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Abstract

We investigate to what extent ‘bag of visual words’ mod-

els can be used to distinguish categories which have sig-

nificant visual similarity. To this end we develop and op-

timize a nearest neighbour classifier architecture, which is

evaluated on a very challenging database of flower images.

The flower categories are chosen to be indistinguishable on

colour alone (for example), and have considerable varia-

tion in shape, scale, and viewpoint.

We demonstrate that by developing a visual vocabulary

that explicitly represents the various aspects (colour, shape,

and texture) that distinguish one flower from another, we

can overcome the ambiguities that exist between flower cat-

egories. The novelty lies in the vocabulary used for each

aspect, and how these vocabularies are combined into a fi-

nal classifier. The various stages of the classifier (vocab-

ulary selection and combination) are each optimized on a

validation set.

Results are presented on a dataset of 1360 images con-

sisting of 17 flower species. It is shown that excellent per-

formance can be achieved, far surpassing standard baseline

algorithms using (for example) colour cues alone.

1. Introduction

There has been much recent success in using ‘bag of

features’ or ‘bag of visual words’ models for object and

scene classification [1, 3, 5, 7, 14, 15, 17]. In such meth-

ods the spatial organization of the features is not repre-

sented, only their frequency or occurrence is significant.

Previous work dealing with object classification has focused

on cases where the different object categories in general

have little visual similarities (e.g. Caltech, 101), and mod-

els have tended to use off-the-shelf features (such as affine-

Harris [12] detectors with SIFT [10] descriptors).

In this paper we investigate whether a carefully honed

visual vocabulary can support object classification for cat-

egories that have a significant visual similarity (whilst still

maintaining significant within-class variation).

To this end we introduce a new dataset consisting of dif-

ferent flower species. Classifying flowers is a difficult task

even for humans – certainly harder than discriminating a car

from a bicycle from a human. As can be seen from the ex-

amples in figure 2, in typical flower images there are huge

variations in viewpoint and scale, illumination, partial oc-

clusions, multiple instances etc. The cluttered backgrounds

also makes the problem difficult as we risk classifying back-

ground content rather than the flower itself. Perhaps the

greatest challenge arises from the intra-class vs inter-class

variability, i.e. there is a smaller variation between images

of different classes than within a class itself, and yet subtle

differences between flowers determine their classification.

In figure 1, for example, two of the flowers belong to the

same category. Which ones?

Botanists use keys [6], where a series of questions need

to be answered in order to classify flowers. In most cases

some of the question are related to internal structure that

can only by made visible by disecting the flower. For a

visual object classification problem this is not possible. It is

possible however to narrow down the choices to a short list

of plausible flowers. Consequently, in this work as well as

using the standard classification performance measures, we

also use a measure on whether the correct classification is

achieved within the top n ranked hypotheses. Measures of

this type are very suitable for page based retrieval systems

where the goal is to return a correct classification on the first

page, but not necessarily as first ranked.

Figure 1. Three images from two different categories. The left and

right images are both dandelions. The middle one is a colts’ foot.

The intra-class variation between the two images of dandelions

is greater than the inter-class variation between the left dandelion

and the colts’ foot image.

What distinguishes one flower from another can some-

times be their shape, sometimes their colour and sometimes



distinctive texture patterns. Mostly it is a combination of

these three aspects. The challenge lies in finding a good rep-

resentation for these aspects and a way of combining them

that preserves the distinctiveness of each aspect, rather than

averaging over them. However, flower species often have

multiple values for an aspect. For example, despite their

names, violets can be white as well as violet in colour, and

‘blue bells’ can be pink. This is quite exasperating, but in-

dicates that any class representation will need to be ‘multi-

modal’.

1.1. Overview and performance measure

In the rest of this paper we develop a nearest neighbour

classifier. The classifier involves a number of stages, start-

ing with representing the three aspects as histograms of

occurrences of visual words (a separate vocabulary is de-

veloped for each aspect) (section 2); then combining the

histograms (section 3) into a single vocabulary. SIFT de-

scriptors [10] on a regular grid are used to describe shape,

HSV-values to describe colour, and MR-filters [16] to de-

scribe texture. Each is vector quantized to provide the visual

words for that aspect. Each stage is separately optimized (in

the manner of [4]).

