
2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

A Visualisation and Simulation Framework for
Local and Remote HRI Experimentation

André Gradil and João Filipe Ferreira
Institute of Systems and Robotics (ISR)

Dept. of Electrical & Computer Eng.

University of Coimbra

Pinhal de Marrocos, Polo II

3030-290 COIMBRA, Portugal

Abstract—In this text, we will present work on the design
and development of a ROS-based (Robot Operating System1)
remote 3D visualisation, control and simulation framework. This
architecture has the purpose of extending the usability of a
system devised in previous work by this research team during
the CASIR (Coordinated Attention for Social Interaction with
Robots) project. The proposed solution was implemented using
ROS, and designed to attend the needs of two user groups –
local and remote users and developers. The framework consists
of: (1) a fully functional simulator integrated with the ROS
environment, including a faithful representation of a robotic
platform, a human model with animation capabilities and enough
features for enacting human robot interaction scenarios, and
a virtual experimental setup with similar features as the real
laboratory workspace; (2) a fully functional and intuitive user
interface for monitoring and development; (3) a remote robotic
laboratory that can connect remote users to the framework
via a web browser. The proposed solution was thoroughly and
systematically tested under operational conditions, so as to assess
its qualities in terms of features, ease-of-use and performance.
Finally, conclusions concerning the success and potential of this
research and development effort are drawn, and the foundations
for future work will be proposed.

Index Terms—Visualisation, Simulation, Remote, User Inter-
face, ROS, Gazebo, Framework.

I. INTRODUCTION

Robots often are too big to transport, too expensive to

replicate, or they may simply not be available to a researcher

or developer at a convenient moment in time. Fortunately,

with the increase of computational power, now more than

ever, simulation and remote access save time and resources

(both physical and budget-related), increasing the productivity

of a research team and allowing the community to seamlessly

work on the same framework. There are several advantages in

robotic simulation, the most important of which the capability

to test new algorithms and routines, reproduce and repeat

experiments, generate data under different conditions, neuro-

evolve robots and benchmark any of the robot characteristics,

without the risk of damaging the real robot [1]. In fact,

having the possibility to repeat complex experiments without

1In spite of its name, ROS is not an actual operating system in the traditional
sense of process management and scheduling.

Fig. 1: Desired features for most contemporary robotic development frame-
works.

external variables that may influence their outcome, especially

in human-robot interaction (HRI) applications, which depend

critically on human subject availability and for which exact

repetition is impossible precisely due to this human factor,

is a definite advantage. Additionally, there is often a need to

open the project to the broader research community, or simply

give the development team access from anywhere outside the

laboratory. To meet this demand, a recent trend has been the

development of remote robotic laboratories [2]. On the other

hand, the increasing complexity of robotic systems, namely

resulting from the number of modules and functionalities it

comprises, can overwhelm a developer or user when trying

to monitor its operation, and therefore having all of the data

organized in a neat and clear fashion is also paramount.

The combined set of desired features resulting from this de-

mand and its relationship with potential user types is depicted

in Fig. 1. The overall objective of the work presented in this

text was to endow the robotic system developed during the

FCT-funded project CASIR, devoted to studying the effect of

artificial multisensory attention in human-robot interaction2,

with these features, as a follow-up on future work planned

in [3] see Fig. 2. This system is supported by the IMPEP

infrastructure (acronym for Integrated Multimodal Perception

Experimental platform) – see Fig. 33 More specifically, the

work presented in this text had the following main goals: (1)

the development of IMPEP hardware and simulator access to

local users, with support of a intuitive local GUI; (2) providing

2FCT Contract PTDC/EEI-AUT/3010/2012, which ran from 15-04-2013
until 31-07-2015. The motivations for this work can be found in [4], while
conceptual and implementation details are reported in [5].

3For more information about this platform please refer to [3], [6] .978-1-5090-5387-2/16/$31.00 2016 IEEE

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

Fig. 2: CASIR-IMPEP system architecture overview [3] only the bottom part of this diagram was originally fully implemented during the duration of the
CASIR project, while the top part was developed as an expansion in the scope of the work presented in this text.

Fig. 3: The Integrated Multimodal Perception Experimental Platform [3],
including actuators and respective degrees of freedom, and mounted sensors.

access to remote users through a remote robotic lab.

II. RELATED WORK

As the effort of applying a systematic approach to meeting

the demand of implementing features such as those presented

in Fig. 1 is a recent trend, a handful of related works exists –

these will be described in the following text.

