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Abstract: Recently, generating visually secure cipher images by compressive sensing (CS) techniques
has drawn much attention among researchers. However, most of these algorithms generate cipher
images based on direct bit substitution and the underlying relationship between the hidden and
modified data is not considered, which reduces the visual security of cipher images. In addition,
performing CS on plain images directly is inefficient, and CS decryption quality is not high enough.
Thus, we design a novel cryptosystem by introducing vector quantization (VQ) into CS-based
encryption based on a 3D fractional Lorenz chaotic system. In our work, CS compresses only the
sparser error matrix generated from the plain and VQ images in the secret generation phase, which
improves CS compression performance and the quality of decrypted images. In addition, a smooth
function is used in the embedding phase to find the underlying relationship and determine relatively
suitable modifiable values for the carrier image. All the secret streams are produced by updating
the initial values and control parameters from the fractional chaotic system, and then utilized in CS,
diffusion, and embedding. Simulation results demonstrate the effectiveness of the proposed method.

Keywords: image encryption; compressive sensing; diffusion; fractional chaotic system

1. Introduction

With the constant advancement of the Internet and image processing technology,
a mass of digital images are being generated, transmitted, and stored conveniently. Mean-
while, the data security of these transmitted images is of increasing concern due to an
insecure network environment [1,2]. While encryption is considered as an effective tech-
nique to secure sensitive images, the intrinsic characteristics of digital images such as bulky
data volume, high redundancy, and a strong correlation between adjacent pixels make
traditional AES and DES encryption methods inefficient [3]. Therefore, specialized algo-
rithms have been extensively developed, such as fractional chaotic systems [4], quantum
computation [5], and compressive sensing (CS) [6–9].

As of now, fractional Lorenz systems have been widely applied to image encryption.
For instance, Wang et al. [10] applied the fractional-order hyper-chaotic Lorenz system
to image encryption to improve encryption security. Similarly, to enhance security and
efficiency, He et al. [11] performed encryption on plain images using pseudorandom
streams generated by the fractional Lorenz system. Badr et al. [12] considered a face
image encryption with the fractional-order Lorenz chaotic system to achieve cancellable
face recognition. Additionally, fractional chaotic systems have been introduced to CS-
based image encryption [13–16] recently. For instance, to improve encryption security,
Yan et al. [13] and Kayalvizhi et al. [14] introduced fractional-order hyper-chaotic systems
into image encryption, combining CS and DNA operation. To address the issue that CS
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reconstruction precision is not high enough, Fan et al. [15] proposed a subdata cipher
structure based on 3D fractional logistic systems. The structure verified that the bifurcation
diagrams of the 3D fractional system are well-suited for encryption. To reduce CS storage
space and computational complexity, Ye et al. [16] designed a color image encryption
scheme based on quaternion discrete multifractional transform and CS. The scheme utilizes
the chaos-based orders to improve key sensitivity. The above schemes [10–16] tried to
encrypt visible information into meaningless or noiselike content before transmission.
Unfortunately, the noiselike appearance over public channels is likely to hint at the presence
of a possible cipher, thereby incurring cryptanalysis attacks on suspicious content. As a
result, it is always imperative to design secure cryptosystems so that the unauthorized
entities cannot differentiate the cipher images by direct visual inspection.

Bao and Zhou [17] first introduced the concept of meaningful image encryption.
The plain image was encrypted into a noiselike structure by an existing encryption method,
and then transformed by discrete wavelet transform (DWT) to obtain a visually meaning-
ful cipher image. This scheme achieves the transmission of cipher image with minimal
suspicion, but the volume of the cipher image is four times larger than that of the plain
image, which increases the transmission cost. The work in [18] was a variant of Bao and
Zhou’s scheme [17], which reduced the file size of the cipher image and improved the
visual security of the decrypted image. The research in [19] was another refinement, which
compressed the plain image into a secret image by CS, and then embedded the secret image
into the carrier image to form a cipher image. The refinement scheme in [19] is robust,
but the embedding is handled by DWT, which is not fully reversible. The schemes in [20,21]
resorted to integer discrete transform (IWT) and least-significant bit (LSB) embedding to
ensure reversibility. In addition, to reduce the storage space of the CS measurement matrix,
Wen et al. [22] and Ping et al. [23] integrated the semitensor product (STP) technique with
CS. To have stronger robustness, Zhu et al. [24] used singular value decomposition (SVD)
embedding to create the final visually secure cipher images. Unfortunately, the scheme
in [24] needs to transmit the unmodified carrier image into the receiver to extract the
embedded information. On this basis, a series of meaningful encryption schemes are inves-
tigated to improve the visual security of the cipher image or the quality of the decrypted
image [25–28]. However, when CS is directly performed on a plain image [19–22,24], there
are problems of inefficiency and poor quality of the decrypted image [15]. Furthermore,
the underlying relationship between the hidden and the modified data is not considered
in [19–22], which reduces the visual security of the cipher image.

To overcome the above shortcomings, we detail a novel and visually secure image
encryption scheme that introduces the fractional Lorenz system into CS-based cryptosystem.
First, the plain image is partitioned into VQ index blocks and error compensations that are
sparse enough to be compressed by CS. Then, the index information and the measurements
are diffused by a pseudorandom sequence obtained by the fractional Lorenz system to
obtain a noiselike secret image. Next, the secret image is hidden into the carrier image by
smooth function embedding [29]. Particularly, the lifting integer wavelet transform (LIWT)
is introduced to decompose the carrier image to obtain the integer coefficient matrices,
and the invertible coefficient quantization [30] is performed to eliminate the energy loss of
the extracted information. Finally, a visually meaningful cipher image is obtained, which
is of the same resolution as the plain image and appears visually the same as the carrier
image. All cipher streams are obtained by updating the control parameters of the fractional
Lorenz system and then used in the generation of CS measurement matrices, diffusion of
the combination matrix, and permutation of the cover image.

The remainder of this paper is organized as follows. Preliminaries are introduced
in Section 2. The description of our scheme is provided in Section 3. Simulation results
and performance analyses are given in Section 4. The conclusion is drawn from the work
in Section 5.
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2. Preliminaries
2.1. Compressive Sensing

Compressive sensing (CS) asserts that the signal which is sparse or can be sparsely
represented can be reconstructed from much lower samples than the conventional Nyquist–
Shannon sampling theorem. In CS theory, a redundant sparse signal x of size n× 1 can be
sparsely represented through an orthogonal basis Ψ and measured with m× n measurement
matrix Φ, the measured value y of size m× 1 is obtained by

y = Φx = ΦΨs = Θs, (1)

where Θ and s are the sensing matrix and the transformed coefficient matrix, respectively.
The dimensions need to meet the relationship that

ck log
(n

k

)
≤ m� n, (2)

where k denotes the number of nonzero elements of the sparse signal, and c is a constant.
When requiring to reconstruct x from y, one should solve a nonconvex optimal problem
as follows:

min ‖s‖1 s.t. Θs = y, (3)

where ‖·‖ represents the sum of absolute values of each element in a vector. There are
many algorithms to reconstruct x from y, such as orthogonal match pursuit (OMP), basic
pursuit (BP), and smoothed l0 norm (SL0).

