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Summary 

After an introduction to the structure of convolutional 

codes, this report discusses a Viterbi decoder for the 

simplest non-systematic convolutional code (constraint 

length K = 3)_ 

In Section I it is shown how this code is generated_ The 

consecutive data bits, which are to be encoded, are shifted 

into a 3-bit shift register. To this register two rnod-2 adders 

are connected; one is linked to all three stages and the 

other to the first and the last stage of the shift register. 

The sums presented by the mod-2 adders appear alter

nately at the output terminal of the encoder. In this way 

a binary code with rate" is obtained_ It is shown that all 

possible code sequences can be represented as paths in a 

so-called trellis diagram_ 

Section 2 deals with the Viterbi algorithm, an optimal 

algorithm for maximum-likelihood decoding of con

volutional codes. When a sequence of code digits is 

mutilated in a transmission channel, the particular path 

through the trellis diagram is searched which has the 

smallest Hamming distance with respect to the received 

sequence_ In this case maximum-likelihood decoding is 

equivalent to minimum-distance decoding_ 
~ 

Insection 3 the generating function is derived. Analysis 

of the function yields all distance information of the code_ 

In Section 4 it is shown that the error correction obtain

ed with this algorithm is qUite considerable. The bit error 

probability can be calculated by computing the prob. 

ability of a wrong path being followed and ascertaining 

the number of bit errors caused thereby. The generating 

function appears to be a most useful tool for formulating 

this error probability_ It is derived that in the case of the 

encoder and decoder being linked by a binary symmetric 

channel, the bit error probability remains below approx

imately 50 p', where p denotes the cross-over probability 

of this channel. 

The circuit of a decoder making use of TTL is discussed 
in Section 5. 

Measurements dealt with in Section 6 show that the actual 

bit error rate is in very close agreement with the calcula

tions of Section 4. 

In Section 7 some possibilities are suggested for simplify

ing the circuit by means of large-scale integration. 



I INTRODUCTION 

Since Claude Elwood Shannon published his "Mathematical 

Theury of Communications" in the Bell System Technical 

Journal in 1948, an immense amount of work has been 

done with the object of improving the reliability of com

munications. Information theory has had great influence 

on the development of digital modulation systems, space 

and satellite communications and such fields as seman· 

tics, psychology and genetics. However, the most import· 

ant activities in the discipline of information theory 

concern source coding and channel coding, the latter of 

which is used for reducing the effects of noise introduced 

in a communication channel. In general, a channel 

encoder adds redundancy to an information source, and 

it is this redundancy which enables the decoder to 

improve the signal-ta-noise ratio or to lower the error 

rate. 

The class of error-correcting channel codes known as 

convolutional codes offers promising practical possibili

ties ~ the encoding and decoding techniques are consider", 

ably simpler than is the case with block codes. 

Several methods have been devised for decoding con

volutional codes, such as sequential decoding (Wozen· 

craft [1], [2]), threshold decoding (Massey [3]), the 

Fano algorithm [4J and recently the Viterbi algorithm 

([5J to [9J). The present report discusses the design of a 

decoder based on the last of these for the simplest con· 

volutional code. By way of introduction, in this intro~ 

ductory section the general form of a convolutional 

encoder will first be discussed, and then some subclasses 

of convolutional codes will be dealt with in brief. 

A convolutional encoder is a linear Hfinite~state machine" 

consisting of a K-stage shift register and n mod· 2 adders. 

The data sequence, which is usually binary, is shifted 

into the register b bits at a time (b < n). In general, such 

an encoder will thus assume the form depicted in Fig.l.l , 

which has been drawn from right to left to show the bits 

in their correct sequence (first bit at the left). The rate R 

of such a code is bill, all b data bits being converted into 

n code digits. This reduction in rate is the price that has 

to be paid for the error-correding feature. We shall 

confine ourselves to codes of which b = 1, thus with rate 

I/n_ The systematic convolutional codes form a subclass 

of these codes. In a systematic encoder 1l - 1 mod-2 

adders are connected to the stages of the shift register, 

whilst the nth adder is replaced by the direct connection 

to the first stage. 

Bucher and Heller [1 OJ showed that for high values of K 

the behaviour of a systematic encoder of constraint 

length K is substantially the same as that of a non· 

systematic encoder of constraint length K (I - R). For 

this reason we shall confine ourselves to non-systematic 

codes. A problem peculiar to non·systematic codes is 

that of catastrophic error propagation: with certain 

connection patterns between the mod-2 adders and the 

shift register, it is possible for a finite number of errors in 

transmission to give rise to an infinite number of errors in 

the decoded data sequence. Massey and Sain [11 J showed 

that a rate I/n convolutional code is subject to cata· 

strophic error propagation if and only if the subgenera tor 

polynomials contain a common factor. Applying this 

criterion, Rosenberg [12J showed that only a small 

fraction of the non·systematic codes, viz. 1/(2n . I), is in 

fact catastrophic. Therefore, the question of catastrophic 

error propagation will not be further dwelt upon here. 

In designing convolutional encoders the main problem 

consists in finding the optimal connections between the 

mod-2 adders and the shift register. The main criterion to 

be kept in mind is the minimum free distance, which 

should be as large as possible. In Section 5 the meaning of 

this will be explained. Optimal connections have been as· 

certained up to a constraint length K = 9, i.a. by Oldenwalder 

[13J. Here, we shall confine our attention to a code with 

K = 3, n = 2 and a minimum free distance 5. This code 

belongs to the class of complementary convolutional 

codes, which again form a subclass of the non-systematic 

codes. This implies that both mod-2 adders are connected 

with the first as well as with the last stage of the shift 

register. 

data bits 
shifted in 
(batatime)" 

~17 
binary 0",,", 
code ----I 

digits 

n mod-2 odders 

Fig.I.! General representation of a convolutional encoder. 



2 THE ENCO[)ER 

The simplest non-systematic convolutional code is gen

erated in the following way, as illustrated by Fig.2.I. 

Two mod-2 adders are connected to a three-stage shift 

register. The outputs QI and Q2 of these adders are 

alternately connected to the output terminal of the 

encoder (first Q I, then Q2)· 

Denoting the three positions of the shift register by SO, 

SI and S2 respectively, yields the truth table below 

(Table I). 

The transitions of the states will be investigated on the 

basis of the table. The four states which the positions SI 

and So can assume are denoted by a, b, C and d. This 

provides the transitions given in Table 2. 

This may be illustrated by the following example. Assume 

the data sequence to be I I 0 I 0 and the shift register to 

contain initially three zeros (state a). When the first bit, 

a I, is shifted in, the contents of the shift register will 

become 001 (state b), so that QI = 0 III 0 III I = I and 

Q2 = 0 III I = I, hence I I appears at the output. Now the 

next bit is shifted in, again a 1. The shift register then 

contains 0 I I (state d). Therefore, QI becomes 0 and Q2 

becomes I. At the next step the register contains I I 0, 

whence Q I = 0 and Q2 = I. Proceeding in this way we 

find for the data sequence I I 0 I 0 the code 

I I 0 I 0 I 00 I O. 

Each data bit is converted into two code digits which are 

fed into the channel, so the rate is 72_ 

The linearity of this system can easily be demonstrated 

by comparing the response to two different data sequen

ces with the response to their mod-2 sum: 

100000 ... ~IIIOIIOOOOOO .. . 

OOIOOO ... ~OOOOIIIOIIOO .. . 

------jIB III 

IOIOOO ... ~IIIOOOIOIIOO ... 

We shall now investigate the transitions of the states 

(see Table 2) more closely. To this end the states a, b, c 

and d are represented as 4 levels in a trellis diagram; an 

entered bit is represented by a solid line if it is a 0 or by 

a dashed line if it is a 1. The relevant two code bits are 

indicated along these lines, which thus represent the 

transitions. Moreover, we shall assume the shift register 

to contain initially three zeros, i.e. to be in state a. The 

t!ellis diagram will then be as shown in Fig.2.2. Each 

Table I 

S2 SI So state QI Q2 

0 0 0 a 0 0 
0 0 I b I 

0 I 0 c 0 Table 2 

0 I d 0 

data sequence is thus represented as a path through this 

diagram, starting at the left at the top at state a and 

travelling each step from left to right to a new state. 

