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Abstract 

 

Recent masked priming studies on visual word recognition have suggested that morphological 

decomposition is performed prelexically, purely on the basis of the orthographic properties of the 

word form. Given this, one might expect morphological complexity to modulate early visual 

evoked activity in electromagnetic measures. We investigated the neural bases of morphological 

decomposition with magnetoencephalography (MEG). In two experiments, we manipulated 

morphological complexity in single word lexical decision without priming, once using suffixed 

words and once using prefixed words. We found that morphologically complex forms display 

larger amplitudes in the M170, the same component that has been implicated for letterstring and 

face effects in previous MEG studies. Although letterstring effects have been reported to be left-

lateral, we found a right-lateral effect of morphological complexity, suggesting that both 

hemispheres may be involved in early analysis of word forms. 
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Exactly how linguistic input is decomposed into its basic computational units is one of the core 

questions for theories of language processing. This problem is obviously the most challenging 

for the auditory modality, where even major structural boundaries may lack any reliable 

marking. In reading, however, detecting word and sentence boundaries is usually trivial and, 

thus, the main challenge has been to understand whether and how complex words are further 

broken down into their constituent morphemes. We investigated this question with 

magnetoencephalography (MEG), with the aim of identifying what neural activity, if any, is 

sensitive to morphological complexity in the visual modality.  

 An interesting generalization has emerged from recent behavioral studies on decomposition 

in reading. According to this research, the processor not only decomposes morphologically 

complex words such as teacher, but also words such as corner, which is not a derivative of corn 

in any theory, but nevertheless superficially contains an existing stem, corn, and an existing 

affix, -er. The evidence comes from masked priming, where the primes are presented so briefly 

that they are not consciously perceived. Longtin, Segui, & Hallé (2003) reported equivalent 

priming in French for semantically transparent (gaufrette-GAUFRE ‘‘wafer-waffle’’), 

semantically opaque (fauvette-FAUVE ‘‘warbler-wildcat’’) and pseudo-derived (baguette-

BAGUE ‘‘little stick-ring’’) primes and no priming for orthographically related prime-target 

pairs such as abricot-ABRI (‘‘apricot-shelter’’). The pseudo-derived primes were superficially 

decomposable into the target stem and an affix, but crucially there was no semantic or 

etymological relationship between the prime and the target. This was in contrast to the 

orthographically related condition, where the prime contained the target but the remaining 

material (-cot) did not form an existing suffix. Similar results were found for English by Rastle, 

Davis, & New (2004), who obtained equivalent masked priming for semantically transparent 
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(cleaner-clear) and pseudo-derived primes (brother-broth) and no priming for primes that were 

only orthographically related to their targets (brother-broth).  

These results suggest that visual word recognition involves a presemantic processing stage 

where anything that looks complex is decomposed on the basis of orthographic properties alone 

(Longtin et al., 2003; Rastle et al., 2004). This type of view was originally proposed by Taft and 

Forster (1975), who also argued that decomposition is obligatory and prelexical. In those cases 

where presemantic decomposition leads to an incorrect analysis, as for the pseudoderived 

brother, we would expect priming between the “derived” form and the pseudostem (broth) to be 

rather short lasting. Indeed, in paradigms where the prime is consciously perceived, semantic 

transparency is generally required for reliable priming between related forms (Feldman & 

Soltano, 1999; Marslen-Wilson et al., 1994; Rastle et al., 2000). For example, Longtin et al. 

(2003) showed that the same opaque and pseudoderived stimuli that showed positive priming in 

masked priming failed to elicit any priming in crossmodal auditory-visual presentation, where 

only the semantically transparent primes facilitated target processing.  

 Thus it appears that splitting words into morphemes is the default mode of the language 

processor. Consequently, characterizing the neural bases of morphological decomposition is a 

central goal for the cognitive neuroscience of language. Given the behavioral masked priming 

literature, one would expect neural effects of form-based decomposition to occur in an early time 

window, potentially in visual areas. In order to identify decomposition related activity, we 

conducted two MEG experiments where complex and simple forms where contrasted in single 

word lexical decision.  

Surprisingly, there are relatively few existing neurolinguistic studies aimed at identifying 

decomposition related activity. Several ERP studies have compared correct and incorrect forms 
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of verbal inflection in various languages, finding that the type of violation response depends on 

whether the morphology is regular or irregular (Penke, Weyerts, Gross, Zander, Münte, & 

Clahsen, 1997; Rodriguez-Fornells, Clahsen, Lleó, Zaake & Münte, 2001; Weyerts,  Penke, 

Dohrn, Clahsen & Münte, 1997). However, recognizing that an affix is ungrammatical may 

plausibly depend on successful decomposition. Consequently, violation studies do not 

necessarily detect neural correlates of decomposition. Whether decomposition effects occur early 

or late was, however, directly investigated in ERPs by Lehtonen, Cunillera, Rodríguez-Fornells, 

Hultén, Tuomainen & Laine (2007), who contrasted inflected and monomorphemic Finnish 

words and found an effect of complexity only in the N400 time-window. Thus, to our awareness, 

there are no extant reports of complexity effects at 100-200ms, i.e., in the time-window of visual 

evoked components in EEG and MEG.     

Functional neuroimaging studies, offering good spatial accuracy but little temporal 

resolution, have reported effects of complexity in various left hemisphere structures. In an fMRI 

study, Vannest, Polk and Lewis (2005) found that complex English words with derivational 

affixes show more activation than either monomorphemic or inflected words in both Broca’s 

area and the basal ganglia. A PET study by Laine, Rinne, Krause, Teräs, & Sipilä (1999) and an 

fMRI study by Lehtonen, Vorobyev, Hugdahl, Tuokkola, & Laine (2006) have also shown that 

inflected Finnish words elicit more activation in the left inferior frontal, left posterior middle and 

superior temporal gyri during word recognition and encoding in memory. In addition to these 

effects, Lehtonen et al. (2006) did also find a somewhat less reliable effect in the left fusiform 

gyrus, i.e., in the so-called “visual word form area.” This may constitute some tentative evidence 

for the participation of higher level vision in morphological decomposition. Overall though, 
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hemodynamic methods have not yielded any clear-cut evidence in favor of decomposition effects 

in visual areas.  

We investigated whether early effects of decomposition might be revealed by MEG, which 

combines millisecond temporal resolution with relatively good spatial accuracy. Many studies 

have investigated the MEG responses elicited by visual words. The first two components, the 

visual M100 and the visual M170 are not specific to words but are rather elicited by any complex 

image. The visual M100 is generated in posterior midline regions in the vicinity of V1 cortex and 

peaks around 100-130ms (Cornelissen, Tarkiainen, Helenius, & Salmelin, 2003; Tarkiainen, 

Cornelissen, & Salmelin, 2002; Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999). 