The Care-O-Bot Research project [7] has a similar architec-

ture to the CASIR framework; however, it deals with a differ-

ent application scope via a mobile manipulation platform. The

iCub simulator was created to complement the iCub project. It

is a very specific simulator with an unique architecture, it uses

YARP (Yet Another Robot Platform [8]) instead of ROS and

a network wrapper for remote access. Another project, “The

Construct Sim” [9], consists of a cloud based tool for remote

robotic simulation. It has a very limited free user experience,

both in simulation time and in computational resources, so in

order to properly simulate a scenario one has to resort to the

paid services.

The PR2 and Care-O-Bot were found to possess all of the

desired features displayed on Fig 1, while the iCub lacks

a remote lab and Construct Sim has no GUI nor hardware

access. In terms of availability, while the PR2 and iCub

projects have their features freely accessible, hardware can

only be accessed via purchase, which in both cases is rather

expensive. Construct Sim has several payment options, but

does not make hardware available. Finally, for Care-O-Bot the

price of every module is provided by the company on request.

The contributions of this work, represented in Fig. 4, result-

ing of the implementation of an integrated framework boasting

the features presented in Fig. 1, consist of providing the full

feature set with the widest availability possible. This will allow

the research team to access and develop the attention middle-

ware both locally and remotely, and also make a demonstrator

of the CASIR framework available to the wider scientific

community. Unlike related work, the framework described in

this paper will be developed so as to provide all the features

of Fig. 1 as freely available, and, in the case of the remote

lab access by a user external to the local research team, with

reservation of timeslots, all the time ensuring system and

hardware security.

III. IMPLEMENTATION

A. ROS framework for the CASIR-IMPEP platform

ROS is a flexible framework for writing modular robot

software, capable of creating complex and robust behaviour

in different types of robotic platforms. The ROS framework

involves several core concepts, such as packages, nodes,

topics, services and messages – please see [10] and [11]

for more information. ROS is both modular and language-

independent – in other words, users can create nodes in C++,

Python, Octave and Lisp without losing the possibility of

communication between them if the messaging interface is

maintained.

Virtual simulation is one of the most widest accepted

recent technologies in robot development. There are numerous

software tools used for simulation with big diversity in features

(supporting a variety of robotic middleware, available sensors

and actuators, and compatible with several types of robots)

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

Fig. 4: Conceptual diagram for the IMPEP ROS framework for remote 3D visualisation, control and simulation. The modules in orange refer to the contributions
of the work presented herewith, namely the simulator represented by the impep_simulation, the hardware access that is not only the IMPEP but also
it’s connection through the common driver API, GUI that consists in a rqt-based software and finally the remote lab supported by the CASIR-IMPEP
web service.

and also diversity in infrastructure (code quality, technical and

community support). According to [12], currently there are

about 40 simulation tools used by the scientific community.

However, since this work follows the CASIR project which is

supported by ROS, thereby narrowing the universe of devel-

opment frameworks of interest to Gazebo [13], MORSE [14],

V-Rep [15] and Webots [16]. Comparing these frameworks

in terms of features, Gazebo and Webots stand out among the

group; however Gazebo is more interesting in terms of support

infrastructure. Moreover, only Gazebo provides the percentage

of coverage from function and branch testing (52.9% and

44.5% respectively) as seen in the Gazebo website [13], this

means that 52.9% of functions (or subroutines) in the program

were called in tests, and 44.5of branches were executed.

To build the models, several 3D modelling tools were com-

pared, namely Maya, 3ds Max and Blender. These solutions

are very similar in features; however, due to the simplicity of

the modelling demands of the work reported in this paper, and

without the use of complex animations, Blender was deemed

to be the most suitable solution.

Applying HMI to robotics is as important as the system

itself – it is critical that the user possesses and is familiar with

the right tools to work with the system. In order to organise all

of this information and give the desired control to the user, the

graphic user interface must be designed in order to be simple

and intuitive. In recent ROS distributions there is a tool named

rqt that is basically a framework for plugin development. In

rqt, a developer can build his/her own perspective from plugins

of all the existing GUI tools in ROS, namely image viewer,

terminal, 2D plot, node and package graphs, pose viewer and

even Rviz itself [10]. If the available plugins are not suitable

for the needs of a project, the developer can either edit an

existing plugin or even create his/her own plugin (either in

C++ or Python).