The corresponding code sequence is then formed by the 

pairs of bits indicated along the path. 

It is clear that the diagram becomes periodic after two 

steps, so that there is no point in drawing it any further. 

One period can conveniently be represented by the state 

diagram of Fig.2.3, which likewise contains all informa· 

tion. 

Q 

b 

d 

code out 

Fig.2.1 Simple non-systematical convolutional encoder. 

Fig.2.2 TreUis diagram. 

,.,10, 

I I 

/~ 
/' 01~ ~10~ 

~ ... - ' 
~::--oo----

11 11 

" / 

8 1Z1110t 

Fig.2.3 State diagram. 

0 0 a I if 81 and So are in state: a a b b c c d 

0 b 0 0 and the shifted-in bit is: 0 I 0 I 0 I 0 

I 0 c 0 I then SI and So assume state: a b c d a b c 

I d 0 whilst Ql and Q2 become: o 0 I I I 0 o 1 1 1 00 01 

d 

I 

d 

10 



3 THE VITERBI ALGORITHM 

3.1 The algorithm in terms of the trellis diagram 

The Viterbi algorithm is based on the principle of maximum

likelihood decoding, which in the present case is equivalent 

to minimum distance decoding. Upon reception of a 

sequence of bits, the particular path through this diagram 

will be searched which is closest to this sequence in the 

sense of Hamming distance; i.e., the path which differs 

from the received sequence by the minimum number of 

symbols. An example will make the meaning of this clear. 

It was explained in the previous section that the data 

sequence I I 0 lOis converted into the code 

I I 0 I 0 I 0 0 I O. Assume this code sequence to be 

mutilated in the transmission channel so that 

I 0 0 I I I 0 0 lOis received, in other words that the 

second and fifth bits are erroneous. The paramount 

question is how this received sequence will be decoded. 

Let us first consider the first pair of bits, I O. Starting at 

the left top of the trellis diagram, we see that only two 

paths start from this point, viz. the path a - a (0 0) and 

the path a - b (I I). Both paths are at a Hamming dist

ance I from the first pair of received bits (I 0). We keep 

these distances and both paths in mind. Path a - a corre

sponds to a 0 and path a - b to a I in the relevant data 

sequence. 

Now we consider the second pair of received bits, 0 I. 

From the reached point a there is one path (0 0), again to a, 

thus at a Hamming distance I from 0 I. Since the first step 
already involved a Hamming distance 1, the pattt a ~ a - a 

(0 0 0 0) is at a total Hamming distance 2 from the received 

bits (1 001). 

From point a reached after the first step, there is also a 

path (I 1) to b, likewise at a distance I from the second 

pair of received bits, thUs this path a - a - b (0 0 1 I) is 

also at a total distance 2 from the first four received bits. 

From b there is a path (I 0) to c at a distance 2 to 0 1, 

totalling 1 + 2 = 3. In other words, the path a - b - c 

(I I I 0) is at a distance 3 from I 00 \. 

Finally, there is a path b - d (0 I) at distance 0 from 0 1, 

yielding a total distance of 1 + 0 = 1. The path a - b - d 

(1 1 01) is thus at a distance I from 1 00 \. 

Summarizing, we have 

·a path terminating in a at a total distance 2 (metric 2) 

a path terminating in b with metric 2 

a path terminating in c with metric 3 

a path terminating in d with metric 1. 

These four paths correspond to the data sequences 0 0, 0 1, 

I 0 and 1 1 respectively. 

The situation becomes slightly more complex at the next 
step because each of the nodes a, b, C and d is now the 

terminus of two paths. We need only store the one with the 

smallest metric. The other path can be disregarded because 

it has a larger metric and is thus less probable. If the metric 
values of both paths are identical, we make an arbitrary 

choice by flipping a coin; in this example, let us suppose 

that this means disregarding the lower of the two paths. 

Q 

b 

d 
1Z11!C2 

Fig.3.1 The third step. 

The third pair of bits received is I I. We now consider 

Fig.3.1 in which the metric values after the second step are 

indicated at the left. 

. The Hamming distance of path a - a is 2 (metric 2 + 2 = 4), 
that of path c - a is 0 (metric 3 + 0 = 3). Path a - a can 

thus be disregarded and path c - a with metric 3 should be 

stored. 

The Hamming distance of path a - b is 0 (metric 2 + 0 = 2), 

that of path c - b is 2 (metric 3 + 2 = 5). Only path a - b 

with metric 2 need be stored. 

The Hamming distance of path b - c is I (metric 2 + 1 = 3), 

so is that of path d - c (metric I + 1 = 2). Only path d - c 
with metric 2 is stored. 

Finally, the Hamming distance of path b - d is I (metric 

2 + 1 = 3), and so is that of path d - d (metric 1 + I = 2). 

Only path d - d with metric 2 is stored. 

Recapitulating, the new metric values at points a, b, c and d 

are now 3, 2,2 and 2, respectively, and the paths stored 

correspond to the data sequences I 00,00 I, I I 0 and 

I I I, respectively. 

For the next two steps we proceed in the same way. After 

the fourth step we find the metric values 3, 2, 3, 3 and the 

paths corresponding to the data sequences 1 000, 1 I 0 I, 

00 1 0 and 0 01 1, respectively. The fifth and last step 
yields the metric values 4, 4, 2, 3 and the paths correspond

ing to the data sequences I 0 0 0 0, I 0 0 0 I, I I 0 I 0 and 
o 0 I I I, respectively. 

Fig.3.2 gives the resulting trellis diagram, omitting the dis

regarded paths and showing the metric values after each 

step. It is seen that after reception of the sequence 

I 001 1 1 0010 the path 'terminating in a (data sequence 

I 0 0 0 0) has a metric 4, and so has the path terminating 

in b (data sequence I 0 0 0 I). The path terminating in c 

(data sequence I 1 0 1 0) has a metric 2 and that termin

ating in d (data sequence 0 0 1 I 1) has a metric 3. 

The path with the smallest metric value (2) with respect to 

the received bit sequence appears to be a - b - d - c - b - c, 

corresponding to the data sequence I 1 0 1 0 and the code 
sequence 1 1 0 1 0 1 0 0 1 O. It is seen to be identical to the 
code sequence generated by the encoder, two bits of which 

were mutilated in the transmission channel. The errors have 



thus been corrected. It should, however, be realized that all 

errors will not necessarily be corrected by this decoding 

algorithm. If the error rate is higher, or if the error distribu

tion is different, there is a chance of the wrong path being 

chosen. This will be explained by the following example. 

transmitted code , , o , o 1 i 0 0 1 0 : 

received sequence 1 0 o , , ; o 0 1 0 : 

00 __ 

1 = ------

117110) 

Fig.3.2 Trellis diagram after reception of 1 00 1 1 1 00 1 O. 

Assume that the last bit of the mentioned sequence is also 

wrongly received, so that the received sequence becomes 

I 00 I I I 00 I I, thus containing a third error. The paths 

througMhe trellis disgram then become as shown in Fig.3.3. 

After the last step the metrics will then be 3, 3,3,3 and 

the corresponding. data sequences 0 0 I 00,10001, 

I I 0 I 0 and I I 0 I I respectively. Since the metric 

values of all paths are 3, the choice is again arbitrary, the 

four paths being equally likely. If the first is chosen, there 
will be 4 bit errors; the second path results in 3 bit errors, 

the third path yields the correct data sequence, and if the 
fourth is chosen there will be 1 bit error. 

Fig.3.3 Trellis diagram after reception of 1 0 0 1 1 1 0011. 