Since we are mainly interested in being able to retrieve a

short list of correct matches we optimize a performance cost

to reflect this. Given a test image Itest

i , the classifier returns

a ranked list of training images Itrain

j , j = 1, 2, ..., M with

j = 1 being the highest ranked. Suppose the highest ranked

correct classification is at j = p, then the performance score

for Itest

i is
{

wp if p ≤ S

0 otherwise

where S is the length of the shortlist (here S = 5), and wi

is a weight which can be chosen to penalize lower ranks. If

wi = 1 ∀ i then the rank of the correctly classified image

in the shortlist is irrelevant. We use a gentle fall off, of the

form wi = 100 − 20 i−1

S−1
, so that higher ranked images are

rewarded slightly (w1 = 100, w5 = 80 for S = 5). Suppose

the classifier is specified by a set of parameters θ, then the

performance score over all test images is:

f(θ) =
1

N

N
∑

i=1

{

wi
p if p ≤ S

0 otherwise
(1)

In essence, this is our utility/loss function, and we seek to

maximize f(θ) over θ. This optimization is carried out over

a validation set in each of the following classification sec-

tions.

The performance of the developed classifier is compared

to that of a baseline algorithm using colour histograms in

section 4.
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Figure 2. Images from the 17 category database. Each row shows 5

images from the same category. The first two columns in the top 10

rows show images from the restricted viewpoint set. Each category

shows pose variation, scale changes, illumination variations, large

intra-class variations and self-occlusion.



1.2. Datasets

The dataset introduced in this paper consists of 17

species of flowers with 80 images of each (figure 2). There

are species that have a very unique visual appearance, for

example fritillaries and tigerlilies, as well as species with

very similar appearance, for example dandelions and colts-

feet. There are large viewpoint, scale, and illumination vari-

ations. The large intra-class variability and the sometimes

small inter-class variability makes this dataset very chal-

lenging. The flower categories are deliberately chosen to

have some ambiguity on each aspect. For example, some

classes cannot be distinguished on colour alone (e.g. dande-

lion and buttercup), others cannot be distinguished on shape

alone (e.g. daffodils and windflower). The flower images

were retrieved from various websites, with some supple-

mentary images from our own photographs.

Consistent viewpoint set: For the running example of

the various stages of the classifier we do not use the full

dataset, but instead consider only a subset. This consists of

10 species (figure 2) with 40 images of each. For each class

the 40 images selected are somewhat easier than those of

the full set, e.g. the flowers occupy more of the foreground

or are orientated in a more consistent pose. We randomly

select 3 splits into 20 training, 10 validation and 10 test im-

ages. The parameters are optimized on the validation set

and tested on the test set. All images are resized so that the

smallest dimension is 500 pixels.
Both the full and consistent viewpoint sets are available

at http://www.robots.ox.ac.uk/∼vgg/data.html.

2. Creating a Flower Vocabulary

Like botanists we need to be able to answer certain ques-

tions in order to classify flowers correctly. The more similar

the flowers, the more questions that need to be answered.

The flowering parts of a flower can be either petals, tepals

or sepals. For simplicity we will refer to these as petals. The

petals give crucial information about the species of a flower.

Some flowers have petals with very distinctive shape, some

have very distinctive colour, some have very characteristic

texture patterns, and some are characterized by a combina-

tion of these properties. We want to create a vocabulary that

gives an accurate representation of each of these properties.

Flowers in images are often surrounded by greenery in

the background. Hence, the background regions in im-

ages of two different flowers can be very similar. In or-

der to avoid matching the green background region, rather

than the desired foreground region, the image is segmented.

The foreground and background RGB colour distributions

are determined by labelling pixels in a subset of the train-

ing images as foreground (i.e. part of the flower), or back-

ground (i.e. part of the greenery). Given these foreground

and background distributions, all images are automatically

binary segmented using the contrast dependent prior MRF

cost function of [2], optimized using graph cuts. Note, these

distributions are common across all categories, rather than

being particular to a species or image. This procedure pro-

duces clean segmentations in most cases. Figure 3 shows

examples of segmented images. For the vocabulary opti-

mization for colour and shape we compare the performance

for both segmented and non-segmented images.