This response is modulated by noise and the size of the stimulus, but shows no sensitivity to the 

contrast between letter strings and other visually similar stimuli. Consequently, the visual M100 

(or “Type I activity”) has been hypothesized to reflect low-level visual feature analysis 

(Cornelissen et al., 2003; Tarkiainen et al., 2002). In EEG, orthographic typicality has been 

found to modulate activity at ~100ms (Hauk, Davis, et al., 2006; Hauk, Patterson, et al., 2006), 

but whether this effect is generated by the same sources as the letter string effects of Cornelissen 

et al., (2003) and Tarkiainen et al. (2002) is unclear. Outside of language, one study has reported 

content-sensitivity in the visual M100 in the form of increased amplitudes for faces as opposed 

to houses (Liu, Harris, & Kanwisher, 2002). Thus there may be an asymmetry between linguistic 

and face stimuli in the depth of the analysis performed by the M100 generator.        

 The M170 (or “Type II activity” in Tarkiainen et al., 1999) has bilateral generators in inferior 

posterior occipitotemporal regions, peaking at 150-200ms. The left hemisphere generator shows 

greater activity for letter-strings than for symbol strings (Tarkiainen et al., 1999, 2002) and the 

right hemisphere generator increased amplitudes for face stimuli (Liu et al., 2002; Lueschow et 



 7 

al., 2004; Tarkiainen et al., 2002). However, bilateral face effects have also been reported (e.g., 

Liu, Higuchi, Marantz, & Kanwisher, 1999). Overall, the M170 seems to perform object-level 

processing, with potential lateralization differences between categories (Tarkiainen et al., 2002). 

 The MEG M170 literature converges well with the corresponding hemodynamic studies, 

where letter-string effects have consistently localized to left inferior posterior temporal regions, 

or more specifically to the left fusiform gyrus (Cohen et al., 2000; Dehaene, Le Clec’H,  Poline, 

Le Bihan, & Cohen, 2002) and face effects to the right fusiform gyrus (Kanwisher, McDermott 

& Chun, 1997; Tong, Nakayama, Moscovitch, Weinrib & Kanwisher, 2000). Consequently, 

these areas have been dubbed the Visual Word Form Area (VWFA) and the Fusiform Face Area 

(FFA), respectively.  

 Since the left hemiphere M170 generator is the first MEG response to show special 

sensitivity to letter strings as opposed to other visually similar stimuli, it is an obvious candidate 

for an early neural index of morphological decomposition. If decomposition effects are observed 

at the M170, this would suggest that the M170 generator is capable of extracting forms of 

morphemes from within a complex word.   

An M170 effect of morphological complexity would offer further support to prelexical 

decomposition, if it is indeed the case that the M170 reflects prelexical processing, as argued by 

many researchers (Cornelissen et al., 2003; Pylkkänen & Marantz, 2003; Salmelin, 2006; 

Salmelin & Kujala, 2006; Tarkiainen et al., 1999, 2002). A prelexical interpretation of the M170 

is supported by a sizeable body of MEG studies that have manipulated factors affecting 

lexicosemantic access and found left-lateral effects at 300-400ms, at the so-called M350/N400m, 

but not at the M170 (Beretta, Fiorentino, & Poeppel, 2005; Embick et al., 2001; Fiorentino & 

Poeppel, in press; Pylkkänen et al., 2001, 2002, 2004, 2006; Sekiguchi, Koyama, & Kakigi,  
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2001, 2004; Stockall & Marantz, 2006). Similarly, a large number of ERP studies have reported 

effects of lexico-semantic factors at the N400, and not earlier (for a review, see for example 

Kutas & Federmeier, 2000). However, there have also been MEG studies showing effects of 

lexical frequency at the M170 stage, or perhaps even earlier. In two MEG studies, one using a 

single subject and the other a group, Assadollahi & Pulvermüller (2001, 2003) reported an effect 

of lexical frequency already at 120-170ms for short words and a somewhat later effect for long 

words. This was interpreted as showing that nonphysical properties of words are processed 

already at 120-170ms. This finding has been corroborated by EEG studies where frequency 

effects have also been reported in this very early time-window (Dambacher, Kliegl, Hofmann, & 

Jacobs, 2006; Hauk, Davis, Ford, Pulvermüller, & Marslen-Wilson, 2006; Sereno et al., 1998; 

Sereno & Rayner, 2003).  

However, the recent evidence for stored representations of non-semantic visual word forms, 

reviewed above, raises the possibility that the early frequency effects could reflect prelexical 

access to form representations, as opposed to more abstract morpheme representations. This is a 

distinction that will need to be addressed in future work. Notice that an account of early 

frequency effects in terms of access to stored visual representations also predicts that lexicality 

should affect processing in roughly the same time-window as frequency. This result was, in fact, 

obtained by Hauk et al. (2006). However, in a similar time-window Hauk et al. also found an 

effect of so-called “semantic coherence”, a measure of the degree of semantic relatedness among 

the members of the morphological family of the stimulus word. Although this factor has not been 

extensively studied in the context of lexical access models, this finding is currently perhaps the 

best electrophysiological evidence for some type of a semantic effect before 200ms.  
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In sum, there is a controversy in the current MEG/EEG literature with respect to the timing 

of lexical access. Although elucidating this debate was not the goal of the current investigation, 

our study does indirectly address it, at least if interpreted in the context of the masked priming 

literature reviewed above. Namely, if decomposition is prelexical, as strongly suggested by the 

masked priming results (Longtin et al., 2003; Rastle et al., 2004), then the earliest neural 

correlate of morphological complexity would, consequently, reflect processing at a prelexical 

processing stage.  

As stated above, the primary aim of this study was to identify the earliest neural correlate of 

morphological complexity, whatever that may be. Instead of measuring the consequences of 

prime decomposition on target processing, which has been the main method of the behavioral 

literature, we aimed to measure decomposition directly by contrasting simple and complex words 

in single word lexical decision. A neural effect of decomposition that is not dependant on 

priming would provide a valuable novel dependent measure for the study of morphological 

processing.  

