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Abstract. A method for automatic analysis and interpretation of histopathol-

ogy images is presented. The method uses a representation of the image data

set based on bag of features histograms built from visual dictionary of Haar-

based patches and a novel visual latent semantic strategy for characterizing the

visual content of a set of images. One important contribution of the method is

the provision of an interpretability layer, which is able to explain a particular

classification by visually mapping the most important visual patterns associated

with such classification. The method was evaluated on a challenging problem

involving automated discrimination of medulloblastoma tumors based on image

derived attributes from whole slide images as anaplastic or non-anaplastic. The

data set comprised 10 labeled histopathological patient studies, 5 for anaplastic

and 5 for non-anaplastic, where 750 square images cropped randomly from can-

cerous region from whole slide per study. The experimental results show that the

new method is competitive in terms of classification accuracy achieving 0.87 in

average.

1 Introduction

This paper presents a new method, ViSAI, for automatic analysis and interpretation of

histopathological images. The method comprises three main stages: learning of an im-

age representation based on bag of features (BOF), characterization of the rich visual

variety of a histopathological image collection using visual latent topic analysis, and

connection of visual patterns with the semantics of the problem using a probabilistic

classification model. The learnt probabilistic model is applied to new images, and the

class posterior probability is used to determine the corresponding class. The method

is applied to the classification of a type of brain cancer called medulloblastoma, which

is one of the most common types of malignant brain tumors [10]. In adults, the disease

is rare whereas in children the incidence amounts to a 25% of all pediatric brain tumors.

Tumor classification of medulloblastoma is currently performed by microscopical ex-

amination and no quantitative image analysis and classification tools are so far available

for this task. Different histologic types of medulloblastoma have different prognosis.
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The differential diagnosis is a hard task and tends to be qualitative. Determine the sub-

types of medulloblastoma are difficult to establish and subject to inter-observer vari-

ability because of the similarity between the two basic histologic subclasses: anaplastic

and non-anaplastic and their similarity with a long list of differential diagnoses. The

anaplastic medulloblastoma have worse prognosis and this is mostly characterized by

the presence of large, irregular cells that lack organization and in some cases attempt

to wrap around each other. The therapeutical management changes radically depend-

ing on the subtype of medulloblastoma so that histopathological diagnosis is useful in

determining the potential outcome of the disease. Hence computerized and quantitative

image analysis tools are useful in this kind of problem for better estimation of medul-

loblastoma subtype allowing potentially make better prognostic decisions.

Recent investigations [9] have pointed out the importance of provide computerized

and automatic image analysis tools as support to diagnosis and prognosis for differ-

ent types of cancer. Recent work in histologic image analysis has explored the use of

automated methods for breast cancer and prostate cancer diagnosis and grading [4,8]

using other images modalities. Galaro et al. [6] classified anaplastic and non-anaplastic

medulloblastoma subtypes, using a BOF of Haar wavelet coefficients as local pixel-

based descriptors. The authors of [6] reported on average a classification accuracy of

0.80. The above works have essentially developed tools to improve the quality of di-

agnosis in terms of objective support and some level of quantification. Bag of features

approach is an image content representation commonly used in computer vision area

which comprises three main stages: local feature extraction, dictionary construction,

and image representation. This approach have been successful adapted and applied in

histology images previously in image analysis and classification tasks [2,3]. On the

other hand, latent topic analysis is an approach widely used in text document collection

analysis to find the semantic topics related with these documents. The representative

techniques are latent semantic analysis (LSA), pLSA [7] and latent Dirichlet analy-

sis (LDA) [1]. Both pLSA and LDA suppose a generative model for documents. The

main assumptions here are: first, the image content of image could be represented by an

appropriate set of visual words from dictionary learnt from whole image collection rep-

resented by a good visual word representation, and second, the large visual variability

in the image collection is generated from a relatively small set of visual latent factors.