The probability of a wrong path being chosen and of this 

leading to bit errors will be calculated in Section S. These 

probability calculations are confined to the case of a 

binary symmetric transmission channel being used. 

3.2 Analytical representation of the algorithm 

For realizing the algorithm in hardware it is convenient to 

express the decoding system in terms of formulae. To this 
end the following notation will be introduced. 

For the metric values we shall use the symbols Man, Mbn• 

Men and Md". where the n stands for the order of the step 

(or the instant). The symbol xn denotes the nth pair of 

bits, and the symbols Xn I and xn2 the corresponding 
individual bits. For the decoded sequence we shall use the 

symbol p. defined by the same indices as M. Finally, the 

Hamming distance between xn and, for example 0 0, will 

be written D (xn - 0 0). 

The first step is thus expressed by: 

Mal =D(XI-OO),Pa l =0 

Mb l =D(XI-II),Pbl=1 

and the second step by: 

Ma2 =Ma l +D(x2-00),Pa2 =Pa l ,0=00 

Mb2 =Ma l +D (x2-1 1),Pb2 =Pa 1, 1 =0 I 

Me2 = Mb l + D (X2 - I 0), Pe2 = Pb 1.0 = I 0 

Md2 =Mb l + D (X2 - 0 1).Pd2 =Pb l , I = I I 

whilst the third step becomes: 

Ma3 =min {Ma2+D(X3-00),Me2 +D(X3-11)} 

Mb3 = min {Ma2 + D (X3 - I I), Me2 + D (X3 - OO)} 

Me3 = min {Mb 2 + D (X3 - I 0),Md2 + D (X3 - 0 I)} 

Md3 = min {Mb 2 + D (X3 - 0 I). Md2 + D (x3 - I O)} 

if Ma3 = Ma2 + D (X3 - 00), then Pa3 = Pa2• 0 = 000 

ifMa3=Me3+D(X3-11),thenPa3=Pe3,0=100 

if Mb3 = Ma2 + D (x3 - I I), then Pb3 = Pa2, I = 0 0 I 

if Mb 3 = Me 2 + D (X3 - 0 0), then Pb3 = Pe2 , I = I 0 I 

if Me3 = Mb2 + D (X3 - 1 0), then Pe3 = Pb2 , 0 = 0 I 0 

ifMe3=Md2+D(X3-01),thenPc3=Pd2,0=110 

ifMd3=Mb2+D(X3-01),thenPd3=Pb2,1=011 

if Md3 = Md2 + D (X3 - I 0), then Pd3 = Pd2 , I = I I I 

The procedure for the following steps is identical to that 

for the third step, so that, in general, for n ;> 3 the follow

ing scheme applies: 

Table 3 

· (Man. 1 + D (xn - 00) ) Pan::: Pan-I, 0 
Mn=mm 

a Men-l + D (xn - 1 1) ---->l Pan = Pen-I, 0 

· (Man-! + D (xn - 1 1) ) Pbn ::: Pan-I, 1 
Mbn ::: mm 

Mc"-1+D(xn -OO) ) Pbn=pcn- 1, 1 

· (Mbn-1+D(Xn-lO) ~ Pen = Pbn-1• 0 
M n=mm 

e Md"·I+D(xn- 01 ) • Pen = Pd'" 1. 0 

· (Mbn.1+D(Xn-Ol) • Pd"=Pd"·I.1 

Md"=mm Md"·I+D(xn- 10) , Pd"=Pd".I. 1 

The validity of these relationships is general (they also 

apply to n = I and n = 2) if we put MaO = 0, MbO = R. 

MeO = Sand MdO = T, where R > 3,S> 2 and T> 3. 

This can be demonstrated by carrying out the first three 
steps in the algorithm with these initial values for all pos

sible received bit sequences. As a result of the minimizing 

procedure, R, S and Twill disappear from the M3 values 
after the third step. 



3.3 Some comments on the metric and path registe ... 

Up to now it has been assumed that the initial state was a; 

in other words, that the shift register initially contained 

three zeros. In general, this will not be the case. If we drop 

this assumption and start at an arbitrary node in the trellis 

diagram, then all four initial metric values are taken to be 

zero. It is further obvious that if an arbitrary codeword has 

been correctly received up to a certain instant i. only four 

combinations of metric values are possible, viz. 

Mi=o Mi=2 Mi=3 Mai = 3 

Mbi = 2 Mbi = 0 Mbi = 3 Mbi = 3 

Mei = 3 
or 

Mci = 3 
or 

Mei = 0 
or 

Mei = 2 

MJ=3 MJ=3 Mdi =3 MJ=O 

It should also be recognized that for each step only the 

mutual differences between the metTies are of importance. 

In designing a decoder, advantage may be taken of this 

feature by always deducting from all metric values the 

smallest one, Mm. In this way we prevent the metric 

values from becoming excessive (the bit sequences may be 

very long). By this procedure the total number of possible 

metric combinations is limited to 31, as can be ascertained 

by taking 4 arbitrary metric values as a starting point and 

the comparing all possible sequences and the corresponding 

metrics. These are entered in Table 4. 

This table shows that the highest occuring metric value is 3. 

Four two-bit memories are therefore sufficient for storing 

the metric values. The metric calculations may be performed 

by a simple combinatorial network or even a PROM or a 

PLA. 

As far as the path registers are concerned, it should be noted 

that Pai always terminates with 0 0, Pbi with 0 I, Pci with 
I 0 and pi with 1 I, as clearly shown by the trellis diagram. 

For example, to get from an arbitrary node to d in two 

Table 4 

Mi 0 1000 10 o I 1 1 0012 

Mb i 0 0100 I 0 1 01 1 0021 

M(/ 0 0010 01 I 1 0 1 1200 

Mel 0 0001 o I 1 I 10 2100 

received o , o , 

Fig.3.4 Trellis diagram after reception of 4 more bits. 

-steps, it is always necessary to travel along two dashed lines, 

which means that p J always ends in two ones. 

It is also of interest to know how long the shift registers 

must be to store the four paths. If we consider that 

messages may consist of many thousands of bits, it will 

become obvious that it would be unpractical to wait 

until an entire message has been received before starting to 

read out the path with the sm~l!est metric value. Fortunate~ 

Iy, after a number of steps, the first bits of the four stored 

paths will coincide. These bits can then be read out, as 

will become clear from the following example. 

Reverting to the trellis diagram shown in Fig.3.2, let us 

assume that the next bits received are 0 1 0 I. Omitting 

the paths which come to a dead end, extension of the 

diagram by the following two steps then gives the diagram 

shown in Fig.3.4. The diagram can now be simplified to 

that of Fig.3.5 by again omitting the paths which can be 

deleted or come to a dead end. This diagram shows that all 

four paths have the first bit (I) in common. Therefore, 
this bit can safety be read out. 

However, there is no certainty that after the next step all 

paths will again have a bit in common. Therefore, if for 

each path we were to store only six bits in a six·bit shift 

register and, after each step, read out that overfiow bit 

which had the smallest metric value of the four, we would 

risk introducing additional bit errors due to premature 

truncation of the stored paths. 

It is difficult to evaluate this path memory truncation 

error. Jacobs and Heller [6] ascertained that a path 
register with a length of 4 to 5 times the constraint length 

of the coder would as a rule be sufficient to avoid such 

errors. In the present case this would amount to a path 

register length of 12 to 15 bits. The influence of this length 

on the bit error probability will be discussed in Section 7 

for several values of the error probability in a binary 

symmetric channel. 

02 1 1 01 22 0222 0233 

20 1 I 1022 2022 2033 

1 1 0 2 2201 2202 3302 

1 I 20 2210 2220 3320 

" 
0 0 o 

, 
, 

, 
0 0 

, / 

'\ .. // 
7171106 

Fig.3.5 Four paths with common first bit. 