The studies of Longtin et al. (2003) and Rastle et al. (2004) have shown that decomposition 

requires the presence of an affix: brother decomposes but brothel does not, despite the presence 

of a “pseudo-stem” in brothel. To account for this, Longtin et al. propose that decomposition 

requires the simultaneous presence of both a stem and an affix. However, neither Longtin et al. 

nor Rastle et al. tested whether decomposition might be primarily driven by the presence of an 

affix, with the lexicality of the remaining material being irrelevant. In a priming paradigm this 

would be difficult to test as it would require using a nonword target, as in winter-WINT. Since 

we employed simple lexical decision, including a NonStem-Affix condition was possible. Under 

Longtin et al.’s hypothesis, one would expect these to show no decomposition effects. In 
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contrast, in Taft and Forster’s Affix Stripping Model (Taft & Forster, 1975), affixes are stripped 

whether or not the remaining material constitutes an existing stem. This would predict winter to 

pattern with complex forms such as teacher at the initial stage of decomposition.    

   

EXPERIMENT 1 

 

Suffixed and monomorphemic words were contrasted in a simple lexical decision task. We used 

a single suffix, -er, because this best allowed us to control for confounding factors such as word 

length and category. A large amount of non –er fillers was used to prevent participants from 

habituating to the presence of –er.  

 

Method 

 

Participants  

Sixteen right-handed native speakers of English were paid for their participation. The 

participants were graduate and undergraduate students at New York University (ages 20-32, 9 

female).  

 

Materials 

The stimuli were all nouns, 5-7 letters long. The main manipulation comprised of 3 bins of 34 

words, as follows: (i) bimorphemic words ending with the suffix -er (farmer); (ii) 

monomorphemic orthographic controls (winter); and (iii) simple monomorphemic words 

(switch). All of the orthographic controls in condition (ii) were such that stripping off the final er 
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did not result in a valid English stem. All conditions were matched for number of letters 

(F(2,33)=0.16, p=0.85), surface frequency (F(2,33)=0.42, p=0.66; Kucera & Francis, 1967), 

lemma frequency(F(2,33)=0.02, p=0.98; Kucera & Francis, 1967), orthographic neighborhood 

frequency (F(2,33)=1.37, p=0.26; Balota et al., 2002) and neighborhood density (F(2,33)=0.64, 

p=0.53). The only factor that ended up being imperfectly controlled for was number of syllables 

(F(2,33)=8, p < 0.001): monomorphemic words contained reliably fewer syllables than 

bimorphemic words (LSD p < 0.0005) and orthographic controls (LSD p < 0.005). But, 

importantly, bimorphemic stimuli and orthographic controls did not differ from each other in 

syllable count. Thus, an effect of complexity where the orthographic controls pattern with the 

other monomorphemic controls would not be explainable in terms of syllable count.  

 In addition to these conditions, our design contained a fourth bin of 34 er-suffixed words 

where the stem was a real word which had an opaque semantic contribution to the meaning of 

the whole word (sweater). This condition was matched to the other three conditions in all 

stimulus factors listed above and was included in order to assess the role of semantic 

transparency in any potentially elicited effect of complexity. The hypothesis that all words that 

look complex decompose in early stages of processing (Longtin et al., 2003; Rastle et al., 2004; 

Taft & Forster, 1975) would predict opaque items to pattern with transparent bimorphemic items 

at the decomposition stage. Unfortunately, however, we obtained no uniform pattern of results 

for our opaque items, different analysis methods yielding different results for this one condition. 

Thus our findings with respect to the opaque items remain inconclusive. Due to this 

complication, we delay discussion of the opaque items until the results of the other conditions, 

which do show a clear pattern, are reported. The lexical properties of all the four conditions are 

summarized in Table 1 and the items themselves in Appendix 1.  
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 Fillers included 239 real and 375 non-words. Of the real word fillers, 188 were 

monomorphemic words, and 51 suffixed. 102 of the non-words ended in the letters -er, 51 ended 

in letters that spell another suffix (quapist), and 222 did not contain suffix-like endings. 

 

Procedure  

During the experiment, the participants lay in a dimly lit magnetically shielded room and viewed 

the experimental stimuli via fiber-optic goggles (Avotec, FL). Words were presented in 

nonproportional Courier font (size 80), one at a time, following a fixation of 500ms in the middle 

of the screen. At each word’s appearance, the participants were required to press a button 

indicating whether it was a real word or not. The words disappeared on button press, or after 

4000ms had elapsed.  

Neuromagnetic fields were recorded with a whole-head, 148-channel neuromagnetometer 

array (4-D Neuroimaging, Magnes WH 2500) at a sampling rate of 678 Hz in a band between 1 

and 200 Hz. 

 

MEG Data Analysis 

Data Preprocessing. Prior to MEG data analysis, erroneous trials and trials wherein the response 

time differed by more than 3 standard deviations from the subject’s mean were excluded. MEG 

data were then cleaned of artifacts by rejecting all trials in which the difference between the 

minimum and maximum amplitudes exceeded a threshold, which varied between 2500-3600 fT, 

depending on the subject’s amplitude range. In addition, any trial in which two neighboring time 

samples differed by more than 800 fT was rejected. Data were averaged by condition using an 

epoch length of 500 ms, preceded by a pre-stimulus interval of 100 ms. On average 22% of each 
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subject’s data were excluded due to errors or artifacts (SD 4.3%). Prior to source modeling, 

MEG averages were low-pass filtered at 40Hz. 

 

Areal Mean Signals. We achieved an initial measure of brain activity by calculating areal mean 

signals (Hari, Portin, Kettenmann, Jousmäki & Kobal, 1997; Helenius, Salmelin, Service, 

Connolly, Leinonen & Lyytinen, 2002). For every millisecond, the squares of the signals from all 

the channels in each hemisphere were first summed and then the square root of the sum was 

calculated. These values were then averaged over 20ms time windows. The resulting value 

represented the total amount of activity in each hemisphere in each 20ms time window. 

 

Dipole Modeling. As a second analysis, a multiple-source model (Brain Electric Source 

Analysis, 5.1), was applied to MEG activity elicited at 0-500ms. For each subject, data from all 

real-word stimuli (including fillers, for a total of 375 words minus errors) were averaged together 

for the purpose of source localization. This assured the best signal-to-noise ratio, and assured that 

the same sources were compared for all conditions. All sensors were used in localization.  

Sources were fit at the peaks of response components of interest, based on previous MEG 

language studies in the visual modality (Embick et al., 2001, Helenius, Salmelin, Service, & 

Connolly, 1998, Pylkkänen et al. 2004, 2006; Pylkkänen & Marantz, 2003; Pylkkänen, 

Stringfellow, & Marantz, 2002; Tarkiainen et al., 1999). The methods used differed for different 

components.  

