
A VLC Media Player Plugin enabling
Dynamic Adaptive Streaming over HTTP

Christopher Müller and Christian Timmerer
Alpen-Adria-Universität Klagenfurt, Multimedia Communication

Universitätsstraße 65-67
9020 Klagenfurt am Wörthersee, Austria

+43 (0)463 2700 3600

{firstname.lastname}@itec.aau.at

ABSTRACT
This paper describes the implementation of a VLC media player
plugin enabling Dynamic Adaptive Streaming over HTTP
(DASH). DASH is an emerging ISO/IEC MPEG and 3GPP
standard for HTTP streaming. It aims to standardize formats
enabling segmented progressive download by exploiting existing
Internet infrastructure as such. Our implementation of these
formats as described in this paper is based on the well-known
VLC. Hence, it is fully integrated into the VLC structure and has
been also submitted to the VLC development team for
consideration in future releases of VLC. Therefore, it is licensed
under the GNU Lesser General Public License (LGPL). The
plugin provides a very flexible structure that could be easily
extended with respect to different adaptation logics or profiles of
the DASH standard. As a consequence, the plugin enables the
integration of a variety of adaptation logics and comparison
thereof, making it attractive for the research community.

Categories and Subject Descriptors
H.5.1 [Multimedia Information System]: Video

General Terms
Documentation, Design, Standardization.

Keywords
Video, HTTP Streaming, DASH, Dynamic Adaptive Streaming
over HTTP, MPEG, 3GPP.

1. INTRODUCTION
Video streaming is nowadays more and more provided over-the-
top (OTT) using existing Internet infrastructures. This means that
service providers do not build their own dedicated networks, they

just use the Internet as it is. However, the Internet is not designed
for real-time streaming, it is designed for best-effort delivery of
files. Caches, proxies, and content distribution networks (CDN)
are part of this infrastructure which support file transfer very well.
Existing streaming technologies like the real-time streaming
protocol (RTP) could not take any advantage of this infrastructure
due to their design and they also have other disadvantages, e.g.,
passing firewalls or network address translation (NAT) traversal.
Bitrate variances are also very difficult to handle with RTP unless
a video codec is used that supports a scalable transmission like
Scalable Video Coding (SVC) [1]. RTP is a push protocol, i.e.,
the server pushes the data to the client. For that reason RTP is
typically state full and the server has to keep track of all clients
and the state of each session. An alternative way of streaming that
is currently in heavy use on the Internet is called progressive
download. As the name says it is not a “true” streaming but it is a
kind of download. In comparison to RTP which is based on user
datagram protocol (UDP) the progressive download is based on
the hyper text transfer protocol (HTTP). Consequently, the
session is stateless and the client pulls the data from the server.
This has several advantages such as fully exploitation of existing
Internet infrastructure (e.g., caches, proxies, CDNs) and no issues
with firewalls or NAT traversals as the media data is encapsulated
within HTTP. However, this approach has also some
disadvantages. The HTTP protocol adds a significant overhead to
the transmission which is approximately twice the media bitrate
[2].
Some industry consortia try to address the drawback on how to
handle varying bitrates. One of the first solutions has been
specified within 3GPP as Adaptive HTTP Streaming (AHS) [3].
The basic idea is to chop the media file into segments which can
be encoded at different bitrates or resolutions. The segments are
provided on a Web server and can be downloaded through
standard HTTP GET requests. The adaptation to the bitrate,
resolution, etc. is done on the client side for each segment, e.g.,
the client can switch to a higher bitrate – if bandwidth permits –
on a per segment basis. This has several advantages because the
client knows its capabilities and its received throughput best. In
order to describe the relationship between bitrates, segments, and
the order of the segments AHS introduces the so-called Media
Presentation Description (MPD). The MPD is a XML file that
represents the different bitrates and HTTP uniform resource
locators (URLs) of each individual segment. This structure

*Area Chair: Pablo Cesar, Wei-Tsang Ooi.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11...$10.00.

723

provides the binding of the segments to the bitrate (resolution,
etc.) among others (e.g., start time, duration of segments). For
example, a typical client would first request the MPD and with the
information of the MPD it would then request the individual
segments that fit best for its given bandwidth. If the bandwidth
changes during the session the client could easily select a segment
from another representation with a different bitrate that fulfills its
bandwidth requirements best. This makes the progressive
download method adaptive and dynamic in the same way. There
are also other proprietary solutions from different companies like
Microsoft’s Smooth Streaming [4], Adobe’s Dynamic HTTP
Streaming [5] and Apple’s HTTP Live Streaming [6] which more
or less adopt the same approach. At the beginning of the session
the client has to download a file that describes the URLs of the
segments and the relation between the segments and a bitrate.
After that the client could start with the download of the segments
and eventually adapt dynamically to bandwidth fluctuations. The
Dynamic Adaptive Streaming over HTTP (DASH) standard aims
at combining the features of these proprietary solutions. The next
section will give an overview of this standard.