Figure 3. Segmented images. The top row shows the original im-

ages and the bottom the segmentation obtained. The flowers in

the first and third column are almost perfectly segmented out from

the background greenery. The middle column shows an example

where part of the flower is missing from the segmentation – this

problem occurs in less than 6% of the images.

2.1. Colour Vocabulary

We want to create a vocabulary to represent the colour

of a flower. Some flowers exist in a wide variety of colours,

but many have a distinctive colour. The colour of a flower

can help narrow down the possible species, but it will not

enable us to determine the exact species of the flower. For

example, if a flower is yellow then it could be a daffodil or

a dandelion, but it could not be a bluebell.

Images of flowers are often taken in natural outdoor

scenes where the lighting varies with the weather and time

of day. In addition, flowers are often more or less trans-

parent, and specular highlights can make the flower appear

lighter or even white. These environmental factors cause

large variations in the measured colour, which in turn leads

to confusion between classes.

One way to reduce the effect of illumination variations is

to use a colour space which is less sensitive to it. Hence, we

describe the colour using the HSV colour space. In order

to obtain a good generalization, the HSV values for each

pixel in the training images are clustered using k-means

clustering. Given a set of cluster centres (visual words)

wc
i , i = 1, 2, ..., Vc, each image Ij , j = 1, 2, ..., N , is then
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Figure 4. Performance (1) for the colour features. The results

shown are averaged over three random permutation of training,

validation and test sets. Best results are obtained with non-

segmented images and 200 clusters, although the performance

does not change much with the number of clusters, Vc.

represented by a Vc dimensional normalized frequency his-

togram n(wc|Ij). A novel test image is classified using a

nearest neighbour classifier on the frequency histograms by

determining c∗.

c∗ = argmin
j

d(n(wc|Itest), n(wc|Itrain
j )) (2)

where the distance d(, ) is computed using the χ2 mea-

sure. We optimize the number of clusters, Vc, on the con-

sistent viewpoint dataset. Figure 4 shows how the perfor-

mance score (1) varies with the number of clusters. Re-

sults are presented for both segmented and non-segmented

images. Perhaps surprisingly, the non-segmented images

show better performance. This is because members of a

flower species usually exist in similar habitats, thus mak-

ing the background similar, and positively supporting the

classification of the non-segmented images. However, in

the full data set (as opposed to the rather restricted devel-

opment set) this is not always the case and it is therefore

better to segment the images. The best result using the seg-

mented images is obtained with 500 clusters. The overall

recognition rate is 55.3% for the first hypothesis and 84.3%
for the fifth hypothesis (i.e. the flower is deemed correctly

classified if one of the images in the top five retrieved has

the correct classification).

2.2. Shape Vocabulary

The shape of individual petals, their configuration, and

the overall shape of the flower can all be used to distinguish

between flowers. In figure 5 it can be seen that although

the overall shape of the windflower (left) and the butter-

cup (middle) are similar, the windflower’s petals are more

pointed. The daffodil (right) has petals more similar to that

of the windflower, but the overall shape is very different due

to the tubular shape corolla in the middle of the daffodil.

Figure 5. Images of similar shapes. Note that the windflower’s

(middle) petals are more pointy than the buttercup’s (left). The

daffodil (right) and the windflower have similar shaped petals, but

are overall quite different due to the daffodil’s tubular corolla.

Changes in viewpoint and occlusions of course change

the perceived shape of the flower. The difficulty of describ-

ing the shape is increased by the natural deformations of a

flower. The petals are often very soft and flexible and can

bend, curl, twist etc., which makes the shape of a flower

appear very different. The shape of a flower also changes

with the age of the flower and petals might even fall off. For

these reasons, the shape representation has been designed to

be redundant – each petal is represented by multiple visual

words for example, rather than representing each petal only

once (attempting to count petals). This redundancy gives

immunity to the occasional mis-classification, occluded or

missing petal etc.