Remote experimental labs allow remotely sharing robot

middleware infrastructures in a modular way with the broader

scientific community, making it easier to compare and con-

tribute to the research of others. Many robotic researchers have

resorted to web technologies for remote robot experimentation,

data collection and HRI studies. There are examples of remote

access and control of robots from as early as 1995, in the

case of [17]. The arrival of new web technologies such as

HTML5 makes it possible for developers to create appealing

and sophisticated interfaces. With the use of protocols such

as rosbridge, the communication between a web browser and

ROS can be made through data messages contained in JSON

[18]. Besides displaying ROS information in the form of

images, we also need to transmit them over rosbridge – to

this end, the ROS package named web video server was used.

Within this package there are two streaming options for the

developers to use. The first option is based on the deprecated

package mjpeg server, and consists in converting the video

stream from the desired ROS topic into a mjpeg stream (a

sequence of jpeg images), this stream can then be embedded

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

into any HTML tag. The second option consists in

coding the video with the VP8 codec [19].

The expected outcome of this work was a unified ROS-

supported framework designed so as to attain the objectives

laid down in section I, allowing the CASIR attention middle-

ware described in [5] to be used within the context defined

by those objectives and the use of the IMPEP platform.

Additionally, it is a desired property that this framework be

easily adaptable to conform with any robotic head with some

or all of the same characteristics as IMPEP, so as to be used

with any robotic platform with innate multisensory attention

capabilities.

In this system, we can have either the simulated or the

real version running at once, both of them publishing sensor

information to the same ROS topics (a concept represented

by the Common Driver API module in Fig 4). The published

topics can be subscribed by the attention middleware nodes

or seen directly by the remote and local users through the

respective GUIs. Commands, on the other hand, follow almost

the inverse path, the only difference being the non-existence

of a direct connection between the GUIs themselves and the

physical, as well as virtual, actuators. Manual control of both

versions of the robot can be made through a node in the

attention middleware using terminal commands, which can be

sent within the local GUI (see section III-D).

B. Implementation details for the Gazebo-based simulation

package

Three packages were developed in order to build

a complete robot model that is fully compatible with

ROS: impep_gazebo, impep_controller and

impep_description – see Fig. 5. The main package,

impep_gazebo, includes the world file, the avatar scripts

and the ROS launch file. The impep_description,

package is responsible for the robot model itself and contains

the 3D meshes of each individual part (modelled using

Blender) which will be the links of our robot. Using the

meshes we can build the URDF (Unified Robot Description

Format) model, which is an XML format describing the links

and joints of the robot, defining the geometry, position and

collision mesh of each 3D component, and consequently

resulting in models such as represented in Fig. 6. Finally,

impep_controller includes the actuator models,

parameters and publishers.

1) IMPEP simulation – sensors: The IMPEP has three

visual sensors: two RGB cameras, and a Microsoft Kinect

sensor. The RGB stereovision set-up, mounted so as to allow

pan, tilt and version using IMPEPs actuators, consists of a pair

of Guppy F-036 [20]. These were modelled as faithfully as

possible in the URDF IMPEP model, including their physical

characteristics (e.g. mass and body dimensions, the latter

also needing to match with the corresponding Blender model

characteristics) and technical specifications (e.g. frame rate,

resolution and bit depth).

In order to create a virtual camera with these specifications,

a Gazebo sensor with the type ”camera” was added and a

Fig. 5: IMPEP model packages for simulation.

Fig. 6: IMPEP virtual model evolution. Model (1) was the pre-existing,
preliminary IMPEP model. Model (2) is the upgraded physical model of
IMPEP, completely to scale in terms of mass and dimensions. Finally, (3)
represents the final model, with the collision mesh and joint referentials.

Gazebo-ROS plugin named libgazebo_ros_camera.so

attached to both right and left camera lens models. This plugin

is responsible for the publication of camera data to a rostopic

specified in its parameter definition. Additionally, the effect

of Gaussian noise was modelled in order to simulate residual

imperfections intrinsic to every real camera.

The depth camera, the Microsoft Kinect V1 RGB-D sen-

sor, already possesses a Microsoft Kinect 3D model na-

tively available in Gazebo that follows the body dimen-

sions of a real Kinect; however, the remainder of the pa-

rameters had to be inserted into the model by hand. For

the simulated depth camera to communicate with ROS, the

libgazebo_ros_openni_kinect.so plugin was used,

allowing us to define the camera namespace and topics.