2.2. The 3D Fractional Lorenz System

The 3D Lorenz chaotic system has been widely studied as a nonlinear uncertainty
system due to its complicated evolution orbits of stretching and folding [31,32]. The system
is used to produce the pseudorandom sequences for subsequent encryption and embedding
in our work, and its mathematical formula is depicted as follows:

Dα1
t x(t) = −σx(t) + σy(t)

Dα2
t y(t) = −rx(t)− y(t)− x(t)z(t)

Dα3
t z(t) = x(t)y(t)− bz(t)

(4)

where t represents the time state, α1 = α2 = α3 are the fractional orders that equal to
0.995, σ and r are associated with the Prandtl number and Rayleigh number, respectively,
b is the geometric factor, and σ ∈ [9, 10], r ∈ [25, 30] and b ∈ [2, 3]. For a more detailed
mathematical derivation, please refer to the literature [12,32].

2.3. Vector Quantization

Vector quantization (VQ), a lossy data compression technique, is a dimensionality
reduction method that attempts to replace high-dimensional data with low-dimensional
codeword indexes. It includes three components: codebook generator, VQ encoder, and VQ
decoder. The codebook generator uses the LBG clustering algorithm [33] with the image
sub-block size p× q to yield k-dimensional codewords CW f =

(
cw1

f , cw2
f , · · · , cwk

f

)
that

constitute the codebook CB of size Num, where k = p× q and 1 ≤ f ≤ Num. The VQ
encoder exploits CB to compress a sized N0 × N0 image to VQ indexes. It first groups the
image into a series of sized p× q image sub-blocks SB = [sb1, sb2, · · · , sbN0

2/p/q], and the

j-th block content sbj (1 ≤ j ≤ N0
2/p/q) is:

sbj =
(

sb1
j , · · · , sb2

j , · · · , sb2×q
j , · · · , sb(p−1)×q+1

j , · · · , sbk
j

)
. (5)
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For each sub-block, the nearest codeword is found with the smallest minimum Eu-
clidean distance from SB. The Euclidean between CW f and SB is defined as

D
(

SB, CW f

)
=

√√√√ k

∑
i=1

(
sbi

j − cwi
f

)2
, (6)

where CW f represents the f -th codeword in CB, and cwi
f is the i-th component of CW f .

At the VQ decoder side, one can exploit the trained CB to decode the encoded VQ indexes
to reconstruct the original image.

3. The Proposed Scheme

The proposed encryption scheme is introduced in two stages, as shown in Figure 1.
In the first stage, the plain image is processed into an index matrix and an error matrix via
the VQ encoder and decoder. The error matrix was confused with zigzag and compressed
with a CS measurement matrix to obtain the measured values. The resulting values and the
index matrix are diffused toobtainher to create an invisible secret image. In the second stage,
the secret image is hidden into the carrier image to generate the cipher image. The hiding
procedure is implemented by a smooth function to minimize the gap between the hidden
and the modified data. Below, we introduce each in the proposed scheme.

Plain image

VQ

Index matrix
(Part1)

Error matrix

Zigzag confusion

Measuring

Quantization 
(Part2)

3D fractional Lorenz system

Sequence X, Y, Z

Measurements

Secret key

 0 0 0, , , , ,r b x y z

Combination matrix
(Part1+Part2)

Diffusion

Scrambling

Embedding

Carrier  image

, , ,LL LH HL HHC C C C

Preprocessing
Cipher  image

, , ,LL LH HL HHC C C C   

Inverse 
scrambling

LIWT
Inverse
LIWT

Subtraction

Fusion
Secret image 

Figure 1. The schematic of the proposed encryption process.

3.1. Encryption Process

The encryption operations begin with the following assumptions: the size of both
the plain image Io and the carrier image Icar is N0 × N0; the plain image Io is divided into
p× q nonoverlapping sub-blocks SB = [sb1, sb2, · · · , sbN0

2/p/q], the confused error matrix
is sampled by CS in l × l block-unit way, and the size of the measurement matrix Φ is
Mb × lb, where lb = l × l and Mb < lb.
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3.1.1. Generating Index Matrix and Error Matrix Based on VQ

Step 1: Find the best matching codeword for each sub-block SB and assign the corre-
sponding index to the sub-block according to the following equation:

sj0 = arg min
f0

D
(

SBi
j0 , CWi

f0

)
, (7)

where 0 ≤ f0 ≤ Num, 1 ≤ i ≤ p × q, 1 ≤ j0 ≤ N0
2/p/q, and sj0 is the best matching

codeword index. All the assigned indexes constitute a vector s = [s1, s2 · · · , sN0
2/p/q] as

Part1 shown in Figure 1.
Step 2: Exploit the well-trained codebook to decode the index vector to obtain the

reconstructed image Ivq, and subsequently calculate the error matrix P0 using Equation (8).

P0 = Io − Ivq. (8)

Unlike previous studies that directly use CS to compress plain images, we choose
the error matrix as input based on the following merits. Firstly, the error matrix has
better sparsity than the plain image, and we can find a reasonable explanation from the
comparable results in Figure 2a,c. Thus, the error image as CS input fully reflects the
sparsity emphasized by CS theory. In this way, there is no need to investigate how to
choose a suitable sparse basis. Secondly, the error matrix is used as a complement to
the VQ indexes in the reconstruction stage, which helps to improve the quality of the
decrypted images.

(a) (b) (c)

Figure 2. The reconstructed results of Cameraman with the size 256× 256. (a) Plain image. (b) The
corresponding VQ reconstructed image. (c) The error matrix between (a,b).