Under our analysis, visual latent factors correspond to high-level patterns that mix sets

of visual words that co-occur with high frequency in the collection. Semantics is then

linked to visual latent factors coding the relationship between the visual appearance and

particular classes.

The new method in this paper addresses the problem of automated classification of

histological slides. The method provides higher accuracy coupled with an interpretation

of classification results for the expert in terms of semantic domain, rather than being a

black-box approach. In particular, the main contributions of the present work are:

• A strategy to characterize the rich visual content of histology images combining

an image representation, based on BOF, and a texture local descriptor for image

patches based on a Haar wavelet transform.

• A visual latent-topic analysis model for finding higher-level visual patterns that

combine multiple visual words.



A Visual Latent Semantic Approach for Automatic Analysis and Interpretation 159

Fig. 1. Overall scheme for the visual latent semantic analysis for automatic classification and

interpretation method

• A method that is able, not only to globally classify a virtual slide, but also provides

interpretability determining the most important visual patterns associated with such

classification, and identifying their location in the original image.

2 Visual Latent Semantic Analysis of Medulloblastoma Images

ViSAI method performs an implicit semantic identification of the visual patterns that

characterize each class (anaplastic and non-anaplastic). The strategy is built upon an

image representation, based on BOF, and a visual latent semantics analysis, based on

probabilistic latent semantic analysis (pLSA). The overall scheme is depicted in Figure1.

2.1 Image Representation

Step 1: Local Features Extraction. square patches of 50 pixels, that is the minimum

spatial resolution that covers a cellular unit (nucleus and cytoplasm), are extracted us-

ing a dense grid strategy with an overlap of 80%. Each patch is represented by two dif-

ferent local descriptors, raw-blocks (block) and Haar wavelet coefficients (haar). The

raw-block descriptor corresponds to luminance values of pixels in the patch, whereas

the Haar descriptor corresponds to the filter responses of two scales of a Haar-wavelet-

based wavelet transform. Luminance differences are reduced by applying, before fea-

ture extraction, a mean-zero-variance-one normalization.

Step 2: Dictionary Construction. the dictionary is built by applying a conventional

k-means clustering strategy to a sample of image patches from the training set. The

number of clusters, k, corresponds to the dictionary size, and each centroid corresponds
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to a visual concept. An important difference with a previous texton-based approach [6]

is that our dictionary is constructed from images randomly selected from both classes,

regardless of whether it belongs to the class anaplastic or not, by which the visual

concepts are mixed up within a very heterogeneous dictionary.

Step 3: Novel Image Representation. each image is then represented by a k-bin his-

togram, capturing the frequency of each visual word in the image given the local de-

scriptor and the visual dictionary. A collection of images can be represented then by

a matrix, X , where each column corresponds to an image and each row to a visual

word. If each column is normalized (L1 normalization), each position in the matrix,

Xi, j, corresponds to the conditional probability of finding a visual word wi in an image

d j, i.e.,p(wi|d j).

2.2 Visual Latent Semantic Image Analysis

Step 1: Visual Latent Factors Analysis. The new method uses an approach similar to

pLSA that assumes that the presence of different terms (visual words) in a set of doc-

uments (images) can be explained by the presence of a reduced set of hidden variables

called latent factors. Specifically, the conditional probability P(wi|d j) can be repre-

sented as:

P(wi|d j)≈ ∑
k

P(wi|zk)P(zk|d j) (1)

where P(wi|zk) is the conditional probability of visual word wi given latent factor zk

and P(zk|d j) is the conditional probability of a latent factor zk given the image d j. The

latent factors can be found by solving an optimization problem that looks for P(W |Z)
and P(Z|D) that minimizes the Kullback-Leibler divergence between the left and right

sides of Equation 1 [5]. In our case, we solve the optimization problem by modeling it

as a matrix factorization problem: P(W |D) = P(W |Z)P(Z|D), where P(W |D) =X is the

histogram representation of the image collection discussed in Subsection 2.1, P(W |Z)
contains the latent factors represented in terms of visual words, and P(Z|D) contains

the representation of the images in the collection, in terms of latent factors.