4 THE GENERATING FUNCTIONS 

To calculate error probabilities it is first necessary to in

vestigate the distance properties of the code. Convolutional 

codes are group codes, which implies that the set of 

distances of the all·zeros codeword to all other codewords 

is equal to the set of distances of any specific codeword to 

all others. It will therefore be useful to ascertain how many 

paths deviate from the all·zeros path, at what distance each 

of these paths is located, and how many bit errors each path 

represents. 

All this information can be expressed in terms of the 50-

called generating function, which we shall now derive. As a 

starting point we shall reconsider the state diagram shown 

in Fig.2.3. Since we are interested in the paths which 

deviate from the all zeros path and merge with it again later, 

we cut this diagram open at node a, so that it assumes the 

form shown in Fig.4.1. The distance of each branch to the 

all·zeros codeword will be denoted by an exponent of a 

formal variable D, so that the branch a - b for example 

will be labeled D' , the Hamming distance between 1 ! and 

00 being 2. Fig.4.! will thus become as shown in Fig.4.2. 

We shall now investigate how many ways there are to pass 

through the diagram. Let us first consider the upper part, 

redrawn in Fig.4.3. This can be passed through in 

D + D2 + D3 + ... = D/{l - D) ways. (Since D is defined in 

the neighbourhood of 0, this summation is permiSSible.) 

The diagram of Fig.4.2 may therefore be simplified to that 

of Fig.4.4. 

We thus have the following possibilities of travelling 

through the whole diagram: 

D' D6 D' _ D't{l - D) 
-1 ---D + (1 - D)' + (1 - D)3 + ... - 1 - D/{l - D) 

This expression is called the generating function T(D), 

being: 

D' 
1 - 2D 

T(D)!) 1 ~;D =D' + 2D6 + 4D' + ... + 2 kDk+5, (4.1) 

in which k = 0, !, 2, .... This expression thus simply indicates' 

that there is one path at distance 5 from the all zeros path, 

two at distance 6, and so forth, In general there are 2k paths 

at distance k + 5. 

We shall now also express in the generating function the 

lengths of the paths and the number of ones in each path 

(hence the number of bit errors if the zero code word is 

transmitted). To this end we label each branch in the 

diagram of Fig.4.1 with an L and add an additional label N 

to the branches which indicate a data·one (i.e. the branches 

in dashed line). The diagram of FigA.5 thus obtained then 

contains all information. 

0--!---

" .... 
( ) 

\ I 

d 

-- .... --
00 

" 

" }----<~-{Q 

1Z71107 

FigA.l State diagram cu t open at node a. 

o 

0' 0' 

7Z11109 

FigA.2 As FigA.l, but with the formal variable D introduced. 

o 

FigA.3 The four upper branches of Fig.4.2. 

o 
1-0 

~Q ____ .~2 ____ ~~p- __ -+~2 ____ ~ 

1 7Z71110 

FigAA Simplified representation of FigA.2. 

OlN 

IN nl1111 

FigA.5 Cut·open state diagram with the formal variables D. L and 

N introduced. 



Analysing this diagram in the same way as Fig.4.2 yields: 

T(D L Njl'> D'L'N = 
" I-DL{I +L)N 

D'L'N+D'L' (I +LjN' + 

(4.2) 

where k is again O. 1.2.3, .... This expression has the 

following meaning. 

There is one path at distance 5 of length 3 in which I data

one occurs; there are two paths at distance 6, ~iz. one of 

length 4 and one of length 5, two data-ones occurring in 

both paths, and so forth. 

If,.say, only D andN are ofinterest,L is put equal to 

unity in eq.( 4.2), which gives: 

D'N 
T(D,Nj £! I _ 2DN 

=D'N+ w'N" + 

... + 2kDk+5Nk+1 + ... , 

(k = 0, 1,2, ... ) (4.3) 

These generating functions will be required in the next 

section for determining the several error probabilities. -The generating function T(D) can also be derived in a more 

general way by means of the distance matrix, which in

dicates the weight necessary to change over from one state 

to another (or to the same state) in n steps. The one-step 

matrix for the middle part of Fig.3.2 thus becomes: 

be d 

b· (ODD) (D D' D') 
~ = (' • I 0 0 and the two-step matrix: ~'= 0 D J) 

" • 0 D J) J) J)2 J)' 

whilst~O +~I +~, + ... = 1 + ~ + ~2 + ... = (I - ~rl. We 

are interested only in b ... c, i.e. in the first row and the 

second column of the matrix (I - ~rl : 

(I _D)-I = _D_. 
I' 1- 2D 

For the whole diagram of FigA.2 we then get 

D' 
T(D)=--. 

1- W 

Both T(D,Nj and T(D,L,Nj can be calculated in an analogous 

way. For more complex convolutional codes this method is 

in fact preferable to the previous one which is apt to become 

very time-consuming. 



5 ERROR PROBABILITIES 

5.1 The error event probability 

The error event probability is understood to be the prob

ability of, at a certain node in the trellis diagram, an 

erroneous path being chosen which merges again with the 

correct path for the first time at that node. 

I! follows clearly from the trellis diagram that the shortest 

path which deviates from the all-zeros path is the path 

a-b·c-a (I I I 0 I I), corresponding to the data sequence 

I 0 O. I! is situated at distance 5 (termed the minimum free 

distance) from the all-zeros path. 

Let us introduce the symbol p to denote the probability of 

a I being received when a 0 has been transmitted via a 

binary symmetric channel (BSC) or vice versa. The prob

ability of a bit being correctly received thus amounts to 

I· p = q (see Fig.5.1). We shall now ascertain the probability 

of this path at distance 5 being chosen if the all-zeros code

word has been transmitted. 

1-p =q 
o -.;:---'-'=---,.. 0 

p 

p 

1-p =q 

Fig.S.l Representation of a binary symmetric channel. 

There are (~) possible combinations of 2 zeros and 3 ones 

in the positions 1,2, 3, 5 and 6 of a sequence of 6 bits. The 

4th bit can be disregarded because it is a 0 in both sequen· 

ces and therefore does not contribute to the pr0bability of 

an erroneous path being chosen. These (~) sequences are all 

at distance 2 from the path I I I 0 I I and at distance 3 

from the all-zeros path. The probability of the path 

I I I 0 I I being chosen instead of the correct 0 0 0 0 0 0 

if 3 of the 5 bits are not correctly received thus amounts to 

(~)p'q'. 

An analogous argument applies to the (~) possible combina

tions of 1 zero and 4 ones and to the sequence of 5 ones. 

The total probability of the erroneous path being chosen is 

thus 

A similar equation can be derived for any path at an odd 

distance, so that, in general, 

(5.1) 

There is also a path in the trellis diagram at distance 6 from 

the all-zeros path, e.g. a-b-d-c-a (I I 0 I 0 I I I); this 

corresponds to the data sequence I I 0 0, hence of length 4. 

This path will be chosen if 4 or more of the bits in the 

positions I, 2, 4, 6, 7 and S of the sequence 0 0 0 0 0 0 0 0 

are not correctly received. If exactly 3 of these 6 bits are 

erroneous, the correct and the erroneous path will both be 

at distance 3 from the received sequence. The probability 

of the erroneous path then equals the probability of the 

correct path being chosen and thus amounts to ~. The total 

probability of a path at distance 6 being chosen is therefore 

In general, for a path at an even distance, 

(5.2) 

(k is even) 

According to the generating function T(D), there is one 

path at distance 5, two paths at distance 6, and in general 

2k paths at distance k + 5 (cf. Eq.(4.1». I! is hardly feas

ible to calculate the probability of one of the many 

erroneous paths being chosen at any given node; we can say, 

however, that this probability is in any case smaller than 

the sum of the probabilities for any possible path, as given 

by 

(k = 0, 1,2, ... ) 

In Appendix 1 it is demonstrated that P5 = P6, P7 = Ps ... 

and, in general, that Pk = Pk-I for even values of k. In 

Appendix 2 it is derived that 

whence we may write: 

PE< 3P6 + 12PS + ... + 3x4kP2k+6 + ... , (k = 0, 1,2, ... ) 

< 2. x 3 (2 Vp)6 + 4(2 Vp)8 + 4k(2 Vp)2k+6 + ... ) 
32 

_!l. (2 Vp)6 

1-4(2 Vp)' 32 

provided that p < 1/16. 