3.1.2. Generating the Secret Image Based on CS and Zigzag Confusion

Step 1: Calculate the initial values (x0, y0, z0) of the 3D Lorenz system using three
external key parameters k0, k1, and k2 that are associated with the original plain Io.

x0 =
⌊(

(abs(k0)− bk0c)× 1014
)

mod 25
⌋
+ 1

y0 =
⌊(

(abs(k1)− bk1c)× 1014
)

mod 25
⌋
+ 1

z0 =
⌊(

(abs(k2)− bk2c)× 1014
)

mod 25
⌋
+ 1

. (9)

Step 2: Generate the following three sequences KSi (i = 1, 2, · · · , N0
2/l/l), KBj

(j = 0, 1, · · · , N1 × N2 − 1), where N1 × N2 is the size of the combination matrix,
and KFk (k = 1, 2, · · · , N0

2/4) using (x0, y0, z0), which are used to construct the mea-
surement matrix, diffuse the combination matrix and scramble the coefficients of carrier
image, respectively.
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Step 3: Scan the error matrix P0 via ziazag order using the given initial value (ẋ0, ẏ0)
in advance, where ẋ0 and ẏ0 are not greater than N0, to yield the confused errors et
(t = 1, 2, · · · , N0

2).
Step 4: Set a threshold TS to alter the errors et to zero if the absolute values are

smaller than TS, and then divide the altered errors into nonoverlapping sub-blocks P1 =
[P1,1, P1,2, · · · , P1,N0

2/l/l ] of block size l × l.
Step 5: Construct the measurement matrix Φi (i = 1, 2, · · · , N0

2/l/l) according to
Algorithm 1. Then, measure each block in P1 by use of Φi to produce the measured values
P2 = [P2,1, P2,2, · · · , P2,N0

2/l/l ]. If the sampling rate is SR, the length of each block in P2 is
Mb = SR× l2 = SR× lb.

Algorithm 1: The construction of measurement matrix Φi.
Input: A distance d, the initial values (x0, y0, z0), and control parameters (σ, r, b).
Output: The measurement matrix Φi (i ∈ [1, N0

2/l/l]).
(1): Iterate the 3D Lorenz system 2i + 500 + Mblbd times with initial values
(x0, y0, z0) and control parameters (σ, r, b), abandon the preceding 2i + 500
elements to bypass the transient state, then obtain three chaotic secret code
streams Xi = [xi,1, xi,2, · · · , xi,Mb lbd], Yi = [yi,1, yi,2, · · · , yi,Mb lbd] and
Zi = [zi,1, zi,2, · · · , zi,Mb lbd].

(2): Obtain the sequence KSi =
[
KSi,1, KSi,2, · · · , KSi,Mb lbd

]
based on

KSi = (Xi + Yi + Zi)/3.
(3): Generate the sequence KS′i by sampling sequence KSi with interval d as

KS′i,ε = KSi,(1+εd) (ε = 0, 1, · · · , Mblb − 1).
(4): Obtain a more random sequence KS′′ with KS′′i,ε = 1− 2KS′i,ε
(ε = 0, 1, · · · , Mblb − 1).

(5): Construct the measurement matrix Φi according to the following formula:

Φi =

√
2

Mb


KS′′ i,1 KS′′ i,Mb+1 · · · KS′′ i,Mb lb−Mb+1
KS′′ i,2 KS′′ i,Mb+2 · · · KS′′ i,Mb lb−Mb+2

...
...

. . .
...

KS′′ i,Mb KS′′ i,2Mb · · · KS′′ i,Mb lb

. (10)

Step 6: Quantify all the elements of P2 into a specific range of [0, 255] using the sigmoid
map function in Equation (11), and obtain a novel vector P3 as Part2.

P3 = round
(

a1 ·
(

1 + e−a2(P2−a3)
))

, (11)

where round(·) denotes rounding the elements to the nearest integer, a1 = 255, a2 = max−min,
a3 = (max+min)/2, and max and min are the maximum and minimum elements of
P2, respectively.

Step 7: Append all the measurement vector P3 (Part2) to the index vector s (Part1)
orderly to obtain the combination matrix P4 =

[
s, P3,1, P3,2, · · · , P3,N0

2/l/l

]
, and the size of

P4 is
N1 × N2 = N0

2/p/q + SR× N0
2. (12)

Note that all the index values in s are 8 bits long. If the block size and the sampling
rate are set to p× q = 4× 4 and SR = 3/16, respectively, then N1 × N2 = N0

2/4.
Step 8: Diffuse the combination matrix P4 [15] with the sequence KBj generated in

Step 2, and obtain the secret image P5.

P5,j = (P4,j + KBj)mod 256⊕ KBj ⊕ P5,j−1, (13)
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where P4,j is the j-th element of the matrix P4, P5,j is the j-th element of the matrix P5,
and j = 0, 1, · · · , N1 × N2 − 1.

3.1.3. Embedding the Secret Image into the Carrier Image

Step 1: Preprocess the elements of the carrier Icar of resolution N0 × N0 into the
range [8, 248].

Icar(i, j) = f loor(8 + 0.9397× Icar(i, j)), (14)

where i, j ∈ [1, N0], and f loor(·) is a downward rounding function.
Step 2: Perform an LIWT operation on the modified carrier Icar, and then obtain

the coefficient components CLL, CLH , CHL, and CHH , with each having the size of
(N0/2)× (N0/2).

Step 3: Scramble CLH , CHL, and CHH with the pseudorandom sequence KF generated
in Section 3.1.2, and then obtain the scrambled components C′LH , C′HL and C′HH .

Step 4: Embed the secret image P5 into the two components C′LH and C′HL by a smooth
function and the component C′HH by a direct substitution, and the detailed embedding
process is described in Algorithm 2.

Algorithm 2: The embedding process.

Input: The secret image P5 and the scrambled components C′LH , C′HL, and C′HH .
Output: The marked coefficient components C̃LH , C̃HL, and C̃HH .
(1): Stretch the secret image P5 into a one-dimensional vector

F′ = [ f ′1, f ′2, · · · , f ′N1×N2
], and represent all the elements of the vector F′ in binary

as b7b6b5b4b3b2b1b0, where b7 is the highest bit and b0 is the lowest bit.
(2): Quantify the coefficients of C′LH , C′HL, and C′HH into non-negative integers in a

reversible way.

c′i mod Nt = c′′i =

{
c′i, ci ≥ 0,

c′i + Nt, others,
(15)

where 1 ≤ i ≤ N0
2/4, Nt is a constant value that must satisfy Nt > 2c′i, c′i is the

i-th coefficient value, and c′′i is the quantized non-negative coefficient value.
(3): Use the smooth function to embed b7b6b5 and b4b3b2 into the lowest three bits

of the components C′′LH and C′′HL , respectively. The embedding process for C′′LH is
described as the following formula:

vi = 4× w0 + 2× w1 + w2 − mod ( c′′i , 8), (16)

c̃i =


c′′i + vi i f |vi| < 5,

c′′i + vi + 8 i f vi ≤ −5,
c′′i + vi − 8 i f vi ≥ 5,

(17)

where w0, w1, and w2 are the secret data to be embedded, c̃i is i-th element value
of the marked component C̃LH , and vi is the gap between the value of the secret
data which is going to be embedded in c′′i and the value of the three LSBs in c′′i .
The generation of marked component C̃HL is the same as that of C̃HL, so we do
not reiterate here.

(4): Embed b1b0 into the lowest two bits of C′′HH directly and keep other higher bits
constant, then obtain the marked coefficient matrix C̃HH .