In order to implement a virtual version of this feature, we

were forced to restrict the range of motion in certain joints;

as this relates also to the virtual actuators we will explain the

specifics of this implementation in the next section.

2) IMPEP simulation – actuators: The IMPEP includes

different types of DC motors – two PMA-11A-100-01-

E500ML motors (one for pan one for tilt) and two PMA-5A-

80-01-E512ML motors (one for each camera axis) all from

Harmonic Drive (further information about the motors in [21]).

The differentiation between fixed and revolute joints will

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

result from the low-level foundation implementing the virtual

actuators according to the technical specifications of each mo-

tor. The implementation of end of movement sensors consists

in creating an upper and lower movement limit in the revolute

joints, therefore emulating the function of the kinaesthetic

sensors of the real IMPEP. With these restrictions in place,

the virtual IMPEP will have the same range of motion as the

real one in every moving joint. In addition to movement, effort

and velocity limits were also implemented, not only to emulate

the safety mechanisms of the real IMPEP, but also to further

approximate the behaviour between both versions of the robot.

With all the limits and joint parameters defined, the

impep_controller ROS package was developed using the

libgazebo_ros_control.so plugin in order to allow

communication between Gazebo and ROS, similarly to the

camera plugins. This package is responsible for numerous

important tasks, namely implementing PID parameters, deal-

ing with publishing joint states, and converting them to TF

transforms for rviz and other ROS tools.

3) Environmental simulation: In Fig. 7 we have a direct

comparison between the work area of the simulated and real

IMPEP. Some key variables like distance to the table, table-top

and experimental object colour were approximated as much as

possible in the simulated environment. The rest of simulated

laboratory was populated with roughly the same kind of static

objects (e.g. tables and bookshelves); some additional objects

in the room were purposely modelled as being red, so as to

add perceptually salient entities, which can be used as potential

distractors in attention studies [22].

4) Avatar and interaction simulation: In a preliminary an-

imated scene of a simple walking skeleton controlling a male

3D model moving in a circular trajectory was implemented,

thus simulating a male subject walking in front of the IMPEP

set up. This was implemented in the human model XML

file itself and then included in the room_only.world file,

thus building the complete world where the IMPEP will be

inserted. More animations will be created in future work taking

this preliminary animation as a template, using more complex

coding and advanced technologies.

C. Implementation details for the rqt-based user interface

In most ROS frameworks, spatial visualisation is imple-

mented using Rviz. However, in spite of being a very complete

tool, using it standalone is not as simple or interactive as

required for our system. In order to capitalise on the advan-

tages of Rviz while adding increased flexibility in GUI design,

rqt rviz was used [10]. This plugin embeds Rviz into an rqt

interface while keeping all of its features and functionalities;

however, unlike the rqt 2D visualisation plugin, it still has a

dependence on its ROS counterpart.

With the abundance of visual representations required to

monitor camera feeds or processing results from the attention

middleware (e.g. point clouds, 3D reconstructions, audio signal

waveforms, etc.), the developed GUI must be able to display

the greatest variety of information possible, while maintaining

an uncluttered dashboard so as to present a maximum level

of detail for each data visualisation, and all of this allowing

the greatest degree of on-the-fly reconfigurability possible.

For development and debugging purposes, the convenience of

not having to change windows in the Desktop to access text

terminals should be addressed. Therefore, the GUI dashboard

was configured so as to allow the display of text terminals in

embedded frames in the interface.

A GUI layout implementing these features is presented

in Fig. 8. The plugin used for 2D visualisation is called

rqt image view [10] – it is an rqt version of ROS’s image view

[10], in which the system uses image transport to provide

classes and nodes capable of transmitting images in arbitrary

over-the-wire representations; however they have no depen-

dencies between them. With this plugin, the developer can

abstract from the complexity of communication, seeing only

sensor msg/image type messages. Alas, image view is not

very user friendly, since the desired topic must be selected by

specifying it when running the tool in a terminal. Fortunately,

the rqt version sidesteps this issue by adding a dropdown

menu feature showing all of the sensor msg/image messages

available. Two additional interesting features of this plugin

are save image and topic refresh buttons (relevant in case new

publisher nodes are launched). A third feature of the GUI is

the ability to embed a terminal in an interface frame, via the

Python GUI plugin rqt shell, which supports a fully functional

embedded XTerm [10]. An improvement to the terminal plugin

was made, allowing it to display two windows in the same

space (with the use of tabs). Finally, we implemented a user-

friendly package launcher using an experimental plugin named

rqt launch, allowing the user, among other things, to run and

stop selected launch files (and individual nodes from the active

launch file) chosen via a dropdown menu.

