fitted value",
y = "Residuals")

p4
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