Step 5: Execute the inverse quantization on the marked component C̃LH , and
obtain C′′′LH .

c′′′i =

{
c̃i, c̃i < Nt/2,

c̃i − Nt, others,
(18)



Fractal Fract. 2022, 6, 302 8 of 24

where c′′′i is the i-th element value of C′′′LH . Then, perform the same inverse quantization on
the marked components C̃HL and C̃HH to generate C′′′HL and C′′′HH .

Step 6: Perform the inverse scrambling of Step 3 on the components C′′′LH , C′′′HL, and
C′′′HH , and apply the inverse LIWT to obtain the final cipher image Iciph, which consists of
the components CLL, CMLH , CMHL, and CMHH .

Essentially, the embedding uses the smooth function to modify the lowest three bits
of the carrier coefficients, rather than physically changing these coefficients by direct bit
substitution. To be specific, given c′′i = 232 = (11101000)2, w0w1w2 = {1, 1, 1}. After direct
bit substitution, we can obtain the modified coefficient value c̃i = 232 + 7 = 239 =
(11101111)2 with a difference of |c̃i − c′′i | = 7. However, when the smooth function in
Equation (18) is introduced, we can obtain the modified coefficient value c̃i = 232+ 7− 8 =
231 = (11100111)2 with a difference of |c̃i − c′′i | = 1. The peak signal-to-noise ratio (PSNR)
of the cipher image generated using the smooth function can be improved by 2 dB on
average. The detailed process is shown in Algorithm 2.

The quantization process in Algorithm 2 converts the negative coefficients to the
corresponding positive coefficients. For better illustration, this process is described in
Figure 3. The top half of the figure represents the distribution of unquantized coefficients
and the bottom half represents the distribution of quantized coefficients. The inverse
quantization can be achieved if and only if Nt − c′i > c′i, i.e., Nt > 2c′i. In this way, the data
expansion issue can be addressed and invertibility can be guaranteed.

ic 0

0

ic

ic t iN c tN

Figure 3. The quantization process.

3.2. Decryption Process

The decryption process is the inverse of the encryption process. Figure 4 illustrates
the schematic of the process. Firstly, the secret image is extracted from the received cipher
image, then the plain image is restored according to the extracted secret image. The LIWT
ensures an integer to an integer transform, and the subsequent coefficient quantization
operation ensures conversion reversibility.

VQ 
reconstruction

Index matrix
(Part1)

Error matrix

Inverse Zigzag 

CS 
reconstruction

Inverse quantization
(Part2)

3D fractional Lorenz system

Sequence X, Y, Z

Measurements

Combination matrix
(Part1+Part2)

Inverse
Diffusion

Secret image 

Scrambling

Extracting

Cipher  image

LIWT

, , ,LL MLH MHL MHHC C C CVQ Image

Plain image

Adder

Secret key

 0 0 0, , , , ,r b x y z

Figure 4. The schematic of the proposed decryption process.
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3.2.1. Extracting the Secret Image from the Cipher Image

Step 1 : Apply the LIWT to the cipher image, and then obtain the coefficient compo-
nents CLL, CMLH , CMHL, and CMHH .

Step 2: Scramble CMLH , CMHL, and CMHH to obtain the components C′′′LH , C′′′HL, and
C′′′HH , and quantize them into non-negative integer components C′′LH , C′′HL, and C′′HH .

Step 3: Transform the elements of components C′′LH , C′′HL, and C′′HH into their binary
formats, and pick out the lowest 3 bits from C′′LH as b7b6b5, the lowest 3 bits from C′′HL as
b4b3b2, and the lowest 2 bits from C′′HH as b1b0.

Step 4: Recombine the binary bits into 8-bit representation b7b6b5b4b3b2b1b0 and change
it to decimal format to obtain the vector F′ = [ f ′1, f ′2, · · · , f ′N1×N2

], then obtain the secret
image P5 by converting F′ into N1 rows and N2 columns.

3.2.2. Recovering the Plain Image

Step 1: Conduct the inverse diffusion on the extracted secret image P5 to obtain the
combination image P4, and then obtain the index vector s = [s1, s2 · · · , sN0

2/p/q] as in Part1
and the measurement vector P3 =

[
P3,1, P3,2, · · · , P3,N0

2/l/l

]
as in Part2.

Step 2: Perform the inverse sigmoid quantization on P3 according to Equation (19),
and obtain the measured values P2.

P2 = round(log(a1 ·
1
P3
− 1)/(−a2) + a3). (19)

Step 3: Execute the OMP reconstruction algorithm on P2 as the following equation:

P1,i = OMP(P2,i, Φi), f or 1 ≤ i ≤ N0
2/l/l . (20)

Step 4: Manipulate the inverse zigzag confusion (IZC) on the recovered sparse error
matrix P1 by the following equation:

P0 = IZC(P1, ẋ0, ẏ0). (21)

Step 5: Execute the VQ reconstruction algorithm on Part1, and then obtain the lossy
VQ reconstruction image Ivq.

Step 6: Obtain the decrypted image via adding the reconstructed error matrix P0 to
the corresponding reconstructed image Ivq.

I0 = Adder(P0, Ivq). (22)

In order to better explain the process of the proposed algorithm, we take a specific
8× 8 image matrix as an example to theoretically analyze the effectiveness of the proposed
algorithm. Since our algorithm consists of three preliminary parts: the VQ process, the error
compression process, and the secret image embedding process, we explain the proposed
method from these three aspects. In the VQ encoding process, the input 8 × 8 image
matrix is encoded into 4 codeword indexes, then the lossy VQ image matrix of equal
size is generated by the VQ decoding process, and the error matrix e is generated using
Equation (8). In the error compression process, a measurement matrix Φ12×64 of size 12× 64
is first generated using the fractional Lorenz system, and then the measured value P of size
12× 1 is generated by compressing the error matrix with P12×1 = Φ12×64 × e64×1. On this
basis, the combined matrix is obtained, and the percentage is 4/8 × 8 + 12/(8× 8) =
1/16 + 3/16 = 1/4 of the input image matrix. In the embedding process, the secret image
can be embedded into the coefficient matrices of the carrier image using the smoothing
function, which is the usual information hiding process.



Fractal Fract. 2022, 6, 302 10 of 24

4. Simulation and Performance Analyses

In this section, the simulation results of the proposed visual secure encryption algo-
rithm are presented, and performance analyses are elaborated from the aspects of image
encryption and decryption results, key sensitivity, histogram and correlation analyses,
information entropy analysis, chosen plaintext attack (CPA), noise and data loss attacks,
running efficiency analysis, and comparison analysis. All experiments are conducted on a
64-bit Windows 7 PC with 16.0 GB random-access memory (RAM) and Inter(R) Core(TM)
i7-4770 CPU @ 3.40 GHz, and the platform is MATLAB R2012b. The sized 256× 256 or
512× 512 images including Lena, Barbara, Baboon, Jet, Woman, Peppers, Cameraman, and
Goldhill are selected as the plain images and carrier images, respectively. In the VQ phase,
we utilize a trained codebook with 256 codewords of length 16 to encode and decode the
plain images, and the image sub-block size of this process is set as p× q = 4× 4. In the CS
phase, the block size of the sampling is set as l × l = 8× 8, and the default sampling rate is
SR = 3/16 and the threshold is TS = 25.