We want to describe the shape of each petal of a flower

in the same way. Thus we need a rotation invariant descrip-

tor. We compute SIFT descriptors [10] on a regular grid [4]

and optimize over three parameters: the grid spacing M ,

with a range from 10 to 70 pixels; the support region for the

SIFT computation with radius R ranging from 10 to 70 pix-

els; and finally, the number of clusters. We obtain n(ws|I)
through vector quantization and classify the images in the

same way as for the colour features.

Figure 6 shows how the performance score (1) changes

on the development set when varying the size of the vocab-

ulary, the radius and the step size. The best performance

for the segmented images is obtained with 1000 words, a 25

pixel radius and a stepsize of 20 pixels. Note that the perfor-

mance is highly dependent on the radius of the descriptor.

The recognition rate for the first hypothesis is 82.7% and

for the fifth hypothesis is 98.3%.

Figure 7 shows examples of some of the clusters ob-

tained, and their spatial distribution. Note, that the shape-

words are common across images and also within images.

This intra-image grouping has some similarities to the Epit-

ome representation of Jojic et al. [8], where an image is

represented by a set of overlapping patches.

2.3. Texture Vocabulary

Some flowers have characteristic patterns on their petals.

These patterns can be more distinctive, such as the pansy’s

stripes, the fritillary’s checks or the tiger-lily’s dots (figure
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Figure 6. Performance (1) using shape vocabulary. Varying the number of clusters (Vs), the radius (in pixels) of the SIFT support window

(R), and the spacing (in pixels) of the measurement grid (M).

Red cluster

Blue/dashed cluster

Figure 7. Two images from the Daffodil category and examples of

regions described by the same words. All the circles of one colour

correspond to the same word. The blue/dashed word represents

petal intersections and the red word rounded petal ends. Note that

the words detect similar petal parts in the same image (intra-image

grouping) and also between flowers.

8), or more subtle in the form of characteristic veins in the

petals. The subtle patterns are sometimes difficult to distin-

guish due to illumination conditions – a problem that also

affects the appearance of more distinctive patterns.

Figure 8. Flowers with distinctive patterns. From left to right:

Pansy with distinctive stripes, fritillary with distinctive checks and

tiger-lily with distinctive dots.

We describe the texture by convolving the images with
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Figure 9. Performance (1) for the texture features on segmented

images. Best results are obtained with filter size = 11 and 700

clusters.

MR8 filter bank introduced by Varma and Zisserman [16].

The filter bank contains filter at multiple orientation. Rota-

tion invariance is obtained by choosing the maximum re-

sponse over orientations. We optimize over filters with

square support regions of size s = 3 − 19 pixels. A vo-

cabulary is created by clustering the descriptors and the fre-

quency histograms n(wt|I) are obtained. Classification is

done in the same way as with the colour features. Figure 4

shows how the performance varies with the number of clus-

ters for different filter sizes. The best performance is ob-

tained using 700 clusters and a filter of size 11. The recog-

nition rate for the first hypothesis is 56.0% and for the fifth

hypothesis it is 84.3%.

3. Combined Vocabulary

The discriminative power of each aspect varies for dif-

ferent species. Table 1 shows the confusion matrices for

the different aspects for the consistent viewpoint set. Not

surprisingly, it shows that some flowers are clearly distin-

guished by shape, e.g. daisies, some by colour, e.g. fritillar-

ies and some by texture e.g. colts’ feet, fritillaries. It also

shows that some aspects are too similar for certain flow-



ers, e.g. buttercups and daffodils get confused by colour,

colts’ feet and dandelions get confused by shape, and but-

tercups and irises get confused by texture. By combining

the different aspects in a flexible manner one could expect

to achieve improved performance. We combine the vocab-

ularies for each aspect into a joint flower vocabulary, to ob-

tain a joint frequency histogram n(w|I). However, we have

some freedom here because we do not need to give equal

weight to each aspect – consider if one aspect had many

more words than another, then on average the one with more

words would dominate the distance in the nearest neighbour

comparisons. We introduce a weight vector α, so that the

combined histogram is:

n(w|I) =





αsn(ws|I)
αcn(wc|I)
αtn(wt|I)



 (3)

Since the final histogram is normalized there are only two

independent parameters which represent two of the ratios in

αs : αc : αt.