15 

32 

64p' 

I - 16p 

= 30p' 
1 - 16p , 

(5.3) 



5.2 The bit error probability 

The bit error probability PE is defined as the ratio of the 

expected number of bit errors in the decoded data 

sequence to the total number of bits transmitted. From the 

generating function 

T(D, N); D' N + 2D' N' + ... + 2kDk+5Nk+' + ... , 

(k; 0, 1,2, ... ) (4.3) 

it follows that there are 2k paths at distance k + 5, each of 

which corresponds to (k + I) ones in the original data 

sequence. The exponents of N thus determine the number 

of bit errors per path. To obtain these exponents as weight· 

ing factors before each term, the function T(D,N) should be 

differentiated with respect to N. Subsequently N can be 

eliminated again from the derivative by putting N; I; thus, 

dT(D,N) , 

dN I' ; D' + 2 X 2D' + ... + (k+I)2kDk+5 + ... , 
N; I 

(k; 0, 1,2, ... ) 

In a similar way as for PE we find for the bit error prob· 

ability: 

PE <PS + 2x2P6 + ... + (k+I)2k Pk+S + ... , (k; 0, 1,2, ... ) 

and with h ; h-l for even values of k and Pk < :2 (2Vp )k: 

PE < SP6 + 4xllPS + 4k(6k+5)P2k+6 + ... , (k; 0, 1,2, ... ) 

1 00i 
P, 

Y./ 
1U 

I ;Op' 
1U 

10 
1/ 

1// i 

I, i 
10 

,,~]' - PSmo.x 
I 

~ 
A =50p) 1+3,2p 

8m.;:. (1-16p)2 

10 

- Pe . measured 

jj I I 1111111 I 
10 10-3 10-2 10' 1 

p 

Fig.S.2 Plot of eqs(5.6) and (5.8) and measured bit error rate as 

functions of the channel crossover error probability.p. 

< :2 (5(2 Vp)6 + 44(2 Vp)' + ... + 4k(6k+S) (2 Vp)2k+6 + ... } 

; :2 (24(2 Vp)' + 192(2 Vp)IO + ... + 4k. 6k(2 Vp)2k+6 + ... } + :2 (S(2 Vp)6 + 20(2 Vp)' + ... + 4k ·5(2 Vp)2k+6 + ... } 

; 960p' + SOp'; SO ' 1+3,2p 
(I-16p)' 1-16p P (I-16p)" 

provided that p < 1/16 . 

. ~-.--~ 

5.3 Generally valid upper bounds for PE and PB 

Viterbi [5] calculated different upper bounds by demon

strating that 

from which it can easily be derived that 

; {2VP(!-p)}' 

D; 2 Vp(!-p) 1-4 Vp(!-p) 
(5.5) 

(5.4) 

By making use of the relations Pk = Pk-l for even k and 

Pk < r(2 Vp)k where r is a constant which is determined 

by the minimum free distance of the used convolutional 

code (in the case under consideration r; 5/32), it is 

possible to derive tighter bounds, as shown in Appendix 3 

and previously by van de Meeberg [14] : 



PE < r (T(D) + T(-D) + D T(D)- T(-D») 

2 2 D=h/p 
(5.7) 

{ 

dT(D,N) + dT(-D,N) dT(D,N) _dT(-D,N)} 

PB<r dN dN +D dN dN 

2 2 N= I, 

D = 2 y'p 

(5.8) 

It is true that these expressions are less compact than those 

derived by Viterbi, but the upper bounds given by eqs (5.7) 

and (5.8) are considerably tighter. For the sake of com

parison the upper bounds given by the eqs (5.6) and (5.8) 

have been plotted in Fig.5.2 as functions of the channel 

crossover error probability p. For small values of p the 

bound according to eq.(5.8) asymptotically approaches 

50 p3, whereas the bound according to eq~(5.6), as derived 

by Viterbi, approaches 32 p2%. Hence the smaller the value' 

of p, the greater will be the difference between the two 
asymptotes. 

In the graph of Fig.5.2 the measured error rate curve has 

also been plotted; how the measurements were made is 

discussed in Section 6. 
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Fig.6.1 Circuit of the metric registers. 



6 REALIZATION OF THE DECODER 

The design of the decoder was based on the use of TTL 

MSI-circuits (Fairchild 9300 and 9000 series), complement

ed where necessary by Texas Instruments circuits (7483 and 

74164). 

6.1 The metric registers 

Fig.6. I (opposite) shows the circuit diagram of the metric 

registers. We shall discuss its operation with reference to 

Table 3. 

Assume the values MY'-I to be present at the Q outputs of 

the four shift registers 9300 (A, B, C and D). (The QI 

outputs are followed by exclusive ORs connected as 

buffers to cope with the low input resistance of the A3 

inputs of the full-adders.) In the eight full-adders 7483 

these values are now added to the Hamming distances of 

the nth pair of received bits Xn to a 0, I I, I a and a I, 

grouped according to the formulae. 

Table 5 

d-II d·O 0 d-O I d-IO 

xnl Xn2 i i i i i i 

0 0 0 0 0 0 0 I 

0 I 0 0 0 0 I 0 
I 0 0 0 I 0 0 0 

I 0 0 I 0 0 0 

By way of example, the sum of MrP-1 and the Hamming 

distance from Xn to a a appears at the output of the full

adder AOO. The Hamming distances are determined by the 

circuit of Fig.6.2; the truth table and switching functions 

are given in Tables 5 and 6 respectively. 

The outputs of the full-adders are subsequently compared 

two by two and multiplexed. The A < B outputs of the 

comparators 9324 (A, B, C and D) are linked to the select 

inputs of the multiplexers 9322 (A, B. C and D) so that at 

their outputs the minima of the two presented full-adder 

outputs appear. Expressed in terms of the formulae in 

Table 3, this amounts to Md', Mbn, Me" andMdn appear

ing at the outputs of the multiplexers. 

Subsequently the minimum of Ma" and Mbn and that of 

Men and Md", and finally the minimum of these two 

minima are determined in the same way. We thus see that 

Mmn is the minimum of (Md', Mbn, Men, Md"). As pointed 

out in Section 3.3, this value of Mmn should be deducted 

from all four values of MY'. 

Table 6 

output i 

d-II Xnl Xn2 xn16xn2 

d-O 0 Xnl Xn2 Xnl tlxn2 

d·O I Xnl Xn2 Xn ! tlxn2 

d-IO Xnl Xn2 Xn! tixn2 

Xnq--'~-------'r-----r-------------------, 

d 1 

j i j i 

- 1 

j i 

- 0 

j i 

Fig.6.2 Logic circuit for determining the Hamming distances. 



This is achieved by the circuit connected to the output of 

multiplexer 9322 (M); it determines the twos complement 

of Mmn. The truth table and switching functions are given 

in Table 7. 

Table 7 

9322 (M) 7483 

Zc Zb Za B4 B3 B2 

o 
o 
o 
o 

o 
o 
1 
1 

o 
o 

B2 = Za 

B3 = Za ~Zb 

o 

o 

o 
1 
o 

o 
1 

o 
o 
o 

o 
1 
1 

o 
o 

1 

o 

84 = Za Zb Zc + Za Zc + Zb Zc 

= Zc ~ (Za Zb) 

o 

o 
1 

o 
1 

o 

The additional exclusive-OR has been provided to act as a 

buffer to cope with the four B3-inputs of the full-adders. 

The twos complement of M~ is added to Md', Mbn, Mc" 

and Md" by means of the full-adders 7483 (A, B, C and D), 

The result is fed back to the P inputs of the corresponding 

shift registers 9300 (A, B, C and D), so that at the next 

clock pulse the new values M'l - Mmn appear at the Q 

outputs. The next two bits Xn+ I can now be shifted in and 

processed. 