Using the configuration file .perspective, the user can

run the rqt interface in any computer with a ROS distribution

version equal to or above Indigo to be fully functional. We

were, therefore, able to meet the important requirement of

separating the computational workload resulting from the at-

tentional middleware processing and visualisation, as depicted

in Fig. 2.

A running instantiation of the GUI is presented in Fig. 9.

D. Implementation details for the web service supporting the

CASIR-IMPEP remote lab

The web service supporting the CASIR-IMPEP remote lab

uses a client-server architecture implemented with Rosbridge.

Additionally, since streams of image topics are to be displayed

in the HTML interface, therefore requiring a sustained con-

nection with the appropriate bandwidth and upload/download

speeds, the Web Video Server tool was also used [10].

The first implementation step was to set up the server side.

As the laboratory has a firewalled LAN, a “tunnel” had to be

created in order to grant outside access to the main project

computer (that will be our server). After the connection was

configured, it was necessary to create and configure the video

stream as well using Web Video Server. This tool opens a

local port, and waits for incoming HTTP requests. When a

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

(a) Simulated set up (b) Real set up

Fig. 7: Comparison between simulated and real set-up for HRI.

Fig. 8: Mockup of the rqt-based interface. Each frame in the interface was
preconfigured to display information as follows: (1) is the main camera
visualisation frame; (2) is the main processed data (e.g. 3D reconstructions,
signal waveforms, etc.) visualisation frame; (3) contains two secondary frames
for camera (or related data, such as depth maps, etc.) visualisation; (4) contains
frames for two support terminals in tabs; (5) contains the rqt launcher with the
possibility of node selection. Note that all of these frames are reconfigurable
on the fly.

Fig. 9: Instantiation of the rqt-based interface applied to the real system in
operational conditions.

video stream of a ROS image topic is requested via HTTP, it

subscribes to the corresponding topic and creates an instance

of the video encoder. The user interface for the client side

of the web service, on the other hand, was created using a

simple HTML file – see Fig. 10. In a lower layer, however,

it has JavaScript modules that communicate with Rosbridge

through websockets. To create these scripts, we used as a

template the work by Blaha et al., 2013 [23], updated them

with contemporary plugins and custom parameters so as to

conform with our requirements.

An overview of the complete system, from server to client

Fig. 10: CASIR-IMPEP remote lab, the HTML web page already connected
to the server and streaming one topic.

Fig. 11: Complete dataflow diagram of the web service. The modules in
yellow represent potential for future expansions.

passing through the communication protocols, can be seen in

Fig. 11, including possibilities of expansion. The remote lab

is the module for which less features were implemented and

with more room for improvement. Currently, only the core

web service and a front-end interface of the remote lab have

been implemented. In summary, the interface allows the user

to see topics from the main computer from anywhere with just

an internet connection and the HTML file itself. It also allows

to send commands to defined topics through a joystick feature.

IV. RESULTS AND DISCUSSION

The developed framework was tested in order to evalu-

ate its performance in full-blown operation(videos including

examples of several operational conditions of the system

can be found online in https://www.youtube.com/playlist?

list=PLfGLccmDrgxsfCZcNaxXS7ztNgnMlbBKd). The core

https://www.youtube.com/playlist?list=PLfGLccmDrgxsfCZcNaxXS7ztNgnMlbBKd
https://www.youtube.com/playlist?list=PLfGLccmDrgxsfCZcNaxXS7ztNgnMlbBKd

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

TABLE I: Gazebo UI vs without Gazebo UI benchmark comparison. Per-
centages and memory usage are relative to the specifications of the main
computer

CPU RAM GPU

UI 24.18% 1422Mb 438Mb
Without UI 12.51% 1267Mb 276Mb

computational hardware supporting the framework (Fig. 2) is

composed by the main computer, which includes a 4 core

Intel Core i7-3770 @ 3.40GHz CPU, 2 Asus GTX780 3GB

DirectCU II OC GPU units, an Asrock Z77 OC Formula

motherboard with 16GB DDR3-1600Mhz RAM, a 128GB

KINGSTON SSDNow V200, and a Seagate Barracuda 1TB

HDD, and also the visualisation computer, which is ex-

pected not to be as powerful as the main unit. To validate

this assumption we used a virtual machine (using VMWare

software) emulating a 2 core Intel Core i5-6300HQ CPU @

2.30GHz, a Gallium 0.4 on SVGA3D GPU, supported by 3GB

DDR3-2300MHz RAM and a 76.0 GB hard disk. As for the

remote CASIR-IMPEP lab clients, several different machines

with various operating systems were used for testing purposes.