We learn the weights, α, on the consistent viewpoint set

by maximizing the performance score of (1), here f(α), on

the validation set. The performance is evaluated on the test

set.

We start by combining the two aspects which are most

useful for classifying the flowers, i.e. the shape and texture.

Figure 10 shows f(α) for varying α’s. We keep αs = 1
fixed. Best performance is achieved with αt = 0.8. This

means that the performance is best when texture has almost

the same influence as shape. Combining shape and colour,

however, leads to a superior performance. This is because

the colour and shape complement each other better, whilst

shape and texture often have the same confusions. The best

performance for combining shape and colour is achieved

when αs = 1 and αc = 0.4, i.e. when colour has less

then half the influence of shape. The best performance is

achieved by combining all aspects with αs = 1.0, αc = 0.4
and αt = 1.0. These results indicate that we have success-

fully combined the vocabularies – the joint performance ex-

ceeds the best performance of each of the separate vocabu-

laries, i.e. we are not simply averaging over their separate

classifications (which would deliver a performance some-

where between the best (shape) and worst (colour) aspect).

Figure 11 shows an instance where both shape and colour

misclassify an object but their combination classifies it cor-

rectly.

Discussion: The problem of combining classifications

based on each aspect is similar to that of combining in-

dependent classifiers [11]. The α weighting gives a lin-

ear combination of distance functions (as used in [11]). To

see this, consider the form of the nearest neighbour clas-

sifier (2). Since in our case d(αx, αy) = αd(x,y), (2)

Colour

buttercup 33.33 30.00 10.00 3.33 10.00 3.33 10.00

colts foot 6.67 60.00 26.67 3.33 3.33

daffodil 10.00 10.00 30.00 40.00 3.33 6.67

daisy 56.67 6.67 36.67

dandelion 3.33 40.00 13.33 30.00 13.33

fritillary 3.33 93.33 3.33

iris 6.67 6.67 13.33 13.33 36.67 10.00 13.33

pansy 3.33 13.33 3.33 23.33 46.67 10.00

sunflower 6.67 30.00 20.00 43.33

windflower 30.00 10.00 60.00

Shape

buttercup 70.00 3.33 13.33 13.33

colts foot 3.33 63.33 10.00 23.33

daffodil 3.33 60.00 13.33 16.67 6.67

daisy 96.67 3.33

dandelion 3.33 16.67 3.33 3.33 73.33

fritillary 90.00 3.33 6.67

iris 16.67 6.67 70.00 3.33 3.33

pansy 16.67 6.67 16.67 53.33 6.67

sunflower 10.00 3.33 3.33 83.33

windflower 3.33 3.33 93.33

Texture

buttercup 46.67 10.00 10.00 23.33 10.00

colts foot 86.67 13.33

daffodil 6.67 60.00 6.67 6.67 13.33 6.67

daisy 6.67 10.00 50.00 20.00 3.33 10.00

dandelion 33.33 3.33 46.67 3.33 6.67 3.33 3.33

fritillary 3.33 13.33 80.00 3.33

iris 13.33 3.33 13.33 6.67 50.00 3.33 3.33 6.67

pansy 10.00 13.33 3.33 6.67 10.00 50.00 6.67

sunflower 10.00 13.33 10.00 13.33 6.67 6.67 40.00

windflower 13.33 6.67 10.00 6.67 3.33 3.33 6.67 50.00

Table 1. Confusion matrices for the first hypothesis of the differ-

ent aspects on the consistent viewpoint dataset. The recognition

rate is 75.3% for shape, 56.0% for texture and 49.0% for colour,

compared to a chance rate of 10%.

becomes

c∗ = argminj{ αsd(n(ws|Itest), n(ws|Itrain
j ))

+αcd(n(wc|Itest), n(wc|Itrain
j ))

+αtd(n(wt|Itest), n(wt|Itrain
j ))}

It is likely that learning weights for each class would in-

crease the performance of the classification system, for ex-

ample by learning a confusion matrix over all classes for

each aspect. However, as the number of classes increases

this becomes computationally intensive.