The initial values M" can be set to zero at the start of the 

decoding process by the master reset inputs of the shift 

registers. This implies that we start at an arbitrary level of 

the trellis diagram, thus taking the initial state of the 

encoder to be unknown. 

The A < B outputs a, b, e, d of the relevant four compara

tors can be used for loading the path registers, whilst the 

A < B outputs P. q, r of the three other comparators can 

serve for reading out these registers, as discussed in the 

next subsection. 

6.2 The path registers 

Let us first consider the outputs a, b, c and d of the metric 

circuit, to which the following relationships apply: 

if Md'-I + D(xn - 00) <Men-I + D(xn - 1 I), then a = H 

if Md'-I + D(xn - 00) > Mc"-1 + D(xll - 1 1), then a = L 

if Md'-1 + D(xn - J J) <Mc"-1 + D(xn - 0 0), then b = H 

if Ma',-1 + D(xn - 1 1) > ll1c"-1 + D(xn - 0 0), then b = L 

if Mb"- 1 + D(xn - 1 0) <Md"-I + D(xn - 01), then c = H 

if Mb"- I + D(xll - I 0) > Md"-I + D(xn - 0 I), then c = L 

ifMb"-l +D(xll-O 1) <Md"-I +D(xn-I O),thend=H 

if Mb"- J + D(xll - 0 I) >Md"-I + D(xn - I 0), then d = L 

This may be expressed by Table 8, which shows how the 

path registers must be filled. 

Table 8 

if then if then 

a=H Pan: = Pan. I , 0 a=L Pan:=pcn.1,O 

b=H Phn : = Pan-I, 1 b= L Phn: = Pen.!, 1 

c=H Pen: = Phn.1, 0 c=L Pen: =pcI'-I, 0 

d=H Pci' :=Pbn-1,1 d=L P,j': = pcI'-l, 1 

Table 9 holds for the outputs p, q and r. 

Table 9 

read-
So P q r p r q 

out 

0 0 0 Mbt;;,Ma Mdt;;,Mc Mdt;;,Mb Pd 1 

0 0 Mbt;;,Ma Mc<Md Mc""Mb Pc 0 

0 0 Mb""Ma Mdt;;,Mc Mb<Md Pb 

0 1 1 Mbt;;,Ma Mc<Md Mb<Mc Pb 

0 0 Ma<Mb Mdt;;, Me Mdt;;,Ma Pd 1 

0 1 Ma<Mb Mc<Md Met;;,Ma Pc 0 

I 1 0 Ma<Mb Md""Me Ma<Md Pa 0 

1 Ma<Mb Mc<Md Ma<Mc Pa 0 

p 

q 

i9015(M) 

r 

Fig.6.3 Logic circuit for selecting the path registers. 

Sl 

1 

1 

0 

0 

1 

0 

0 

So and SI are intended to serve as the select inputs of a 

4-input multiplexer 9309, which reads out the path 

registers. The switching functions performed by the circuit 

shown in Fig.6.3 are 

So = pq + qr and 

The algorithm offers some arbitrary choices which we shall 

deal with before describing the path register. It will there

fore be useful to discuss Tables 8 and 9 in some greater 

detail. 

(1) When determining a new metric value it is necessary 

to choose the minimum of two previous metric values, 

each of which is augmented by a Hamming distance. 

If the two sums are equal, an arbitrary choice should 

be made between the two paths. In the circuit the 

lower of the two paths is then always chosen since in 



the metric circuit only the A < B outputs of the com:~ 

parators 9324 (A, B, C and D) are used (cf. Table 8). 

This has been done for the sake of simplicity. Besides, 

for carrying out measurements with random signals it 

is immaterial which choice is made. However, this is 

not the case when the all-zeros codeword is transmit

ted, for in that case the upper of the two paths would 

be the best choice, whereas the lower path would be 

the best when the all-ones codeword is transmitted, 

because we then travel along the lower line of the 

trellis diagram. When the all-zeros codeword is trans

mitted the measured bit error rate is therefore likely 

to exceed the bit error rate measured with a random 

input signal; with the all-ones codeword the opposite 

is likely to be the case. 

(2) A similar arbitrary choice is possible when reading 

out the path registers. If 2, 3 or all 4 metric values are 

identical, a choice must be made between them. For 

the same reasons the circuit will then, too, choose the 

lower path (see Table 9). 

For the sake of completeness some of the error prob

ability measurements have been carried out not only 

with a random signal, but also with the all-zeros and 

the all·ones codewords. 

Fig.6.4 shows the circuit diagram of the first of the four 

identical sections of the 16-bit path registers. 

The 16 Q outputs Pa of the registers 9300 denoted by AI, 

A2, A3, A4 and the 16 Q outputs Pc of the registers 9300 
denoted by CI, C2, C3 and C4 are linked to the inputs of 

the multiplexers 9322 (AI, A2, A3, A4). The 16 outputs 

are connected to the 16 P inputs of the registers 9300 

denoted by AI, A2, A3, A4. Depending on the select input, 

at the next clock pulse either Pa or Pc is read into Pa in 

parallel (provided that l'E = L). If a = H, then Pa": = Pt!'-I , 

whereas in the event of a = L, then Pa": = Pen-I. 

In order to comply with the first line of Table 8, a 0 must 

still be shifted into the register. To this end l'E is required 

to be H, sO that at the next clock pulse a 0 is indeed shifted 

in; it should be recognized that the 1K input of register 

9300 (AI) is grounded. 

A similar argument applies to Pb, Pc and Pd: however, a I 

is shifted into Pb and Pd at the second clock pulse. 

The four NAND-gates 9009 (AD and BC) preceding the J'E
and CP-inputs of the shift registers again serve as buffers. 

The 4-input multiplexer 9309 connected to the last stage of 

each path register selects the sixteenth bit of the path 

register corresponding to the lowest metric value. The read

out information So and SI is delayed by the latch 9314 (S); 

the delay must be equal to the duration of one code bit 

because the four new paths are present in the shift registers 

after the second clock pulse has been produced. The second 

of the two bits which consecutively appear at the Za-output 

of the multiplexer 9309 is always the decoded data bit. 

Since the bit rate of the code is twice that of the data, the 

duration of the decoded bit must be doubled. This is 

achieved by means of a latch incorporated in the circuit 

of the control unit discussed below. 

6.3 The control unit 

Fig.6.S shows the circuit diagram of the control unit and 

Fig.6.6 its timing diagram. 

It is necessary for each pair of code bits to be fed from the 

code input of the decoder to the metric circuit. For this 

reason the code sequence is delayed for one bit-period by 

feedingxnl andxn2 to the circuit of Fig.6.2 via the latch 

9314 (X). 

The latch command coincides with the clock pulse for the 

metric registers. It is thus possible for the calculation of the 

new metric values and the shift-in and read-out information 

a, b, c, d and SO, SI to start at this instant. Once this calcu

lation has been completed, the path registers can be filled. 

"l'E path" must then obviously be low, and "CP path" is 

transferred from L to H. Subsequently "!''E path" should 

become high; at the next positive flank of "CP path" the 

four new paths are thus stored in the shift register. At that 

instant the read-out information should be available. After 

reading-out, the decoded bit is available at Za of multi

plexer 9309. This bit is stored by the latch 9314 (X) until, 

after two clock pulses, a new bit is available at Za of multi

plexer 9309. 

It will be clear that the speed of the decoder is limited by 

the time the metric circuit needs for calculating the read·in 

information of the path. Theoretically (according to the 

specification of the integrated circuits used), this time is 

about 100 ns. The maximum repetition frequency of the 

input clock pulse is determined mainly by this time and the 

width of the CP metric, which results in a maximum of 

about 2,5 megabits per second for the data signal. 