1) Simulation and visualisation proof-of-concept: CPU and

RAM usage was measured using htop4, while GPU usage was

measured using nvidia-smi5.

With further configuration of the simulator launch file, we

were able to launch only the backend of Gazebo – in other

words, the Gazebo server without the client (Desktop UI). This

way all of the packages, controllers, computations and topics

were active and being published in ROS, however only in

background. Running experiments in the simulated world were

monitored by the user through the IMPEP’s cameras and a

global simulated external camera view, giving a third-person

perspective. As can be seen in Table I, the absence of a Gazebo

UI reduced almost 12% of the CPU load despite the need for

an extra camera with higher resolution. Effects in memory

usage were found to be negligible, while GPU usage, on the

other hand, dropped slightly, as expected, since there was no

need to render the entire world in real-time.

Exhaustive tests were also conducted to evaluate visualisa-

tion performance, either running the GUI directly in the main

computer or passing topics to the visualisation computer,

where they were shown using the rqt interface running in

a local ROS installation. These tests serve the purpose of

assessing how much of an added value there is in running

visualisation in a separate computer. Two operational scenarios

were used: (1) local visualisation, where we use the main

computer to run everything, including real sensor drivers

management and the visualisation of IMPEP camera topics and

point cloud data; (2) external visualisation, where the main

computer still runs real sensor drivers, but all visualisation is

relegated to the separate dedicated computer, described above,

4htop is an interactive process viewer for Unix systems. It is a text-mode
application (for console or X terminals).

5nvidia-smi is a command line utility intended to aid in the management
and monitoring of NVIDIA GPU devices.

TABLE II: Local vs remote visualisation benchmark comparison, the speci-
fications of both machines are those in section III-D

Main Computer Benchmark

CPU RAM GPU
Local Visualisation 12.51% 1444Mb 344MB
External Visualisation 9.00% 1038Mb 144MB

Visualisation Computer Benchmark

Local Visualisation
(visualisation computer idle)

2% 824MB N/A

External Visualisation 61.30% 1217MB N/A

displaying the same topics. Table II shows the results for the

two operational scenarios. We found that in the external vi-

sualisation scenario, the CPU load decreases in 3.51% for the

main computer. Furthermore, a decrease 400MB of RAM used

and 200MB of graphical memory in this computer is observed

when comparing with the local visualisation scenario. On the

other hand, analysing benchmark values for the visualisation

computer, we can see that its computational load increases

– CPU usage suffers by far the largest increase; however, we

need to take into consideration that the percentage for the main

computer referes to a 4 core, 8-threaded CPU with 3.4 GHz

of clock frequency, while the visualisation computer only has

2 cores and 2 threads of lower clock frequency for the exact

same computations. Conversely, memory usage has a more

direct comparison since it increases exactly in the amount

it decreases for the main computer. Finally, we conducted

tests for different combinations of these conditions, where we

measured the computational weight of both simulation and

visualisation running simultaneously, comparing the effects of

the lack of UI. Performance was found to be coherent with

previous results: CPU drops significantly after taking out the

UI and even further with remote visualisation. As for memory

usage, conclusions are similar.

Testing these modules while connecting them to

allnodes.launch, the main launch file that runs

every node of the attention middleware, however, brought

forth important conclusions about the limitations of our

system. We found that the major system load comes from

the middleware itself. Since the CPU is already overloaded,

using the current setup, and even relegating visualisation to

an external computer and removing the need to fully render

the simulated environment on Gazebo, each second passed

in the “real world”, only 0.6 seconds were processed in the

simulator, a very important factor that needs to be taken into

account by future developers and users.

2) Remote simulation and control proof-of-concept: In

order to benchmark network resource usage, the remote

lab was tested through three separate internet connec-

tions, specified in Table III. In this study, several influ-

ential experimental conditions were fixed, such as selected

topic /right/camera/image_rect_color (real sys-

tem), resolution (640x480 the camera’s default), stream quality

at 100%. Additionally, in all experimental runs the cho-

sen browser was Google Chrome (the most optimized for

Web video server applications; in point 3-Latency of [10].)