For the M170, there is strong fMRI evidence that the M170 field is generated in fusiform 

gyri. Although the M170 field pattern is elicited by most complex visual stimuli, its left and right 

generators show differential sensitivity to the content of the stimulus. The left hemisphere 
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generator shows a stronger response to letter strings (Tarkiainen et al., 1999) whereas the right 

hemisphere generator is sensitive to faces (Liu, Harris & Kanwisher, 2002; Tarkiainen, 

Cornelissen, & Salmelin, 2002). As reviewed above, in fMRI studies, letter-string effects have 

consistently localized to the left fusiform gyrus (Cohen et al., 2000; Dehaene, Le Clec’H,  

Poline, Le Bihan, & Cohen, 2002) and face effects to the right fusiform gyrus (Kanwisher, 

McDermott & Chun, 1997; Tong, Nakayama, Moscovitch, Weinrib & Kanwisher, 2000), 

suggesting that the M170 is generated in fusiform gyri bilaterally. However, despite the evidence 

that the M170 has bilateral generators in fusiform gyri, multidipole modeling of the M170 field 

pattern with BESA yielded mostly midline localizations of a single dipole, possibly because of 

the significant overlap between the magnetic fields associated with the left and right hemisphere 

sources of this activity. Since a single dipole midline solution was likely to be incorrect for the 

M170 (and this was confirmed by our distributed source modeling, see Results), M170 dipoles 

were seeded instead of fit to the data. Specifically, the left hemisphere generator of the M170 

field was represented as a current source exactly in the mean location where Cohen et al. (2000) 

reported increased activation for letter strings (Talairach coordinates x=-42, y=-57, z=-6). The 

right hemisphere M170 source was made exactly symmetric to this (x=42, y=-57, z=-6). Thus 

M170 dipole location was kept constant across all subjects and conditions. M170 dipole 

orientation, on the other hand, was determined within subjects at the timepoint in which these 

dipoles accounted for the most activity (M = 174ms, SD 32ms). Dipole orientation was kept 

constant across conditions. Even though no other sources were included in the M170 models, the 

two fusiform dipoles accounted for a mean of 77.2% (SD 10.1%) of M170 activity across all 

sensors.  
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In addition to the two-dipole models of the M170 activity, source models were created both 

for visual M100 and M350 activity. As reviewed above, the visual M100 is sensitive to various 

physical stimulus factors such as noise and size, whereas the M350 is affected by a host of 

lexical-level factors. Since the generators of these two components are relatively straightforward 

to localize, traditional multidipole modeling was used. The visual M100 is associated with a left-

lateral outgoing field and a right-lateral re-entering field over occipital sensors; such fields were 

found in all 16 subjects. The M350 features a posterior outgoing field and an anterior re-entering 

field over left temporal sensors; this type of field was found in 12 subjects. Multidipole models 

were created for the timepoints where the M100 and M350 field distributions were the clearest. 

Only dipoles that fell within the areas of activity in minimum norm estimates, and whose 

location and orientation were consistent with the magnetic field patterns, were accepted. At the 

end we had three multi-dipole models per subject, each accounting for activity at a single 

component (M100, M170 and M350). Each of these component-based models was then applied 

to each of the three conditions. The latency and amplitude values were measured at the peaks of 

the sourcewaves. If a source peaked multiple times in the time-window of interest, the peak at 

which the goodness-of-fit of the dipole was the highest was selected. 

 

Distributed Source Analysis. As mentioned above, the generators of the M170 were difficult to 

model as discrete dipoles, possibly due to the overlapping magnetic fields associated with the 

bilateral sources of this activity. In order to assess the effect of our stimulus manipulation on  

M170 activity with a more objective method that the planted dipoles approach, we additionally 

carried out a distributed source analysis of the activity in the M170 time-window with Minimum 

Norm Estimates (MNEs). MNEs provide an estimation of current density across a large number 
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of sources evenly distributed across the brain surface (Hämäläinen & Ilmoniemi 1984). MNEs 

have the advantage over dipole models of requiring no assumptions about the location or number 

of sources. Rather, the method implicitly incorporates side assumptions (here, e.g., a minimum 

L2-norm of the final current distribution is assumed). Further, unlike discrete source models, 

which are most accurate for focal sources, MNEs are also suitable for the representation of 

distributed sources (Hauk, 2004; Uutela, Hämäläinen, & Somersalo, 1999).  

The minimum norm images were calculated in BESA 5.1. Each MNE was based on the 

activity of 1426 regional sources evenly distributed in two shells 10% and 30% below a 

smoothed standard brain surface. Regional sources in MEG can be regarded as sources with two 

single dipoles at the same location but with orthogonal orientations. The total activity of each 

regional source was computed as the root mean square of the source activities of its two 

components. The minimum norm images were depth weighted as well as spatio-temporally 

weighted, using a signal subspace correlation measure introduced by Mosher & Leahy (1998).  

Pair-wise comparisons of the minimum total powers of the current distribution (the minimum 

L2 norm) associated with each experimental condition were carried out sample by sample. Two 

statistical tests were used. Each observation (i.e., a source amplitude at a time point) was 

included in two statistical tests: a point-by-point t-test, and a within-subjects non-parametric 

statistical permutation test based on 1000 random draws (Maris & Oostenveld, in press). We 

considered a point to show a reliable difference if both tests returned a p value of 0.05 or less for 

at least 25 milliseconds (17 samples) and if 10 of its closest neighbors were also at p<0.05 in 

both tests. Thus each significant effect represented the center of a spatio-temporal neighborhood 

showing a reliable difference between conditions.  
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Results 

 

Behavioral data 

Mean lexical decision times are shown in Table 2. No behavioral effects were found, suggesting 

that morphological complexity is not associated with a processing cost that is straightforwardly 

reflected in lexical decision times.  

 

Areal Mean Signals 

Figure 1 shows the areal mean signals for both hemispheres. An effect of condition was found in 

the right hemisphere (RH) at 150-170ms (F(2,15)=3.9, p<0.05). Pairwise comparisons showed 

that bimorphemic stimuli elicited larger amplitudes (M = 88.6 fT) than either monomorphemic 

(M = 75.3 fT, LSD p<0.05) or monomorphemic orthographically matched controls (M = 74.3 fT, 

LSD p<0.05). In the left hemisphere the conditions did not differ reliably. Thus the areal mean 

signals showed an effect of morphological complexity in the M170 time window, although the 

right-laterality of the effect was unexpected.  