To minimize the influence of mains and similar interferen

ces on the decoder, all flip-flops and one-shots are controlled 

by a clock with the largest practicable duty cycle. In 

addition, various bypass capacitors are incorporated in the 

circuit. The circuit is nevertheless still affected to some 

extent by interference. This should be taken into account 

when carrying out measurements with very small error 

rates. 

6.4 The error detector 

By extending the 3-bit shift register of the encoder from 3 

to 17 bits, the input signal can be brought roughly into 

phase with the decoded output signal. The latch 9314 (X) 

will then bring it completely into phase. If the input and 

output data sequences are then applied to an exclusive 

OR-gate it will register a I for each error in the decoded 

sequence. Feeding this output directly to a counter would 

result in two consecutive errors being recorded as only one, 

since there would be only one positive flank to actuate the 

counter. This is avoided by feeding the output signal of the 

XOR-gate, together with a clock signal produced by a one

shot, to a NAND-gate, which is in turn followed by a 

NAND-buffer. This results in a separate positive-going pulse 
for each individual error. 
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7 MEASUREMENTS 

In order to measure the bit error rate as a function of the 

crossover error rate of a binary symmetric channel, the 

coder and decoder can be linked by a simulated channel 

with a variable error rate. The measuring set-up is then as 

shown in Fig.7.!. 

J. Alma [IS] devised a binary symmetric channel simulator 

in which the crossover probability can be adjusted stepwise 

in steps of 2- 1 from 2"2 to 2-12
. To generate the errors, a 

random data generator is incorporated in the circuit. The 

only random data generator available at the time of the 

investigations had to be controlled by a clock frequency 

not exceeding 50 kHz; the maximum permissible code bit 

rate was thus' limited to 4 kbit/s, so the maximum data bit 

rate to only 2 kbit/s. Since, according to eq.(S.4), the 

calculated upper bound of PB is SOp3(1 + 3,2p)/(I - 16p)', 

the expected bit error rate for p = 2-12 is at the most 10-9
. 

At the maximum data bit rate of 2 kbit/s this amounts to 

I error every 6 days. It will be clear that carrying out error 

probability measurements in this range would be quite 

impracticable, the mote so because the sensistivity to man

made interference wo~ld render the results unreliable. For 

this reason the measurements were"limited to p := 2"9. 

The curves PBlpj shown in Fig.7.2 were plotted by feeding 

the outputs "counter" and "data dock" to a programmable 

counter-timer. The latter directly computed PB. i.e. the 

ratio of the number of bit errors in the decoded data 

sequence to the total number of data bits. The results were 
checked by measuring the crossover error rate p in the same 

way. 

PSEUDO-

RANDOM 
I-~ CODER 

DATA 

GENERATOR 

.. 

.. 

As mentioned in Section 6.2, measurements were carried 

out not only with a pseudo-random data signal fed to the 

input of the encoder, but also with shorted input (all-zeros 

codeword) and with open-circuited input (all-ones code

word). The resulting curves are also plotted in Fig.7 .2. 

For small values of p the measured bit error rate appears to 

be in excellent agreement with the bound given by eq.(S.4) 

and closely follows the asymptote SO p3 (cf. Fig.5 .2). 

The bit error probability was also measured as a function of 

the path register length for three values of p, viz. 2-3
, 2-5 

and 2"7. These measurements, which are plotted in Fig.7.3, 

showed that increasing the path register lengths beyond 

12 bits scarely reduced PB any further. This confirms the 

conclusion of Heller and Jacobs [6], Viterbi [5] ,Oden

walder [13] and others, according to which a path register 

with a length of 4 to S times the constraint length is suffi

cient to justify disregarding path memory truncation 

errors. 

The maximum data bit rate at which encoder and decoder 

still operate reliably without a binary symmetric channel 

being used, proved to be 2,46 Mbits/s, almost as calculated 

in Section 6.3. 

The total power consumption of the installation was 16 W 

(3,2 A at S V). 

It should be recognized that availability of a faster random 

data generator would have allowed the measurements to be 
carried out in less time and with greater accuracy. 

sse r-~ DECODER 

ERROR 

DETECTOR r---
for p 

ERROR 

DETECTOR 

for Fa 

7Z11114 

Fig. 7.1 Block diagram of the measuring circuit. 
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8 SUGGESTIONS FOR SIMPLIFYING THE CIRCUIT 

8.1 Simplification of the metric circuit 

At the time the circuit of Fig.6.1 was built, it was not 

realized that the four metric values would never exceed 3 

(cf. Section 3.3); this explains why the design of the whole 

circuit was based on 3 bits. However, it can be proved that 

the metric values, even before subtracting Mmin. never will 

exceed 3, so that the part of the circuit which follows the 

four multiplexers 9322 (A, B. C and D) need only be cap-

able of handling 2 bits. . 

For this same reason the four shift registers 9300 (A, B, C 
and D) could be replaced by one 8-bit latch (e.g. 9308); 

moreover, the greater fan-out of the latter would then 

render the four buffers 9014 (B) superfluous. 

It can also be proved that Mmin can only be either 0 or 1, 

i.e. 1 bit, so that the entire circuitry for the twos complement 

could be omitted. This will become clear by considering 

that the twos complement of 0 is 0 0 (for 2 bits), and that 

of I is I 1. It would therefore have been permissible to link 

both B2 and B3 of the 7483s to Za of the 9322 (M) via a 

buffer. 

8.2 Large-scale integration 

As explained in Section 3.3 (cf. Table 4), there are only 31 

possible combinations of metric values. After every possible 

combination JWl-l, Xfl will be either 0 0, 0 1, 1 0 or 1 1. 

M" ; M'" - Mm/l will then again be one of the 31 combina

tions, as illustrated by the following example. 

Assume M"-l to be 0, I, ,I, I (8th column of Table 4), then 

I
M~ ; min (0 + 0, I + 2); 0 

if x/l ; 00 Mb/l ; min (0 + 2, I + 0); I 

(cf.Table3) M~;min(I+I,I-I);2 

Md/l;min(I+l,I+I);2 

in accordance with the 20th column of Table 4; 

ifX/l;OI 

(cf. Table 3) 

I 

Ma'" ; min (0 + I, I + I) ; I 1 
Mbn' ; min (0 + I, 1 + I) ; 1 

Men' ; min (I + 2, I + 0); 1 

M~' ; min (! + 0, 1 + 2) ; I 

in accordance with the first column of Table 4. 

Similarly, if XI1 ; I 0, Mi' ; 0, 0, 0, 0 (first column) 

if xII; I I,M"; I, 0.1, I (9th column) 

These operations can be performed by a fairly simple 

combinatorial network to the inputs of which Xn. Mtfl~l, 

Mbll-I,Mc'l-l and Md'l-l are applied (for each, 2 bits are 

required), whilst at the outputs M~, Mb ll , Men, M~ 

(2 bits each) and a, b, e, d, SO, SI (I bit each) become 

available. It might be feasible to realize such a circuit on a 

single LSI chip, and if an 8-bit latch could also be accom

modated on the same chip, only 12 connections would have 

to be made to it (cf. the metric circuit of Fig.6.1 and Figs 

6.2 and 6.3), viz. 

(I) + Vee 

(2) GND 

(3) So 

(4) SI 

(5) a 

(6) b 

(7) e 

(8) d 

(9) xnl 

(10) xn2 

(II) latch command 

(12) reset (if desired) 

The smallness of the number of external connections re

quired is attributable to the fact that the values of M" 

one of no further interest for the circuit, and hence no 

provision need be made for bringing them out. A cheaper 

solution to the metric circuitry might be a ROM or a 

PLA (programmable logic array). 

It might also be practicable to integrate the path register 

circuit on a single chip, in which case 12 external connec

tions would again suffice (cf. Fig.6.4), viz.: 

(I) +Vee 

(2) GND 

(3) So 

(4) SI 

(5) a 

(6) b 

(7) c 

(8) d 

(9) Za 

(10) CP 

(11) PE 

(12) E select. 