4.1. Simulation Results

In this subsection, we analyze and discuss the encryption and decryption results of
the proposed scheme. In addition, the selections of the carrier images and the settings of
the threshold TS are essential for the encryption and reconstruction effect. Thus, we also
evaluate them in detail in the following contents.

4.1.1. Encryption and Decryption Results

Figure 5 presents the encryption and decryption results. The sized 256× 256 Lena,
Baboon, Woman, and Cameraman as the plain images, in conjunction with the same-sized
Barbara, Jet, Peppers, and Goldhill as the carrier images, are tested successively. As we can
observe from the visual perception, the secret images were compressed to a quarter of the
corresponding plain images, and their appearances resemble noiselike contents. In addition,
the cipher images are obtained that are visually the same as the associated carrier images.
Thus, if they are saved and transmitted among other natural images, the underlying
attacks are not conscious of them. In another aspect, the reconstructed error matrices
and the decoded VQ images are combined to recover the plain images, as displayed in
Figure 6. The reconstructed error matrices merely fulfill information compensation to the
corresponding decoded VQ images, illustrating that the decrypted images have higher
visual quality while maintaining the compression performance.

To analyze the similarities between two images quantitatively, the commonly used
PSNR and mean structural similarity (MSSIM) [34], which are based on statistical models for
images in the spatial domain, are exploited in this paper. The numerical results with smooth
function and without smooth function (i.e., direct bit substitution) are given in Table 1,
where PSNRdec represents the PSNR value between the plain image and corresponding
decrypted image, and PSNRcip and MSSIMcip represent the PSNR and MSSIM values
between the carrier image and corresponding cipher image, respectively. We can see that
when the smooth function is introduced, all PSNRcip values are greater than 42 dB, and the
MSSIMcip values are larger than 0.9970, which are higher than those generated without
the use of the smooth function. After employing the smoothing function, the quality of
each cipher image is promoted by more than 2 dB, indicating that the introduced smooth
function and the quantization of the coefficient sign exert significant efficacy. Besides,
the PSNRdec values with the sized 512× 512 carrier images and plain images are higher
than those of the corresponding sized 256× 256 images, except for the Baboon texture
image. Thus, the image size affects the decryption quality. In conclusion, the results
mentioned above indicate that our method produces visually secure cipher images for
transmission and offers satisfactory visual quality for both cipher and decrypted images.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

(e1) (e2) (e3) (e4)

Figure 5. Simulation results of the proposed scheme. (a1–a4) Four plain images: Lena, Baboon,
Woman, and Cameraman size 256× 256. (b1–b4) Four carrier images: Barbara, Jet, Peppers, and
Goldhill size 256× 256. (c1–c4) The corresponding secret images. (d1–d4) The corresponding cipher
images. (e1–e4) The corresponding decrypted images.

(a1) (a2) (a3) (a4)

Figure 6. Cont.



Fractal Fract. 2022, 6, 302 12 of 24

(b1) (b2) (b3) (b4)

Figure 6. The reconstruction details. (a1–a4) The reconstructed error matrices. (b1–b4) The decoded
VQ images.

Table 1. PSNR and MSSIM values of simulation results.

Size Plain Image Carrier Image
With Smooth Function Without Smooth Function

PSNRdec(dB) PSNRciph(dB)MSSIMciph PSNRdec(dB) PSNRciph(dB)MSSIMciph

256× 256

Lena Barbara 32.1670 42.3844 0.9990 32.1670 39.7819 0.9982
Baboon Jet 26.4461 42.4317 0.9978 26.4461 39.4862 0.9960
Woman Peppers 33.9596 42.4443 0.9983 33.9596 39.7859 0.9970
Cameraman Goldhill 29.2672 42.3324 0.9986 29.2672 39.6536 0.9976

512× 512

Lena Barbara 33.6028 42.3879 0.9985 33.9741 39.6025 0.9974
Baboon Jet 23.3306 42.4855 0.9972 23.3306 39.5200 0.9952
Woman Peppers 35.4988 42.3948 0.9976 35.4988 39.7142 0.9958
Cameraman Goldhill 33.9741 42.3654 0.9981 33.6028 39.7277 0.9968

4.1.2. Influence of Different Carrier Images on Encryption and Decryption

The LIWT operation converts the carrier pixel values to integer coefficient values
and the subsequent quantization operation handles the signs of the generated coefficients
in a reversible manner. Thus, these operations do not cause energy loss to the extracted
secret image. Additionally, the invertible embedding and extraction processes ensure the
integrity of the extracted information. However, the truncation errors from the rounding
operation perhaps lead to the loss of error information and further degrade the quality of
the decrypted image to some degree. To evaluate the influence of different carrier images
on the simulation results, the 256× 256 and 512× 512 images of Woman are encrypted
and then embedded into four different carrier images: Barbara, Jet, Lena, and Goldhill,
respectively. Table 2 lists the calculated PSNRdec, PSNRcip, and MSSIMcip values with and
without the smooth function. It can be seen that even when testing different carrier images,
the PSNRdec values are still very similar and vary within a very narrow interval, verifying
that different carrier images have little effect on the quality of decrypted images. Moreover,
when the smooth function is utilized, all PSNRcip values are greater than 42 dB, and the
MSSIMcip values are larger than 0.9970, which are greater than the corresponding PSNRcip
and MSSIMcip values generated without the smooth function. Thus, the introduced smooth
function effectively improves the visual security of cipher images.
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Table 2. PSNR and MSSIM values for different carrier images.

Plain Image Carrier Image
With Smooth Function Without Smooth Function

PSNRdec(dB) PSNRciph(dB) MSSIMciph PSNRdec(dB) PSNRciph(dB) MSSIMciph

Woman (256× 256)

Barbara 33.9596 42.3844 0.9990 33.9596 39.7819 0.9982
Jet 33.7542 42.4317 0.9978 33.7542 39.4862 0.9960
Lena 33.4563 42.5292 0.9981 33.4563 39.6842 0.9978
Goldhill 33.6521 42.3324 0.9986 33.6521 39.6536 0.9976

Woman (512× 512)

Barbara 35.4988 42.3879 0.9985 35.4988 39.6025 0.9974
Jet 35.4356 42.4855 0.9972 35.4356 39.5200 0.9952
Lena 35.4732 42.4021 0.9977 35.4732 39.7345 0.9961
Goldhill 35.4381 42.3654 0.9981 35.4381 39.7277 0.9968

4.1.3. Influence of Threshold TS on Encryption and Decryption

Here, we also evaluate the influence of threshold TS on the encryption and decryption
effect. Firstly, four 256× 256 plain images including Woman, Lena, Baboon, and Camera-
man are encrypted in turn, and then embedded in four carrier images Barbara, Jet, Peppers,
and Goldhill, respectively. The test procedure for the images of size 512× 512 is the same.
Figure 7 plots the relationship between TS and PSNR. As shown, regardless of the plain
image or image size used, the PSNR values initially increase and then gradually decrease
as TS increases. The maximum PSNR value fluctuates with the selection of plain image.
Moreover, for the same plain image but with different sizes, the maximum PSNR value still
varies with the setting of TS. Thus, the threshold TS influences the decryption of the plain
image. A reasonable recommendation is to set the threshold TS to 25.