 

Dipole Models 

In order to examine the effect of complexity in source space, we analyzed the timing course of 

activation of the visual M100, M170 and M350 dipoles. Consistent with the areal mean signals 

the visual M100 showed no effect of the stimulus manipulation.  

As mentioned above, the M170 activity was modeled by bilateral sources placed in the 

fusiform gyri. M170 sourcewaves that peaked before 130ms (1 RH sourcewave) or after 230ms 

(4 LH and 4 RH sources) were excluded from calculations, as these fall outside the typical M170 
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time window. In the right hemisphere M170 generator, an effect of condition on amplitude was 

found (F(2,15)=4.2, p<0.05).  Pairwise comparisons showed the bimorphemic words elicited 

more activation than orthographic controls (LSD p<0.01), displaying a clear effect of 

morphological complexity. The left hemisphere M170 also showed an effect of condition on 

amplitude (F(2,15)=3.5, p<0.05) although this was clearly not an effect of morphology as the 

bimorphemic and the non-orthographic monomorphemic words displayed similar peak 

amplitudes. No effect on latency was observed in either hemisphere. Figure 2 shows mean M170 

sourcewaves for all conditions, and Table 3 summarizes peak values. No effects were found in 

the M350. 

 Overall, these results corroborate what was found in the areal mean signals. It appears that 

morphological complexity indeed modulates the M170. Further, the fact that the orthographic 

controls (winter) patterned with the other monomorphemic words supports the conception of 

Longtin et al. (2003) that decomposition depends on the presence of both an affix and a stem.  

 

Distributed Source Analysis 

Figure 3 plots all sources that met our significance criteria in the distributed source analysis. 

Given the results of the areal means and the dipole analysis, we compared the minimum norms in 

the time period commonly associated with the M170, i.e., at 140-200ms. Starting at 160ms, we 

found reliably larger source amplitudes for the bimorphemic condition in right posterior inferior 

regions when compared to either monomorphemic condition. No similar difference was found 

when comparing the two monomorphemic conditions to each other. Figure 4 plots the timecourse 

of activity in the right hemisphere posterior inferior region where the reliable amplitude increase 
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for bimorphemic words was observed. In addition, the timecourse of activity in the 

corresponding left hemisphere sources is plotted, showing a lack of any reliable effect.  

In sum, we obtained a consistent right-lateral effect of complexity across three analysis 

methods: areal mean signals calculated in sensor-space, discrete dipole models as well as 

distributed source models. Further, the right posterior inferior localization of the complexity 

effect obtained with MNEs confirmed that the placement of the dipoles in the discrete source 

analysis was in the right region.  

 

Opaque items 

Although the three analysis methods discussed above yielded a consistent right-lateral effect of 

complexity for the transparent bimorphemic items, we did not obtained a similarly uniform 

pattern of results for the opaque er-suffixed words. Behaviorally, the opaque items did not differ 

reliably from any of the other conditions (all pairwise p’s > 0.2). As regards the MEG data, recall 

that if the RH M170 effect obtained for the transparent bimorphemic items reflected prelexical 

orthographically based decomposition, a similar effect should also have been found for the 

opaque items. The results of the M170 dipole analysis indeed patterned consistent with this 

hypothesis. When the opaque items were included in the statistics, RH M170 peak amplitudes 

showed a reliable main effect of Condition (F(3,15)=3, p<0.05), peak amplitudes of the opaque 

items (M = 26.45) being larger than those of both the monomorphemic (M = 23.58) and 

the orthographic controls (M= 19.9) (Fig. 5A). In pair-wise comparisons these differences did 

not reach reliablity, but when the complex transparent and the opaque items were both treated as 

+morphologically complex in a one-way ANOVA, the effect of complexity on RH M170 

amplitude was significant (F(1,15)=5.89, p<0.05).    
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 Unfortunately, however, neither the areal mean signals nor the distributed source analysis 

replicated this finding. The peak amplitudes of the right hemisphere areal mean signals in the 

M170 time window were not different for the opaque items in comparisons to either the  

orthographic (p = 0.6) or the monomorphemic controls (p = 0.15) . In fact, the opaque items 

showed reliably smaller peaks than the transparent bimorphemic items (p < 0.05), even though in 

the M170 dipole analysis these conditions patterned together. The distributed source analysis 

also showed no right-lateral differences between the opaque items and the monomorphemic 

controls. The opaque and transparent complex items did, however, dissociate right-laterally, with 

right posterior regions showing reliably larger amplitudes for the transparent items starting at 

140ms.  

Thus although the dipole analysis suggests that our M170 effect extends to opaque affixed 

words, the areal means signals and the distributed source analysis point to the opposite 

conclusion. These results suggest a complicated processing profile for opaque derived words, 

which is perhaps not surprising given their ambiguous status as complex words. Most likely, the 

M170 decomposition effect extends to opaque words in some partial way underdetermined by 

our current analysis methods.  

In Experiment 2, we sought to further elucidate the more straightforward effect obtained for 

the transparent items, by examining the effect of affix position on the laterality of the M170 

amplitude increase.  
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EXPERIMENT 2 

 

Given that the RH M170 has previously been associated with face and not letter-string effects 

(Liu et al., 2002; Tarkiainen et al., 2002), the right-laterality of our complexity effect was rather 

surprising. In Experiment 2, we tested an alternative explanation of the effect, in terms of 

lexicality as opposed to decomposition.  

Our hypothesis was motivated by the fact that the visual field is split into two halves, the 

contents of the right visual field (RVF) being initially projected to the left hemisphere (LH), and 

the contents of the left visual field (LVF) to the right hemisphere (RH). The importance of taking 

this physical constraint into account in models of reading has been emphasized in the Split 

Processing Model of Shillcock and colleagues (McDonald & Shillcock, 2005; Shillcock, Ellison, 

& Monaghan, 2000; Shillcock & Monaghan, 2001). As described above, our stimuli were 

delivered to each eye separately via fiberoptic goggles. Since the words appeared at the center of 

each display, the suffix always appeared in the right visual field and most of the stem in the left 

visual field, assuming that subjects fixated approximately in the middle of the display. Thus the 

visual features of the majority of the stem were initially analyzed in the right visual cortex, 

raising the possibility that the right-lateral M170 effect could have been due to the RH detecting 

an existing word form (i.e., the stem) only in the case of the morphological complex forms. This 

hypothesis assumes that right-lateral occipitotemporal areas are capable of word form 

recognition, contrary to the standard model of reading, where information presented to the 

LVF/RH must be transferred to the left hemisphere VWFA for word form recognition (Cohen et 

al., 2000). Nevertheless, we conducted a second experiment aimed at addressing a lexicality 

driven account of our effect in Exp. 1.  
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To test whether the right-laterality of the M170 effect in Exp. 1 was due to the positioning of 

the stem in the LVF, we employed prefixed words in Exp. 2, reversing the position of the stem 

and affix. We hypothesized that if the right-laterality of our M170 effect was solely due to stem 

positioning, the effect should be elicited in the left hemisphere for prefixed words. On the other 

hand, a right hemisphere effect for prefixed words would indicate that the right hemisphere plays 

a role in the processing of complex words that is independent of the stem’s linear position.  