Step 2: Semantic Latent Factors. Given a set of annotated training images, each im-

age, di, is associated with one of two classes: anaplastic (C1 = A) or non-anaplastic

(C2 = NA). If, for instance, the image is anaplastic then P(C1|di) = 1 and P(C2|di) = 0.

Following the same reasoning as in previous subsection this probability can be ex-

pressed in terms of the latent factors as follows:

P(Ci|d j)∼= ∑
k

P(Ci|zk)p(zk|d j) (2)

The probability P(Ci|zk) effectively connects each latent factor with the semantics of

the problem represented in terms of the biological concept associated with each class.

These probabilities can be found applying a matrix factorization algorithm [5] that fixes

P(Z|D) from the previous step and looks for P(C|Z) such that: P(C|D)=P(C|Z)P(Z|D).

Step 3: New Image Classification. A new image, d∗, is first represented using the

strategy discussed in Subsection 2.1. This produces a normalized histogram P(W |d∗).
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The image is then represented in terms of latent factors (zk) finding P(Z|d∗) such that:

P(W |d∗) ∼= P(W |Z)P(Z|d∗), where P(W |Z) was previously found in step 1 solving

Equation 1. Then, the posterior class probability of the image P(C|d∗) is calculated

using: P(C|d∗) ∼= P(C|Z)P(Z|d∗), where P(C|Z) was previously calculated in step 2

solving Equation 2 and obtained P(Z|d∗). Finally, the class assigned to the new image

is the one with the maximum class posterior probability.

3 Experimental Results and Discussion

3.1 Experimental Design

The dataset comprises 10 labeled histopathological cases from St. Jude Children’s Re-

search Hospital, which 5 are anaplastic and 5 are non-anaplastic. Each slide is a whole

virtual slide of 80000× 80000 pixels with one or more cancerous regions with a large

tumoral variability, manually annotated by a neuro-pathologist. For every slide, 750

individual images of 200× 200 pixels non-overlapping where extracted uniformly at

random from these cancerous regions, resulting in a database of 7500 different images:

half of them anaplastic. The local feature extraction is carried out as was described in

Subsection 2.1 for two local descriptors block and haar. The dictionary size was tested

with different sizes, 10, 20, 40, 80, 160 and 320 visual words. Finally the number of

latent factors was fixed to the dictionary size since this amounts to a maximum number

of elemental building blocks (visual words) to be represented by visual semantic con-

cepts (latent factors). The probabilistic analysis described in Subsection 2.2 provides a

probability value associated with the semantic importance of each of the initial visual

features so that these can be grouped together (into latent factors) by similar levels of

relevance per class (Equations 1 and 2).

Fig. 2. Dictionary size vs average accuracy for

both local features (block and haar)

In this sense, three different experi-

ments were proposed to evaluate each pa-

rameter of the proposed method. First,

determine the visual words appearance

from dictionaries and impact of dictio-

nary size for each local descriptor (block

or haar) evaluation average accuracy in

test data set over multiple trials of cross-

validation. Second, evaluate the classifi-

cation performance of the proposed im-

age representation (Subsection 2.1) for

each local descriptor using the proposed

method (Subsection 2.2) compared with

a k-NN classifier. Third, a visual map-

ping of high-level concepts to identify spatial regions associated by each one (anaplastic

and non-anaplastic).

3.2 Visual Dictionary Construction

Figure 2 shows the impact of the dictionary size on the validation average accuracy.

Overall, haar-based dictionary outperforms the raw-block representation by about 7%.
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For both representations the best performances were obtained with the largest dictio-

nary size obtaining 0.77 (blocks) and 0.86 (haar) in average accuracy. Visual words can

be related to a particular class calculating the posterior class probability. Table 1 shows

the 20 visual words with highest posterior class probability for both classes, for the two

types of representation. In all the cases the visual dictionary is composed basically of

smooth samples of nuclei and cells in different orientations and arrangements, a result

that matches perfectly with a very basic principle in pathology analysis which introduces

the cell as the basic unit of information. Also some differences between the visual words

associated to each class can be observed, for both (block and haar), non-anaplastic pat-

terns are more homogeneous.This is consequent with the biological definition of anapla-

sia, where cells are undifferentiated and nuclei shapes and sizes have high variability.