4.2. Performance Analyses

In this section, performance analyses are assessed from key sensitivity analysis, his-
togram analysis, correlation analysis, information entropy analysis, CPA attack, noise
attack, data loss attack, and running efficiency analysis. In what follows, we analyze and
discuss them successively.
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Figure 7. Cont.
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Figure 7. PSNR vs. TS for different plain images. (a) 256× 256. (b) 512× 512.

4.2.1. Key Space and Sensitive Analysis

Key space refers to the total number of different keys used in the encryption algorithm.
As described in Equation (9), the initialization processes of three initial values for the frac-
tional Lorenz system depends on three external keys with 17 decimals. Therefore, the total
key space is 103×17 = 1051, which is enough to resist against a brute-force attack. Key sen-
sitivity is a property that allows a robust encryption design to yield a completely different
output by making subtle changes to the keys used. The plain image Woman (256× 256)
and the carrier image Peppers (256× 256) (see Figure 5(a3,b3) are subjected to the proposed
algorithm with the correct key (x0, y0, z0), and the subtly modified keys (x0 + 10−15, y0, z0),
(x0, y0 + 10−15, z0), and (x0, y0, z0 + 10−15). The corresponding decrypted images are dis-
played in Figure 8. As one would expect, when the key is changed subtly, the corresponding
decrypted image is noisy and cannot provide any visual information, implying that the
decryption process is sensitive to the used keys.

In another aspect, the four keys are utilized to encrypt the same plain image Woman,
and the generated secret images and the final cipher images are presented in Figure 9a–d,e–h,
respectively. The differential images between the original and modified secret images are
shown in Figure 9i–k. As can be observed, minor changes to the keys used can cause
significant changes to the secret images. However, the corresponding cipher images are
visible and appear identical to each other, which means the cipher images can be transmitted
securely over a public channel.

(a) (b) (c) (d)

Figure 8. Key sensitivity analysis in decryption process. (a–d) The decrypted images, respectively,
with correct key; the modified keys (x0 + 10−15, y0, z0), (x0, y0 + 10−15, z0), and (x0, y0, z0 + 10−15).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 9. Key sensitivity analysis in encryption process. (a–d) The secret images, respectively,
with correct key; the modified keys (x0 + 10−15, y0, z0), (x0, y0 + 10−15, z0), and (x0, y0, z0 + 10−15).
(e–h) The corresponding cipher images. (i) Differential image between (a,b). (j) Differential image
between (a,c). (k) Differential image between (a,d).

4.2.2. Histogram Analysis

The histogram of an image depicts the probability density distribution of discrete
pixel values, plotted on the horizontal axis with 0–255 gray levels and on the vertical axis
with the corresponding frequencies. A secure cryptosystem should obtain the secret image
with a flat histogram distribution to resist statistic attacks. In this paper, the plain image
and the corresponding carrier image are the same as those in Section 4.1.1. The histogram
distributions of the secret image, the carrier image, and the cipher image are shown in
Figure 10, respectively. As seen, the histograms of the secret images are flat and similar
to each other; on the contrary, the histograms of the cipher images are uneven and look
the same as the carrier images. Thus, the attacker cannot obtain valuable information from
the histogram distributions of the cipher images to recover the plaintext information. This
shows that our scheme can provide acceptable visual security without raising suspicion
in transmission.

4.2.3. Correlation Analysis

The correlation between adjacent pixels is often used as one of the important criteria
to evaluate the security performance of the existing cryptosystems. For natural images,
there is strong correlation between adjacent pixels; however, it can be greatly weakened by
secure cryptographic cryptosystems. The correlation coefficient (CC) is calculated as

Cxy =
Ls ∑Ls

i=1 (xiyi)−∑Ls
i=1 xi ∑Ls

i=1 yi√(
Ls ∑Ls

i=1 x2
i −

(
∑Ls

i=1 xi

)2
)(

Ls ∑Ls
i=1 y2

i −
(

∑Ls
i=1 yi

)2
) , (23)

where xi and yi are the adjacent pixel values, and Ls is the total number of selected pixel
pairs. In the experiment, we randomly choose 2000 adjacent pixel pairs in horizontal, verti-
cal, and diagonal directions to calculate the correlation between adjacent pixels. The sized
256× 256 images Woman and Peppers are used as the plain image and carrier image,
respectively. Figure 11 and Table 3 show the correlation results. We can see that the
plain image, carrier image, and cipher image have a strong correlation with correlation
coefficients close to 1, and the secret image has weaker correlation with corresponding
correlation coefficient close to 0. In addition, the correlation plots in the third column of
Figure 11 are similar to those in the fourth column, so it is not easy to distinguish the cipher
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image from the corresponding carrier image. In short, the correlation of the plain image
is effectively broken by the encryption design, and the correlation of the carrier image is
well-preserved with the smoothing function embedding.
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Figure 10. Histogram analysis. (a1–a4) Histograms of secret images in Figure 5(c1–c4). (b1–b4) His-
tograms of carrier images in Figure 5(b1–b4). (c1–c4) Histograms of cipher images in Figure 5(d1–d4).
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Figure 11. Correlation analysis. (a1–a3) Correlation plots of the plain image Woman in horizontal,
vertical, and diagonal directions. (b1–b3) Correlation plots of the secret image in horizontal, vertical,
and diagonal directions. (c1–c3) Correlation plots of the carrier image Peppers in horizontal, vertical,
and diagonal directions. (d1–d3) Correlation plots of the cipher image in horizontal, vertical, and
diagonal directions.
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Table 3. Correlation coefficients among adjacent pixels.

Image Horizontal Vertical Diagonal

Plain image 0.9915 0.9935 0.9863
Secret image 0.0287 −0.0056 −0.0536
Carrier image 0.9694 0.9754 0.9435
Cipher image 0.9676 0.9676 0.9305

4.2.4. Information Entropy Analysis

Information entropy is one of the important metrics to evaluate cryptographic secu-
rity [35,36]. For a meaningful encryption system, the closer the information entropy of
the encrypted image is to the carrier image entropy value, the better the encryption effect.
The formula of entropy value is as follows:

H(x) = −∑N
i=1 p(xi)log2 p(xi), (24)

where p(xi) is the probability of xi. Table 4 lists the entropy results of different plain images
embedded into the same carrier image ’Lena’. From this, it can be obtained that the entropy
value of the encrypted image is close to that of the carrier image and the entropy value of
the reconstructed image is close to that of the plain image, so the algorithm in this paper
can effectively resist the information entropy attack.