4. Results

In this section we present the results on the full 1360

image dataset consisting of 80 images for each of 17 cat-
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Figure 10. Performance for combining shape, colour and texture.

The blue/dashed curve shows performance when varying αt for

a combination of shape and texture only, and the red/solid curve

shows performance when varying αc for a combination of shape

and colour only. The best performance is obtained by combining

all features (green/dot-dashed curve) with αs = 1.0, αc = 0.4

and αt = 1.0.

Test Image 1st Hyp Colour 1st Hyp Shape 1st Hyp Combined

Figure 11. Flowers misclassified by single aspect but correctly

classified by their combination. From left to right: Original test

image (Iris), first hypothesis for colour (Daisy), first hypothesis

for shape (Buttercup) and first hypothesis combined (Iris).

egories. We use 40 training images, 20 validation images

and 20 test images for each class. This dataset is substan-

tially more difficult than the consistent viewpoint set. There

are extreme scale differences and viewpoint variations, and

also many missing and occluded parts. Since the datasets

have significant differences we relearn the vocabularies in

the same manner as for the consistent viewpoint set and op-

timize over the parameters.

Figure 12 shows the performance according to (1). The

performance for the shape features are shown for R=25 and

M=20. The colour features achieve a performance of 73.7%
and the shape features achieve a performance of 71.8%,

both with 800 clusters. Note that the colour features are

performing better than shape on the larger set. This is prob-

ably because the development set has proportionally more

instances of similar coloured flowers, and also because of

the larger scale variations in the full set – which presents a

challenge for the shape feature. The texture performs very

poorly. This is because the proportion of classes distin-

guishable by texture is very small, and the texture features

also suffer due to large scale variations. We achieve our best

performance by combining shape and colour with αs = 1
and αc = 1. The performance according to (1) is 81.3%,

a very respectable value for a dataset of this difficulty. Al-

though the texture aspect has become redundant, the final

classifier clearly demonstrates that a more robust system is

achieved by combining aspects. Figure 13 shows a typi-

cal misclassification – illustrating the difficulty of the task –

and figure 14 shows a few examples of correctly classified

flowers.

We compare the classifier to a baseline algorithm using

RGB colour histograms computed for each 10 × 10 pixel

region in an image. Classification is again by nearest neigh-

bours using the χ2 distance measure for the histograms. The

baseline performance is 55.7%, substantially below that of

the combined aspect classifier.
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Figure 12. Performance for shape, colour and texture on the full

datasets for different vocabulary sizes

Figure 13. Misclassified image. A test image (left) of crocuses

which is misclassified as wild tulips (right). This particular exam-

ple also shows that there are images where it is difficult to distin-

guish the shape of the flower.

5. Discussion

We could have approached the problem of flower clas-

sification by building specially crafted descriptors for flow-



Figure 14. Examples of correctly classified images. The left col-

umn shows the test image and the right its closest match. Top:

bluebells, middle: tigerlilies, and bottom: irises.

ers, for example a detector that could segment out petals,

a stamen detector, an aster detector etc, with associated

specialized descriptors. Indeed, such descriptors have al-

ready been developed for classifying based on scanned leaf

shape [9, 13]. Instead of employing such explicit models,

we have shown that more general purpose descriptors are

sufficient – at least for a database with this level of difficulty.

Tuning the vocabulary and combining vocabularies for sev-

eral aspects results in a significant performance boost, with

the final classifier having superior performance to each of

the individual ones. The principal challenges now are cop-

ing with significant scale changes, and also coping with a

varying number of instances – where a test image may con-

tain a single flower or ten or more instances.
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fication via plsa. In Proc. ECCV, 2006.

[2] Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for

optimal boundary and region segmentation of objects

in N-D images. In Proc. ICCV, volume 2, pages 105–

112, 2001.

[3] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual

categorization with bags of keypoints. In Workshop on

Statistical Learning in Computer Vision, ECCV, pages

1–22, 2004.

[4] N. Dalal and B. Triggs. Histogram of oriented gradi-

ents for human detection. In Proc. CVPR, 2005.
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