2. Dynamic Adaptive Streaming over HTTP
During its 93rd meeting, MPEG evaluated 15 submissions from 20
organizations (including companies, research institutions and
universities). The submissions provided technologies for the
HTTP streaming of MPEG media in the following areas:

• Manifest File (MF), i.e., playlist, media presentation
description, etc. which is mostly based on XML.

• Delivery Format (DF) as extensions/specializations of
ISO Base Media File format (ISOBMFF) and MPEG-2
Transport Stream (TS).

The system architecture is depicted in Figure 1 [7] and based on
that MPEG started a new work item called Dynamic Adaptive
Streaming over HTTP (DASH).
On request, the manifest file will be provided to the client in order
to initiate the session (cf. step-1 in Figure 1). The client will parse
the manifest file and request individual segments compliant to the
delivery format using HTTP and according to the information
found in the manifest file (cf. step-2 in Figure 1). For the manifest
file, DASH adopted the Media Presentation Description (MPD) as
defined by 3GPP AHS [3] as a starting point. The MPD follows a
data model comprising a sequence of one or more consecutive
non-overlapping periods for which one or more representations
may be available. A single representation refers to a specific
media following certain characteristics such as bitrate, framerate,
resolution, etc. Furthermore, each representation consists of one

or more segments that actually describe the media and/or metadata
to decode and present the included media content.
The delivery format defines the format of the segments to be
delivered to the client upon the HTTP requests based on the
MPD. Finally, as the delivery format shall be compatible to
existing MPEG formats (i.e. ISOBMFF and MPEG-2 TS), it shall
be also possible to provide easy conversion from and to these
formats. For example, easy conversion on the server would ease
the usage of legacy content encoded in existing formats such as
MP4 and its derivations. On the other hand, client-side easy
conversion would facilitate repurposing of content received via
DASH, e.g., in order to support legacy (decoding) infrastructures.

3. IMPLEMENTATION
This section provides information about the architecture of VLC
media player and the DASH plugin which is fully integrated into
VLC.

3.1 VLC Media Player
The VLC media player has a very clear and well defined layered
architecture. Each layer is responsible for a concrete task and it
could contain an undefined number of modules. Modules are
representing a common action. The correct module for a given
session will be chosen at runtime for each individual layer. This
makes VLC very flexible. In the first version of the plugin it was
located at the access layer because it is a kind of access. But at the
newest version it has been moved one layer below because it is
then independent from the access method. Due to the flexible
structure of VLC and the reason that every module follows nearly
the same structure this was not such a huge issue.

3.2 DASH Plugin
The DASH plugin is located at the stream filter layer of VLC and
consists of four major components and two controller classes.
Each of these components is depicted in Figure 2. The first
component that is used at the startup of a DASH session is the
XML component which is responsible for the XML parsing of the
MPD and providing support to the other components. This
component does neither provide means for the interpretation of
the data nor the (adaptation) logic. The HTTP component handles
all HTTP connections that have to be opened or closed during a
DASH session. The current version of the plugin opens a HTTP
connection for each individual segment. This will be improved in
a future version of the plugin that will use persistent HTTP

Figure 1. DASH System Architecture [7].

Figure 2. High-Level DASH Plugin Architecture.

724

connections to reduce the HTTP overhead. The XML-Logic
component adds the logic to the data representation that is
provided though the XML component. As a consequence data and
logic of the MPD are well separated. The plugin only supports a
subset of the current DASH standard [8]. This is possible because
the DASH standard defines profiles that describe such a subset.
Currently the plugin only works with the BasicCM profile which
is defined at [9]. Due to the structure it could easily be extended
to support other profiles or even the full standard. The
Adaptation-Logic component is responsible for the adaptation to
the user preferences or device capabilities like bandwidth and
resolution. The details of this component is also very flexible and
is based on the well-known strategy pattern [10]. Thus, it is very
easy to change the adaptation logic without affecting the other
components. As a consequence, the plugin enables the integration
of a variety of adaptation logics and comparison thereof, making it
attractive for the research community.

4. DEPLOYMENT
Figure 3 shows an example of a DASH deployment. The three
main components are the content producer the network and the
clients. The content producer is responsible for the content
production. This means that it provides the segments and the

MPD to the CDN. Due to the flexible structure of DASH the
content production could easily adopt to the needs of the CDN
w.r.t. segment duration. Also legacy content could be reused, e.g.,
if there is a movie available in different bitrates, DASH could
reuse these files because of the flexibility of the MPD. The
content production could be done offline or online. Offline means
that the video content in form of segments and the MPD will be
created and then distributed over the CDN. This is the usual
deployment strategy for on-demand content. DASH also supports
live content preparation. Therefore, the content producer adds the
segments online and updates the MPD accordingly. The MPD
contains an update interval in order to inform the client that it
must update the MPD during this period. On the network part
nothing has to be changed because DASH uses the Internet as it
is. As shown on Figure 3 the network may consist of CDNs that
distribute the content. Due to the use of HTTP, DASH also passes
firewalls and takes advantage of proxies. The flexible content
preparation in case of different bitrates makes it possible that
DASH could be used with nearly any connection as shown on
Figure 3 where a mobile device is connected through a 3G
network and a PC is connected through a 1Gbit connection. The
actual streaming/adaptation logic is on the client side and, thus,
the client decides which segments to download, the buffer size,
and when the switch to another representation shall occur.