Table 4. Information entropy results.

Image Plain Image Secret Image Carrier Image Cipher Image

Baboon 7.1391 7.9896 7.2185 7.1396
Woman 7.2695 7.9895 7.2185 7.1396
Cameraman 7.0477 7.9899 7.2185 7.1398
Jet 6.7059 7.9901 7.2185 7.1399
Peppers 7.5924 7.9890 7.2185 7.1395
Barbara 7.6385 7.9894 7.2185 7.1395

4.2.5. Cpa Attack

A known plaintext attack (KPA) refers to a cryptanalytic model in which an attacker
tries to reveal key association information with prior knowledge of the plaintext and the
corresponding ciphertext. Compared with KPA, CPA is more powerful than KPA in that the
attacker can choose any plaintext and generate the corresponding ciphertext to reveal key-
related information. If an encryption scheme is resistant to a CPA attack, it is undoubtedly
also resistant to a KPA attack. Based on this, a secure image encryption mechanism should
be able to resist CPA. In our scheme, although the plain image changes only one bit
of information, the generated secret image has obvious differences, which is due to the
chaotic initial values of the fractional Lorenz system associated with the plaintext content.
Chaos is extremely sensitive to the initial values, and a slightly changed plain image will
generate different initial values, thus generating a different pseudorandom sequence and a
completely different secret image. Based on the above analysis, the algorithm in this paper
can resist a CPA attack.

4.2.6. Noise Attack

The cipher images may be interfered with by noise pollution when stored and transmit-
ted in a public channel. Therefore, in this part, we test the proposed encryption algorithm
against noise attacks. The cipher image Peppers is separately polluted by noise intensi-
ties 0.00001, 0.0001, 0.0005, 0.001, 0.005, and 0.01, and the noisy cipher images and the
corresponding decrypted images are illustrated in Figure 12. As can be seen in Figure 12
and Table 5, when the noisy intensity varies from 0.00001 to 0.01, the PSNR value of the
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decrypted image Woman decreases accordingly from 32.5193 dB to 14.1350 dB. In addition,
one can see that there are several smaller destroyed squares in the decrypted images, which
are different from these neighbor pixels. These small squares correspond to those VQ
indexes that are damaged in the cipher image. Whereas the pixels located in the destroyed
blocks cannot be recovered, these destroyed blocks imply that our method has the ability
to detect inconspicuous potential attacks and locate tampering.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12. Robustness test results against noise attack with the sized 256× 256 plain image Woman
and the same size carrier image Peppers. (a–f) Noise intensities, respectively, with 0.00001, 0.0001,
0.0005, 0.001, 0.005, and 0.01. (g–l) The corresponding decrypted images.
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Table 5. PSNR values under different salt and pepper noise attack.

Image
Noise Intensity

0.00001 0.0001 0.0005 0.001 0.005 0.01

Woman (256× 256) 41.0635 40.8181 39.2176 34.5001 28.2351 25.4084
Peppers (256× 256) 32.5193 29.3239 28.6176 22.3247 15.9286 14.1350

4.2.7. Data Loss Attack

To test the robustness against data loss attacks, the cipher image Peppers is assigned 0
by different size squares, and the cipher images and the corresponding decrypted images
are shown in Figure 13. The data loss sizes of the cipher images in the first row of Figure 13
are 8× 8, 16× 16, 32× 32, and 64× 64, and the images in the second row correspond to the
decrypted images. It can be seen from Figure 13(b1–b4) that some indexes in the tampered
cipher image are destroyed, which further maps the block content of the decrypted image.
In addition, Table 6 lists the PSNR, MSSIM, and CC values of the decrypted images. It can
be seen that the PSNR value of the decrypted image decreases gradually as the data loss
square of the cipher images increases. Moreover, the PSNR value of the decrypted image
decreases from 28.9935 dB to 14.2427 dB. Based on the calculated PSNR, MSSIM, and CC
values, it is clear that the proposed encryption algorithm can resist data loss attacks to a
certain extent.

Table 6. PSNR, MSSIM and CC values of decrypted image for different data loss.

Size of Data Loss PSNR (dB) MSSIM CC

8× 8 28.9935 0.9477 0.9891
16× 16 24.8029 0.8661 0.9714
32× 32 18.6750 0.6018 0.8828
64× 64 14.2427 0.3748 0.6503

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 13. Robustness test against data loss. (a1) 8× 8 data loss. (a2) 16× 16 data loss. (a3) 32× 32
data loss. (a4) 64× 64 data loss. (b1) The decrypted image of (a1). (b2) The decrypted image of (a2).
(b3) The decrypted image of (a3). (b4) The decrypted image of (a4).
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4.2.8. Running Efficiency Analysis

Running efficiency is an important metric for encryption performance, especially for
testing real-time application scenarios. Tables 7–10 list the encryption time and decryption
time for different size images. The size of the carrier image is kept the same as that of the
plain image. ’Compression’ denotes the CS compression process, ’Diffusion’ denotes the
diffusion process of the measurements and VQ indexes, ’Embedding’ denotes the total
process of embedding the secret image into the three coefficient matrices of the carrier
image, and ’Reconstruction’ denotes the decryption process of the plain image. It can be
seen that the average time consumed for encryption ranges from 5.7973 s to 23.4203 s and
for decryption from 5.1673 s to 20.9303 s when the size of the original image changes from
256× 256 to 512× 512. For the encryption process, the time spent on compression and
diffusion is very small, and about all time is spent on smooth function embedding. When
the image size is enlarged, more data is needed for embedding, and therefore, more time is
consumed. As for the decryption process, the time spent on reconstruction accounts for
about 45% of the total time regardless of the image size chosen, while the time spent on
the inverse diffusion is almost negligible. Based on the above data analysis, the proposed
method is very suitable for the encryption and decryption of small and medium-sized
images. When testing larger images, assistance from the cloud is essential, where encryption
occurs locally and decryption is performed on the cloud.

Table 7. Encryption time for images of size 256× 256 (Unit: s).

Item Lena Baboon Woman Cameraman Average

Compression 0.1405 0.1256 0.1200 0.1324 0.1296
Diffusion 0.0057 0.0074 0.0100 0.0062 0.0073
Embedding 16.9714 17.3376 17.8024 16.9080 17.2549
Total 5.7059 5.8235 5.9775 5.6822 5.7973

Table 8. Decryption time for images of size 256× 256 (Unit: s).