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

TABLE III: Internet connection benchmark. 1 - cabled connection inside
the lab, 2 - wifi connection at the Electrical Engineering Department (same
building), 3 - wifi connection at home.

Download Upload Ping Fps (avg.) Bandwidth (avg.)

Ethernet Cable 79.61 Mbs 96.12 Mbs 5 ms 25 12.2 Mbs
Wireless 1 23.90 Mbs 23.70 Mbs 5 ms 25 12.2 Mbs
Wireless 2 15.54 Mbs 17.47 Mbs 6 ms 25 12.2 Mbs

Our system was found to be stable for all connections,

exhibiting an fps average of 25 and 12.2Mbs of bandwidth

occupation. Note that the same test was repeated having

both wireless clients running at the same time, without any

change of values in each case. The same test was performed

with the simulated environment, and in this case, mostly due

to including joystick publishing commands (manual remote

command of the real IMPEP head is not allowed, for obvious

safety reasons), average fps dropped to 22 and the bandwidth

occupation increased to 16Mbs. In any case, this does not

represent a significant change in performance.

V. CONCLUSION AND FUTURE WORK

Throughout this text, the overall objective and goals defined

in section I were shown to be satisfactorily attained, and,

as demonstrated in section IV-1, performance requirements

were also satisfactorily met. Every component in the proposed

framework acts in a synergistic fashion so as to complement

the core nodes in a simple, modular, and optimised fashion,

trying in full to minimise resource usage and computational

burden of the main computer. A detailed description of the

work presented herewith can be found in [24].

Concerning future work, the Gazebo simulator will be im-

proved in terms of simulated human actors, namely by adding

improved, more realistic models, for example by resorting to

3D scanning and creating the skeleton and joints accordingly.

A suite of action scripts for the animations will also be

developed, and later on the development of a user-friendly

toolkit to assist with script generation. In terms of hardware

inclusion, Gazebo 4 comes with Oculus Rift and Razer Hydra

compatibility, which would give the user a higher level of

immersion, and more possibilities of human/object interaction

inside the simulator. As for the rqt visualiser, the launcher

section of the UI will be redesigned in order to make it

even more user-friendly, especially on what concerns non-

developers, as already shown in Fig. 8. Other improvements

will be to develop visualisation screens for the diverse data

displays needed for attention middleware development and

monitoring (for example, different types of 3D reconstructions,

signal waveforms, etc.). Finally, for the remote lab the most

important follow-up work will be hosting the web site in a

server and to provide a secure, PHP/SQL handshake procedure

for access authorisation (i.e. a welcoming homepage, time slot

requests to the webmasters, etc.).

REFERENCES

[1] V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and
F. Nori, “An OpenSource Simulator for Cognitive Robotics Research
The Prototype of the iCub Humanoid Robot Simulator,” 2008.

[2] L. Gomes and S. Bogosyan, “Current trends in remote laboratories,”
IEEE Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4744–
4756, 2009.

[3] P. Lanillos, J. N. Oliveira, and J. F. Ferreira, “Experimental
Setup and Configuration for Joint Attention in CASIR,” Mobile
Robotics Lab Institute of Systems and Robotics, Coimbra,
Portugal, Tech. Rep. MRL-CASIR-2013-11-TR001, November 2013.
[Online]. Available: http://mrl.isr.uc.pt/projects/casir/index.php?menu=
5&language=eng&tabela=geral

[4] J. F. Ferreira and J. Dias, “Attentional Mechanisms for Socially Interac-
tive Robots A Survey,” in IEEE Transactions on Autonomous Mental

Development, vol. 6. IEEE, 2014, pp. 110 – 125.

[5] P. Lanillos, J. F. Ferreira, and J. Dias, “Designing an Artificial Attention
System for Social Interaction,” in 2015 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 4171
– 4178.

[6] P. Lanillos and J. F. Ferreira, “The CASIR-IMPEP Attention Framework
for Social Interaction with Robots,” Mobile Robotics Lab Institute of
Systems and Robotics, Coimbra, Portugal, Tech. Rep. MRL-CASIR-
2013-12-TR004, December 2013.

[7] F. Weihardt, “Care-o-bot-research: Providing robust robotics hardware
to an open source community,” 2011, [presentation].