 

Method 

 

Participants  

Ten right-handed native speakers of English were paid for their participation. Nine of the 

participants were undergraduate or graduate students at New York University, and one was a 

faculty member (ages 20-45, five females).  

 

Materials 

There are no noun-deriving prefixes in English that are productive to the same extent as –er. 

Therefore, the verbal prefix re- was used. The stimuli were all verbs, 5-8 letters long. They were 

divided into 3 bins of 32 words each, as follows: (i) bimorphemic words beginning with the 

prefix re- (refill); (ii) orthographic controls that started with re- (reckon); and (iii) 

monomorphemic words that did not start with re- (rotate). As in Exp 1, the orthographic controls 

were of the form AffixNonword. All conditions were matched for number of letters 

(F(2,31)=0.03, p=0.96), surface frequency (F(2,31)=0.03, p=0.97; Kucera & Francis, 1967), 

lemma frequency (F(2,31)=0.41, p=0.66; Kucera & Francis, 1967), number of syllables 
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(F(2,31)=1.56, p=0.21) and orthographic neighborhood density (F(2,31)=2.25, p=0.11) and 

neighborhood frequency (F(2,31)=0.06, p=0.94). Table 4 summarizes the lexical factors 

controlled for in the critical stimuli.  

 In addition to the critical stimuli, both real and non-word fillers were used. A total of 224 real 

word fillers, none of which started in re-, were divided into 176 monomorphemic words, and 48 

prefixed words. A total of 320 non-words were divided into 96 non-words starting in the letters -

re, 48 non-words starting in letters that spell out another prefix (disgrake), and 166 non-words 

that do not contain prefix-like beginnings. 

 

Procedure and Data Analysis 

The procedure and data analysis were identical to those in Exp. 1. On average 23% of each 

subject’s data were excluded due to errors or artifacts (SD 8.3%). In determining the orientation 

of the M170 fusiform sources, dipole orientation was again determined at the timepoint in which 

these dipoles accounted for the most activity (M = 177ms, SD 25ms). As in experiment 1, the 

two fusiform dipoles accounted for a mean of 78% (SD 9.7%) of M170 activity across all 

sensors. 

 

Results 

 

Behavioral data 

Lexical decision data are summarized in Table 5. As in Exp. 1, we obtained no reliable effect on 

the behavioral responses. 
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Areal Mean Signals 

Areal mean signals are displayed in Fig. 6. Like in Exp. 1, morphologically complex words 

showed larger right hemisphere amplitudes at 150-170ms than either control condition. Unlike in 

Exp. 1, the left hemisphere data showed the same pattern. However, neither of these effects 

reached reliability. The M170 peak amplitudes and latencies are summarized in Table 6.    

 A significant effect of condition was found in the right hemisphere in the 190ms-210ms time 

window (F(2,9)=4.4, p<0.05), and another in the 310-330ms time window (F(2,9)=4.3, p<0.05), 

but neither of these effects were effects of morphological complexity.  

 

Dipole Models 

As in Exp. 1, M170 activity was modeled by placing bilateral sources in the fusiform gyri. One 

LH sourcewave that peaked after 230ms was excluded from calculations. 

 As shown in Fig. 7, the results of the source analysis paralleled those obtained from the areal 

mean signals in the same time window, except that the bilateral amplitude increase for 

morphologically complex words was now reliable (RH: F(2,9)=3.5, p=0.05; LH: F(2,9)=4.7, 

p<0.05). Pairwise comparisons showed that the bimorphemic condition differed reliably from the 

monomorphemic condition (LSD p<0.05) and orthographic controls (LSD p<0.05) in the left 

hemisphere. In the right hemisphere, they differed significantly from the monomorphemic 

condition (LSD p<0.05), and marginally from the orthographic control (LSD p<0.1). M170 

latency and amplitude data are summarized in Table 6.  

 As in Exp. 1, no reliable effects of condition were found in either the M100 or the M350. 
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Distributed Source Analysis 

Analysis of the distributed source activity associated with the three types of stimuli was 

conducted according to the same criteria as in Exp. 1. Fig. 8 plots all reliable effects of the 

stimulus manipulation. Consistent with the areal means and the source analysis, a reliable 

difference between the monomorphemic and bimorphemic conditions was found in left posterior 

inferior regions. However, unlike in the other measures, no effects were found in the right 

hemisphere. Further, the MNEs showed no reliable difference between the bimorphemic stimuli 

and the orthographic controls. Figure 9 plots the timecourse of the activity in the reliable LH 

sources as well as their right hemisphere homologues.  In addition, a statistically reliable 

difference was found between the monomorphemic and bimorphemic conditions in a superior 

frontal region. The time course of this rather low amplitude superior activity is plotted in Figure 

10.  

 Overall, the results of Exp. 2 were not as robust as those of Exp. 1, where areal means, dipole 

source waves and MNEs all produced reliable and consistent results. One reason for this may be 

the lower number of subjects in Exp. 2. The discrepancy between the M170 dipole results, 

showing a bilateral effect, and the MNE results, showing only a LH effect, may be due to larger 

between-subjects variance in the localization of the M170 in the right hemisphere. To see why 

this may be relevant, imagine a situation where a group of subjects all show an effect within a 

certain region, but there is no overlap in the actual surface areas exhibiting the effect across 

subjects. A dipole placed in the middle of this region might capture the effect in all the subjects, 

yielding a reliable effect, whereas a voxel-by-voxel, or, as in our case, a regional source by 

regional source, analysis would not. Thus the RH M170 sources generating the complexity effect 

in the dipole analysis of Exp. 2 may have been more widely distributed than in Exp. 2.  
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 In summary, Exp. 2 was designed to test whether a right-lateral effect of complexity would 

be obtained also for prefixed words, which would suggest that the effect of Exp. 1 was due to 

complexity and not to recognition of the stem. A RH effect was indeed obtained reliably in the 

dipole analysis and as a trend in the areal mean signals. However, unlike in the results for 

suffixed words, all the analysis methods also suggested a left hemisphere effect of complexity 

for prefixed words. Our study underdetermines the interpretation of this bilateral effect, which 

needs to be addressed in future studies. At least three different explanations are possible. First, it 

is possible that the difference reflects a genuine difference in the neural bases of decomposing 

suffixed and prefixed words. Perhaps suffixed words are decomposed right-laterally and prefixed 

words bilaterally, for whatever reason. Second, the monolateral effect of Exp. 1 could have been 

due to a combined lexicality and complexity effect in the RH and the bilateral effect of Exp 2 to 

a left-lateral effect of lexicality and a right-lateral effect of complexity. Or, finally, it is possible 

that morphological decomposition is performed by the M170 generators, and there is no 

interesting generalization about laterality. Importantly, however, every account has to appeal to 

decomposition in some way, since that is the only stimulus factor that can explain the right-

hemisphere effect obtained both in Exp. 1 and 2.    