Table 1. A sample of the visual dictionaries obtained using different local features. Second

column shows the 20 visual words with highest probability by class (A:anaplastic, NA:non-

anaplastic) for each kind of local feature in a dictionary size of 160.

Feature 20 visual words with highest probability by class

block
A

NA

haar
A

NA

3.3 Classification Performance

For each of multiple trials of cross-validation, we used 4 anaplastic and 4 non-anaplastic

slides for training the visual semantic model and 1 anaplastic and 1 non-anaplastic slides

for testing. For comparison, the k-NN classifier was employed. An optimal value for k,

10, was found by cross validation such as was suggested in [6]. Different dictionary

sizes and patch representations were evaluated to determine the best configuration for

this classification task in terms of classifier accuracy, specificity, and sensitivity. The re-

sults are presented in Table 2, which shows the performance obtained with each image

representation strategy and classification algorithm. Clearly the haar-based representa-

tion outperforms the block-based representation, independent of classifier choice. The

new classification method is competitive with respect to the k-NN, a classical classifier

used in [6], the improvement was 3.6% in accuracy (haar), 12.7% in sensitivity (block)

and 10.1% in specificity (haar).

Table 2. Classification performance in terms of accuracy, specificity and sensitivity for dictionary

size of 320

ViSAI k-NN

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

block 0.78 0.89 0.67 0.80 0.79 0.81

haar 0.87 0.86 0.87 0.84 0.88 0.79
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Fig. 3. Visual semantic maps for test images from a cross validation trial. Images in the first

column were correctly classified (A-anaplastic and NA-non-anaplastic). See Subsection 3.4 for

description.

3.4 Visual Pattern Mapping and Interpretation

The methodology presented in this paper allows for new unknown images to determine

the spatial probability maps for each class using conditional probabilities. Figure 3 il-

lustrates the semantic visual maps generated for two unknown test images in a particular

trial of cross validation. Rows one and two show images of the same size used in training

(200×200), whereas rows three and four show a larger field of view (2000×2000). The

center column shows the corresponding BOF histogram representation for each image

(i.e. occurrence frequency of each visual word of the dictionary in the image) . Bin (vi-

sual words) has been sorted according to the posterior class probabilities: visual words

with a higher class probability of being anaplastic are at the left, and visual words with

a higher class probability for non-anaplastic are at the right. The third column shows the

posterior class probability. The fourth column shows a map that indicates how likely a

particular region of the image is to be related to one of the semantic classes. This is de-

picted by the log-odds of the posterior class probabilities to emphasize the differences.

A positive value (red) indicates a higher probability for class anaplastic, a negative

value (blue) indicates a higher probability for class non-anaplastic. An advantage of the

BOF image representation is that new method is able to scale towards larger image size

as shown in the rows three and four of Figure 3, where the correct prediction of classes

and spatial location of semantic regions is more challenging.
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4 Concluding Remarks

The new method ViSAI was successfully applied to the challenging problem of auto-

matic discrimination between two subtypes of medulloblastoma using computer derived

image features extracted from whole slides. The goal of our method was not just to im-

prove classification accuracy, but to provide interpretable results using latent semantic

analysis and BOF image representation. The method provides an interpretation layer

that helps out the pathologist to determine the type of patterns present in the sample

under examination with a potential improvement of diagnostic significance. This at-

tribute is particularly useful in problems relating to stratification of the disease where

the distinction between disease sub-classes might reside in very subtle visual cues. The

experimental results are promising and indicate that visual latent semantic analysis has

potential as a tool for analyzing the complex visual patterns exhibited by histopathology

images.
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