[8] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” International Journal on Advanced Robotics Systems, p.
3(1):4348, 2006.

[9] T. Construct, “The Construct - Just Simulate!” 2016, [Online; accessed
29-February-2016]. [Online]. Available: http://www.theconstructsim.
com/

[10] OSRF, “Ros Wiki,” [Online; accessed 09-August-2016, last edit
15-September-2016 09:17:13]. [Online]. Available: http://wiki.ros.org

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[12] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating
humanoid robot dynamics: A survey based on user feedback,” in 2014

IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014,
pp. 842 – 849.

[13] Open Source Robotics Foundation, “Gazebo,” 2014, [Online; accessed
12-July-2016]. [Online]. Available: http://www.gazebosim.org/

[14] LAAS-CNRS, “MORSE,” [Online; accessed 12-July-2016]. [Online].
Available: https://www.openrobots.org/morse/doc/stable/morse.html

[15] Coppelia Robotics, “V-Rep: Virtual Robot Experimentation Platform,”
[Online; accessed 12-July-2016]. [Online]. Available: http://www.
coppeliarobotics.com/

[16] Cyberbotics, “Webots - robot simulator,” [Online; accessed 12-July-
2016]. [Online]. Available: https://www.cyberbotics.com/

[17] A. L. Taylor and J. T. Wright, “A telerobot on the world wide web,” in
In National Conference of the Australian Robot Association, 1995.

[18] C. Crick, G. Jay, B. Pitzer, and O. C. Jenkins, “Rosbridge: Ros for
non-ros users.”

[19] J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of vp8, an open
source video codec for the web.”

[20] Allied Vision Technologies GmbH, “GUPPY F-036 Datasheet,”
[Online; accessed 24-August-2016]. [Online]. Available: https://www.
alliedvision.com/en/products/cameras/detail/Guppy/F-036.html

[21] Harmonic Drive AG, “Engineering Data DC servo Actuators
PMA,” [Online; accessed 24-August-2016]. [Online]. Avail-
able: http://harmonicdrive.de/mage/media/catalog/category/ED PMA
E 1019821 12 2015 V01 6.pdf

[22] M. Kuniecki, J. Pilarczyk, and S. Wichary, “The color red attracts
attention in an emotional context. an erp study,” Frontiers in human

neuroscience, vol. 9, 2015.

[23] M. Blaha, M. Krec, P. Marek, T. Nouza, and T. Lejsek, “Rosbridge web
interface,” Department of Cybernetics Faculty of Electrical Engineering,
Czech Technical University Technick, 166 27 Prague 6, Czech Republic,
Tech. Rep., May 2013.

[24] Gradil, A. , “Development of a Remote 3D Visualisation, Control and
Simulation Framework for a Robotic Head,” [Online; accessed 07-

November-2016]. [Online]. Available: http://ap.isr.uc.pt/archive/651.pdf

http://mrl.isr.uc.pt/projects/casir/index.php?menu=5&language=eng&tabela=geral
http://mrl.isr.uc.pt/projects/casir/index.php?menu=5&language=eng&tabela=geral
http://www.theconstructsim.com/
http://www.theconstructsim.com/
http://wiki.ros.org
http://www.gazebosim.org/
https://www.openrobots.org/morse/doc/stable/morse.html
http://www.coppeliarobotics.com/
http://www.coppeliarobotics.com/
https://www.cyberbotics.com/
https://www.alliedvision.com/en/products/cameras/detail/Guppy/F-036.html
https://www.alliedvision.com/en/products/cameras/detail/Guppy/F-036.html
http://harmonicdrive.de/mage/media/catalog/category/ED_PMA_E_1019821_12_2015_V01_6.pdf
http://harmonicdrive.de/mage/media/catalog/category/ED_PMA_E_1019821_12_2015_V01_6.pdf
http://ap.isr.uc.pt/archive/651.pdf

	Introduction
	Related Work
	Implementation
	ROS framework for the CASIR-IMPEP platform
	Implementation details for the Gazebo-based simulation package
	IMPEP simulation – sensors
	IMPEP simulation – actuators
	Environmental simulation
	Avatar and interaction simulation

	Implementation details for the rqt-based user interface
	Implementation details for the web service supporting the CASIR-IMPEP remote lab

	Results and Discussion
	Simulation and visualisation proof-of-concept
	Remote simulation and control proof-of-concept

	Conclusion and Future Work
	References