Large-scale integration of the path register circuit might be 

facilitated by reducing the bit length from 16 to 12; this 

would not noticeably affect the error-correcting properties 

of the decoder, as is evidenced by the graph of Fig.7.3. 

Finally, it might be possible to apply large-scale integration 

to the control unit. 

[n this way it would be possible for the entire decoder to be 

composed of a few integrated circuits. The main objection 

against using a Viterbi decoder for digital transmission or in 

computer applications - its price - might thus be overcome. 

However, the manufacture of customized integrated circuits 

required for large-scale integration involves considerable 

initial expense, to justify which there must obviously be 

sufficient applications for this type of decoder. 



Appendix I 

Given, for odd values of k: 

k 

Pk = ~ ~) peqk-e, 

e=(k+ 1)/2 

and for even values of k: 

I ( k ) k 
Pk = 2: pk/2qk/2 + ~ 

'k/2 e=k/2+1 

(~) peqk-e, 

or, with k = 2n-1 and k = In respectively: 

2n-1 (In r 
Pln-l = ~ - )peq2n-I-e, 

e=n e 

1 (211) In (In) Pln = 2: pnql1 + ~ peq211-e, 
n, e=n+} e 

To be proved: Pk = Pk-I for even values of k, or Pln = P211-1, 

Proo!' 

'211 (211' 
( ) peq2n-e + p211 _ ) pllqn, 

e ' n 

whilst 

(In) = (2n)! = (In-e+e) , (211-1)! 

e, (In-e)!e! (2n-e)!e! 

= (In-e) (In-I)! + e(2n-I)! 

(2n-e )(2n-e-1 )!e! (2n-e )!e(e-I)! 

= (2n-I)! + (211-1)! = (2n-l) + ('In-I)' 
(211-e-I)!e! (211-e)!(e-I)! e e-I' 

Substitution of eq,(AI.2) in eq,(AI.1) yields: 

I 211 2n-1 . 211-1) 2n-1 2n-1 
P2I, = - '2 ( )pllqn + ~ ( peq2n-e + ~ ( . )peq21l-e + p2n, 

fl e=n e, e=n e-l, 

Substituting i for e-I in the third term gives: 

1 211-2 2 I 
I (_n ( 11- I '+1 2 I' 2 

P2n =-2 )pnqn + qP2n-1 + ~ . JP' q n- -'+p n 
n i=n-l l 

I 211 211-1 
= -- ( )pnql1 + qP211-1 + ~ 

2 11 
i=n 

/211-1) (2n-l) \ ,pi+lq2n-I-i+ I pnqn_p211+p2n; 
, n-

(AU) 

(A 1.2) 

(AI.3) 

(AlA) 



moreover, 

(2n-l) = (2n-I)! = (2n)!n = ~ (2n)! =.!. (2n)' 

n-I' (n-l)!n! 2n·n!n! 2 n!n! 2, n ' 

From eqs (AI.4) and (AI,S): 

Pil, = qP2n-1 + pPil,-1 = P2n-1 

q,e,d, 

Appendix 2 

As proved in Appendix I, Pk = Pk-I for even values of k; in 

that case 

k-l 

L (E)". 
e=k/2 q 

since 

(
k-I) ( k-I ) 
k/2 > k/2 + i ' (i = 1,2,3, "" k/2-1), 

Considering that 

(k-l ) 
k/2 

( 
k-2-1 ) 

(k-2)/2 

k k 
(k-I )!( - - I)!( -- 2)' 

2 2 

k k 
- !(--I)!(k-3)! 
2 2 

eq_(A2,1) may be written: 

(
k'-l) , p)k/2 

Pk < k' /2 2k-k qk-I( q 

(k-l )(k-2) k-I k-l 
k k =~ =4-<4, 
_ (.c-lJ k/4 k 
2 2 

I - (p/q)k/2 

1- p/q 

in which k' is the minimum even free distance of the 

convolutional code concerned; in the case at issue k' = 6. 

Hence, in eq,(A2A), k' < k, 

Rearrangement of eq,(A2A) yields 

k/2 _ k/2 
Pk<f(2yp)k q P, 

q-p 

where 

(
k'-l ') , 

f f; 2-k , 
- k'/2 

In the case at issue, 

(AU) 

(A 1.6) 

(A2,1) 

(A2,2) 

(A23) 

(A2A) 

(A2,S) 



In the last term of eq.(A2.5) we now make the substitution 

q = 1;2 + x; and, from considerations of symmetry we can, 

without departing from generality, assume that li < q .;; I, 

whence 0 < x .;; li. The last term then becomes 

k/2 k/2 
(li + x) - (li - x) = A(k) + B(k)x' + C(k)x4 + ... , 

2x 

where A, B, Care non·negative constants which depend 

exclusively on k. Eq.(A2.6) increases monotonically for 

x > 0 and hence reaches a maximum at the maximum value 

of x. Substituting li for x yields I, so that 

,qk~/_2 _-KP~k/_2 
- ~ I. 

q-p 

Then 

for even values of k. 

Appendix 3 

In general (cf. Viterbi [5]), if Pk < F(p) k: 

PE<T(D)i 
. D=F(p) 

PB < dT(D,N) i 
dN !N=I,D=F(P) 

In general T(D) may be expressed by 

T(D) = aID + a2D' + ajD3 + "', 

and then in general: 

or, making use of the fact that PI = P2, P3 = P4, ... , as proved in Appendix I, 

, 
Making u~e of eq.(A2.8) and the definitions of rand k'_given in Appendix 2, we may write 

To analyse this expression, we shall try to find a function of T(D) which assumes the general form 

G {T(D)} = (al + a2)D' + (a3 + a4)D4 + ... , 

which is satisfied by 

T(D) + T( -D) + D T(D) - T( -D) 

2 2' 

(A2.6) 

CA2.?) 

(A2.8) 

(A3.1) 

(A3.2) 

(A3.3) 

(A3.4) 

(A3.5) 

(A3.6) 

(A3.?) 

(A3.8) 



Eq.(A3.6) may thus be expressed by 

p'<r{T(D)+T(-D) +D T(D)-T(-D)} 
E 2 2 . 

D = 2 VP 

(A3.9) 

In an analogous way it can be shown that 

J 
dT(D, Nj + dT( -D, Nj 

p<r dN dN +D 
B I 2 

dT(D, Nj dT(-D, Nj} 
dN dN 

(A3.\O) 

These upper bounds are thus generally valid for any convolutional code. We shall now show that eqs.(5.3) and (5.4) are indeed 

obtained by substituting in eqs.(A3.9) and (A3.10): 

Eq.(A3.9) then yields 

D' 
T(D)=--. 

1- W 

D'N 
T(D, Nj = I _ W and 

5 r=-. 
32 

5 
P£<

. 32 { 

I~~ ~I~~ + ~+~ I 
2 f D = 2 VP 

= 5 J D' + 2D' - D' + W' + D' + W
7 

+ D' - W
7 

} 

32 I 2( 1 - 4D2) D = 2 VP 

5 1 3D' 1 _ 5 3 X 64p3 _ 30p3 

= 32 1 - 4D2 r D = 2 VP - 32' 1 - 4 x 4p - 1 - 16p' 

and eq.(A3.\O) becomes: 

dT(D, Nji 

dN i N= I 

D' 
(I - W)" 

dT( -D, Nj I _ _D
5 

dN I - (I + 2D)2 
!N= 1 

D5 D' D' D' 

5 { (I - W)2 - (I +wl' (1 - W)2 + (I + W)2} 
PB<- + 

32 2 2 D = 2Vp 

(5.3) 

= 2. {D' (1 + Wj' - D 5 (I - wl' + D' (I + 2D)2 + D' (I - W)2} 

32 2(1_4D2)2 D=2VP 

_ 5 {5D' + 4D8} = 50 3 1 + 3,2p 
- 32 (l_4D2)2 D=2Vp p (I-16Pl" 

(5.4) 
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