 

DISCUSSION 

 

Our study aimed to examine what neural activity, if any, is sensitive to morphological 

complexity in the visual modality. In two experiments, we found an effect of complexity on the 

M170, a component that has previously been associated with letter string and face perception. 

This indicates that morphemes, in addition to letters and faces, are among the complex visual 
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objects that M170 activity is sensitive to. These results establish a starting point for using the 

M170 as a dependent measure in studies of morphological processing.  

However, contrary to our expectations, the complexity effect was manifested in the right 

hemisphere, which is surprising in the context of previous research showing that letter string 

effects localize to the left hemisphere M170 generator. In order to test whether our right lateral 

effect could perhaps be explained as an early lexicality effect, generated by the right hemisphere 

“seeing” an existing stem in the left visual field only in the case of suffixed forms, we 

manipulated complexity with prefixed words instead. Although the prefix experiment yielded a 

more complicated set of results, a right-lateral effect of complexity was observed in the M170 

dipole analysis, suggesting that the RH M170 generator is sensitive to complexity no matter what 

the linear ordering between the stem and the affix. But interestingly, prefixed words also elicited 

increased amplitudes in the left hemisphere M170 source, suggesting that factors other than 

complexity may also be at play. Thus, our dataset shows a general effect of complexity in the 

right hemisphere M170 and effect in the left hemisphere that may have a lexicality-based 

explanation. 

 Although the right M170 generator has not figured in previous studies of visual language 

processing, results similar to ours have been obtained in an fMRI study comparing the Japanese 

Kanji and Kana scripts (Nakamura, Dehaene, Jorbert, Le Bihan & Kouider, 2005). This study 

showed that Kanji, wherein words are composed of logographic symbols representing 

morphemes, elicits greater activity in the right fusiform gyrus, than Kana, which is syllabic. In 

light of our results, this main effect of script may, in fact, have been an effect of morphological 

complexity. Another similarity can be found with a hemifield study by Caplan, Holmes & 
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Marshall (1974), which showed that presentation to the right hemisphere improves recognition of 

complex –er words as compared to simple ones. 

Our hypothesis that morphological complexity might affect early visual evoked activity 

stemmed from recent masked priming studies, which have suggested that morphological 

decomposition is performed prelexically, purely on the basis of superficial word form (Longtin et 

al., 2003; Rastle et al., 2004). In light of these masked priming results, one would predict the 

earliest neural activity sensitive to morphological complexity to reflect a prelexical processing 

stage. To the extent that our methods were sufficiently sensitive to observe the earliest such 

effect, our results support a prelexical interpretation of the M170 stage.  

It is worth noting that the latency of the M170 is of course much longer than the stimulus-

onset-asynchronies of the above-mentioned masked priming studies, where the targets were 

presented 50ms after prime onset. What the masked priming results tell us is that 50ms is long 

enough for the visual system to gather all the information that it needs for decomposition. 

According to our results, decomposition does not, however, occur until at about 170ms. The 

combination of our data and the evidence that a complex prime is decomposed even when the 

target follows it only after 50ms suggests that the decomposition of the prime can occur after the 

target is already visible. This is consistent with views of masked priming where the processing of 

the prime is not halted by the visual mask, but rather proceeds to higher levels of representation 

although subliminally (e.g., Badecker & Allen, 2002; Marcel, 1983).   

Finally, our study addressed whether decomposition is performed whenever the visual system 

detects a possible affix (Taft & Forster; 1975) or whether the remaining material must also 

constitute a possible stem, as suggested by Longtin et al. (2003). With the exception of the 

minimum norm analyses of Exp. 2, all our measures support the latter hypothesis: forms 
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containing an affix and a nonword (wint-er, re-ckon) patterned with straightforwardly simple 

forms. This supports the notion that decomposition is sensitive to the lexicality of the stem. 

Consequently, the M170 generators must be able to detect not only the shapes of high frequency 

affixes but also the forms of open class items. In other words, our study has shown that, in 

addition to performing higher level vision more generally, the activity underlying the M170 is 

able to detect that printer has two parts whereas winter does not.  
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Appendix 1: Critical stimuli of Experiment 1 

Monomorphemic Orthographic Bimorphemic Opaque 

almond anger adviser bouncer 

balance antler baker breather 

barrow banter bidder bumper 

beard barrier boiler buster 

billiard beaver boxer charter 

broom blunder caller computer 

bubble bluster catcher counter 

button cancer charmer drawer 

cannon canker crafter flyer 

champ cinder dancer folder 

clown clatter digger gutter 

convent cluster diver header 

crutch danger driver joiner 

curtain feather dryer locker 

drizzle fever employer merger 

envelope filter faker officer 

fright finger farmer patter 

margin fodder freezer plunger 

marlin garter heater poker 

middle gender hunter porter 

notion ginger killer poster 

pheasant grocer loser prayer 

puddle holster observer ranger 

rocket leather offender rubber 

rumble lumber painter scooter 

scalp monster preacher slipper 

scout otter printer sneaker 

scramble plaster reviewer steamer 

socket platter rider sweater 

spark roster singer teller 

switch silver sinner toner 

tangle tiger sleeper trailer 

trickle whimper weaver trucker 

witness whisper winner tumbler 
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Appendix 2: Critical stimuli of Experiment 2 

Monomorphemic Orthographic Bimorphemic 

abandon rebuke react 

acquiesce reckon readjust 

adapt reconcile reaffirm 

applaud recruit reappear 

assay reflect rearrange 

bargain refrain rebound 

barricade refute rebuild 

beckon regulate recall 

broil reign recapture 

catalogue reject recite 

compare rejoice recoil 

creak relieve recount 

croak relish recover 

diagnose remedy redeem 

donate render redirect 

guarantee repel refill 

knead replenish refinance 

orate reprieve refine 

plead reproach reform 

rotate repudiate refuel 

sacrifice rescue refund 

salute resemble reissue 

slaughter resist relive 

sneak resume remind 

sprinkle retain repay 

squeak retaliate reproduce 

straggle retch reread 

suppress retort reside 

surrender retrieve resign 

sweep revel restore 

volunteer revert restrain 

wreak revolve rethink 
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Table 1 

Summary of the lexical properties of the critical stimuli of Experiment 1.  