Item Lena Baboon Woman Cameraman Average

Extraction 8.5617 8.6331 8.9388 8.6678 8.7004
Inverse-diffusion 0.0049 0.0054 0.0059 0.0052 0.0054
Reconstruction 6.6999 6.8180 7.0726 6.5937 6.7961
Total 5.0888 5.1522 5.3391 5.0889 5.1673

Table 9. Encryption time for images of size 512× 512 (Unit: s).

Item Lena Baboon Woman Cameraman Average

Compression 0.7345 0.7897 0.7124 0.7345 0.7428
Diffusion 0.0106 0.0096 0.0103 0.0100 0.0101
Embedding 69.0720 68.7851 69.6957 70.4789 69.5079
Total 23.2724 23.1948 23.4728 23.7411 23.4203

Table 10. Decryption time for images of size 512× 512 (Unit: s).

Item Lena Baboon Woman Cameraman Average

Extraction 34.5340 35.4738 35.5933 34.6818 35.0707
Inverse-
diffusion 0.0089 0.0116 0.0092 0.0089 0.0097

Reconstruction 27.5058 28.4689 27.7533 27.1136 27.7104
Total 20.6829 21.3181 21.1186 20.6014 20.9303
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4.3. Comparison with the Existing Work

In this subsection, visual security and compression performance of the proposed
scheme are discussed and compared with other related schemes successively.

4.3.1. Visual Security

From the aspect of visual security, the appearance of the cipher image is closer to that of
the carrier image, and greater visual security is obtained. In the simulation, the plain image
and carrier image have the same size, and the volume of the cipher image is equal to that
of the carrier image. The PSNR and MSSIM values between the carrier images and cipher
images of our scheme and schemes [19,20,24] are given in Table 10. The carrier images
and cipher images of all compared schemes have the same pixel resolution, i.e., 256× 256.
The compression rate of the compared schemes [19,20,24] is fixed to 1/4, which is the same
as our scheme, but the difference is that our compression rate consists of two parts: a 1/16
index matrix and a 3/16 error matrix. From the results listed in Table 11, we can find that
the proposed scheme outperforms all the compared schemes in terms of PSNR and SSIM
values of the cipher images. The reasons for this are summarized below.

(i): We use the LIWT transform to convert the carrier pixel values to integer coefficient
components, and there are no errors in the inverse LIWT transform.

(ii): The quantization operation on the generated coefficients is reversible, which
makes it free from energy loss.

(iii): We introduce a smoothing function in the embedding process, which is essential
to reduce the numerical differences between the hidden and modified data.

In addition, we also subject the carrier and cipher images of size 512× 512 to our
algorithm, and compare the PSNR and SSIM values of the decrypted images of the proposed
scheme and other schemes [19–21]. These results are listed in Table 12. It can be found that
the PSNR and MSSIM values in our scheme are larger than the corresponding values in the
schemes [19,20], so combining CS and VQ leads to an improvement in the quality of the
decrypted images. The PSNR and MSSIM values in the schemes [20,21] are fixed, which
means that the decryption results are independent of the carrier image used, indicating
that the embedding and extraction processes of both methods is fully reversible. On the
other hand, the SSIM values of the scheme in [21] are better than our scheme, while the
PSNR values are smaller than ours. Therefore, the scheme in [21] and the proposed scheme
have different aspects of advantages and both have better visual security.

Table 11. Comparison of the PSNR and MSSIM values of cipher images.

Plain Image Carrier Image
PSNR (dB) MSSIM

Ref. [19] Ref. [20] Ref. [24] Ours Ref. [19] Ref. [20] Ref. [24] Ours

Lena Peppers 18.5136 32.3513 31.7986 42.4468 0.6726 0.9257 0.9903 0.9983
Jet Baboon 23.3967 37.1058 32.5976 42.2459 0.6991 0.9833 0.9955 0.9989
Girl Goldhill 28.2318 36.1125 32.0647 42.1456 0.7021 0.9666 0.9942 0.9986
Barbara Bridge 25.2321 35.5629 31.7397 42.2451 0.7337 0.9783 0.9946 0.9993
Average 23.8436 35.2831 32.0502 42.2709 0.7019 0.9635 0.9937 0.9988

4.3.2. Compression Performance

In the rest of the subsection, we further evaluate the compression and encryption
performance of the proposed scheme. Specifically, the image Lena of size 256× 256 as
the plain image is firstly processed by the VQ encoder to generate the index matrix and
the error matrix. Then, the generated error matrix is confused and compressed by CS,
and the VQ index matrix and the measurements are fused together and encrypted by the
diffusion process. The decryption process is the reverse process of encryption, and the
final decrypted image is generated by supplementing the reconstructed error matrix to the
decoded VQ indexes. The PSNR values of the decrypted images at different compression
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ratios are calculated and compared with other related schemes in [19,21,24]. All compared
methods use the Lena of size 256× 256 as the plain image and the OMP algorithm as the
CS reconstruction algorithm. Table 13 shows the results. It can be seen that the proposed
encryption design achieves more satisfactory compression performance compared with the
schemes in [19,21,24].

Table 12. Comparison of the PSNR values of decrypted images.

Plain Image Carrier Image Ref. [19] Ref. [20] Ref. [21] Ours

Barbara (512× 512)

Lena (512× 512) PSNR (dB) 28.4817 28.4435 28.5534 29.3547
MSSIM 0.9915 0.8128 0.9932 0.9920

Bridge (512× 512) PSNR (dB) 28.1745 28.4435 28.5534 29.7569
MSSIM 0.9865 0.8128 0.9932 0.9920

Girl (512× 512) PSNR (dB) 28.1932 28.4435 28.5534 29.4532
MSSIM 0.9872 0.8128 0.9932 0.9920

Peppers (512× 512) PSNR (dB) 28.2321 28.4435 28.5534 29.5542
MSSIM 0.9891 0.8128 0.9932 0.9920

Table 13. Comparison of the PSNR values of decrypted images under different compression ratios.

Plain Image CR Ref. [19] Ref. [21] Ref. [24] Ours

Lena 0.25 23.45 26.56 27.95 31.97
(256× 256) 0.5 27.64 29.83 32.27 34.01

0.75 31.25 31.62 35.18 38.76

5. Conclusions

This paper proposes a visually secure image encryption scheme based on a fractional
chaotic system and CS technology. In our method, the fractional chaotic system is used
to generate the measurement matrix and improve the encryption and embedding effect.
Besides, the smooth function and coefficient quantization are used to improve the visual
security of the cipher images. Simulation results and performance analyses are performed
for images of different sizes to verify the improvements on the visual security of the
cipher images and the visual quality of the corresponding decrypted images. The excellent
performance proves that the proposed scheme can be an effective solution for protecting
digital images from suspicion and attacks during storage and transmission.
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