 Monomorphemic Monomorphemic 

Orth. 

Bimorphemic  Bimorphemic 

Opaque 

Length (letters) 6.21 (0.91)  6.26 (0.67) 6.32 (0.97) 6.41 (0.74) 

Length 

(syllables) 

1.74 (0.51) 2 (0) 2.05 (0.34) 1.97 (0.39) 

Surface 

frequency  

14.44 (25.4) 12.44 (16.05) 10.29 (11.61) 10.24 (18.43) 

Lemma 

Frequency  

16.88 (25.5) 16.68 (23.43) 15.94 (18.49) 15.08 (31.93) 

Orthographic 

neighborhood 

density 

4.18 (2.18) 4.62 (2.46) 4.82 (2.58) 4.82 (2.99) 

Orthographic 

neighborhood 

frequency  

6.52 (1.8) 6.14 (1.32) 6.72 (1.25) 6.33 (1.18) 
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Table 2 

Lexical decision time results of Experiment 1. No behavioral effects were obtained. 

 RT Error rate 

Monomorphemic  739.8 1.6% 

Monomorphemic orth. 745.2 2.1% 

Bimorphemic 731.1 1.7% 
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Table 3 

Mean M170 peak amplitudes and latencies from Experiment 1.  

 

 Left Hemisphere Right Hemisphere 

 Peak Amplitude  Latency Peak Amplitude  Latency 

Monomorphemic 29.0 nAm 181 ms 23.5 nAm 186 ms 

Monomorphemic orth. 25.6 nAm 170 ms 19.9 nAm 181 ms 

Bimorphemic  28.1 nAm 175 ms 27.2 nAm 183 ms 
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Table 4 

Summary of the lexical properties of the critical stimuli in Experiment 2.  

 

 Monomorphemic Monomorphemic 

Orth. 

Bimorphemic  

Length (letters) 6.56 (2.03)  6.75 (1.24) 6.84 (1.17) 

Length (syllables) 1.97 (0.74) 2.22 (0.66) 2.19 (0.4) 

Surface frequency  6.71 (7.75) 7.16 (6.27) 6.84 (8.82) 

Lemma Frequency 19.56 (23.07) 19.63 (22.63) 15.34 (18.65) 

Orthographic 

neighborhood  density 

1.28 (1.65) 1.43 (2.29) 0.59 (0.8) 

Orthographic 

neighborhood frequency  

6.81 (1.58) 6.5 (2.68) 6.62 (3.17) 
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Table 5 

Lexical decision time results of Experiment 2. No behavioral effects were obtained. 

 

 RT Error rate 

Monomorphemic non-orth. 744.8 11.9% 

Monomorphemic orth. 785.6 10.4% 

Bimorphemic  757.9 4.9% 
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Table 6   

Mean M170 peak amplitudes and latencies from Experiment 2.  

 

 Left Hemisphere Right Hemisphere 

 Peak Amplitude  Latency Peak Amplitude  Latency 

Monomorphemic 26.8 nAm 175 ms 25.2 nAm 182 ms 

Monomorphemic orth. 27.6 nAm 179 ms 26.3 nAm 174 ms 

Bimorphemic  32.4 nAm 177 ms 30.7 nAm 175 ms 
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Figure Captions 

Figure 1. Experiment 1 areal mean signals. Center diagram represents the sensor arrangement 

and the dividing line between left and right hemispheres. The areal mean signals of the right 

hemisphere sensors show reliably larger amplitudes for the bimorphemic items at around 170ms. 

Figure 2. Experiment 1 mean M170 source waveforms, showing increased amplitudes for the 

bimorphemic items right laterally. Center diagram shows source dipole location plotted on a 

standard MRI. Individual subject waveforms were aligned at the peaks before averaging.  

Figure 3. Experiment 1 minimum norm significant source clusters, representing the locations of 

all sources found to exhibit a reliable difference in amplitude over 20ms time periods, for each of 

the three pairwise comparisons between conditions.  

Figure 4. Time course of minimum norm activity in Experiment 1. Right diagram plots mean 

activity in the right hemisphere sources that exhibit a reliable amplitude difference at ~170ms. 

Left diagram plots mean activity in the left hemisphere homologue of these sources. The contrast 

between the hemispheres reveals that the effect of complexity is clearly right-lateral.  

Figure 5. Summary of RH M170 data including the opaque suffixed condition. Left diagram 

plots peak amplitudes of planted dipoles. Center diagram plots peak amplitude of areal means. 

Right diagram represents the locations of sources found to exhibit a reliable difference in 

amplitude between 160ms and 180ms for the three pairwise comparisons involving opaque 

suffixed stimuli.. 

Figure 6. Experiment 2 areal mean signals. Center diagram represents the sensor arrangement 

and the dividing line between left and right hemispheres. Bimorphemic items trend towards 

larger peak amplitudes in the M170 time window.  

Figure 7. Experiment 2 mean M170 source waveforms, showing a reliable bilateral amplitude 

increase for the bimorphemic items. Center diagram shows source dipole location plotted on 

standard MRI. Individual subject waveforms were aligned at the peaks before averaging. 
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Figure 8. Experiment 2 minimum norm significant source clusters, reepresenting the locations of 

sources found to exhibit a reliable difference in amplitude over 20ms time periods, for each of 

the three pairwise comparisons between conditions. 

Figure 9. Time course of minimum norm activity in Experiment 2 (inferior sources). Left 

diagram plots mean activity in inferior left hemisphere sources that exhibit a reliable amplitude 

difference. Right diagram plots the time course of activity in the right hemisphere homologue of 

this source cluster. In the left hemisphere, bimorphemic items elicit reliably larger amplitudes 

than the monomorphemic controls. No other differences are significant.   

Figure 10. Time course of minimum norm activity in Experiment 2 (superior sources). Mean 

activity in the superior left hemisphere sources that exhibit a reliable amplitude difference is 

plotted. 
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Fig. 1 
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Fig, 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 

 

 

 

 

 

 

 

 

 

 

 