4.1 DASH Data Model
The DASH data model is hierarchical starting with the MPD.
Each MPD could contain one or more Periods. The purpose of a
Period is to separate the content, e.g., for ad insertion or for
changing the camera angle in a live football game. Each Period
could then contain one or more Groups which enables the
grouping of different Representations that logically belong
together. For example, representations with the same codec,
language, resolution, etc. could be within the same group. This
mechanism allows the client to eliminate a range of
representations that does not fulfill its requirements. A period
could also contain a Subset which enables the restriction of
combinations of groups and expresses the intention of the creator
of the MPD. Of course, the MPD also supports trivial cases just
containing one or more representations of multiplexed content.

Figure 3. Example of DASH Deployment Architecture.

Figure 4. DASH Data Model.

725

The representations contain the actual Segments. Typically, the
first segment of a representation is an initialization segment that
contains only meta-information for the decoding process. The
other segments contain the actual data (audio, video, text, etc.)
and could be accessed from the client through the given URL.

4.2 Segment Indexing
DASH employs a very flexible segment indexing mechanism as
depicted in Figure 5. In particular, there are three different
methods how segments could be indexed. The first one is the
MPD only mechanism where the index will be signaled within the
MPD and not in the underlying data. However, there are two ways
how to do that within the MPD. The first approach provides
multiple segments on the server and the second approach provides
only one file (i.e., one big segment). For the second one the MPD
describes the byte ranges of the different segments. The second
solution is a hybrid one where a part of the index is signaled in
the MPD and the other one in the underlying data. This means
that the MPD describes the location of a separate index file that
contains the byte ranges of the segments. With this solution there
are just two files located on the server. Finally, it is also possibly
to include the whole index in the underlying data, i.e., at the
beginning of file. All of these solutions could be used for on-
demand use cases but only the first one is preferred for live
sessions.

4.3 Deployment Remarks
As mentioned before, DASH is very flexible regarding the data
model, indexing, segment duration, etc. which is intentionally as
on-demand and live use case scenarios do have different
requirements. For example, the segment duration may be as long
as possible for on-demand sessions because segments are costly
and unnecessary, byte range requests have much more caching
efficiency, and on the server fewer files are needed. Typically
there will be only one file on the server for each bitrate. However,
for live sessions this is not a suitable approach as the session
needs to be divided in multiple segments (i.e., the whole duration
of the session is not known in advance). For live sessions also a
high encoding performance is needed because several bitrates,
languages, etc. must be encoded and packetized into segments in
real time.

5. CONCLUSION AND FUTURE WORK
This paper describes an implementation of the emerging Dynamic
Adaptive Streaming over HTTP (DASH) standard which is

currently developed within MPEG and 3GPP. Our
implementation is based on VLC and fully integrated into its
structure as a plugin. Furthermore, our implementation provides a
powerful extension mechanism with respect to adaptation logics
and profiles. That is, it should be very easy to implement various
adaptation logics and profiles. Future versions of the plugin will
provide an update to the latest version of the standard (i.e., a lot of
changes have been adopted recently, e.g., Group has changed to
AdaptationSet), add support for persistent HTTP connections in
order to reduce the overhead of HTTP streaming (e.g., compared
to RTP), and seeking within a DASH stream. Finally, we will
investigate adding support for live streaming. The plugin is
available as open source at the DASH website of the Alpen-Adria-
Universität Klagenfurt [11] which also provides a documentation
describing how to build and use the plugin. Furthermore, test files
and videos of the plugin are provided at this Web site.

6. ACKNOWLEDGMENTS
This work was supported in part by the EC in the context of the
ALICANTE project (FP7-ICT-248652)

7. REFERENCES
[1] H. Schwarz, D. Marpe, T. Wiegland, “Overview of the

scalable video coding extension of the H.264/AVC
standard”, IEEE Transactions on Circuits and Systems for
Video Technology, vol 17, no. 9, Sep. 2007, pp. 1103-1120.

[2] B. Wang, J. Kurose, P. Shenoy, and D. Towsley,
“Multimedia Streaming via TCP: An Analytic Performance
Study”, ACM Transactions on Multimedia Computing,
Communications and Applications, vol. 4, no. 2, May 2008,
pp. 16:1-16:22.

[3] 3GPP TS 26.234, “Transparent end-to-end packet switched
streaming service (PSS)”, Protocols and codecs, 2010.

[4] Microsoft Smooth Streaming,
http://www.iis.net/download/smoothstreaming (last access:
May, 2011).

[5] Adobe HTTP Dynamic Streaming,
http://www.adobe.com/products/httpdynamicstreaming/ (last
access: May, 2011).

[6] R. Pantos, W. May, “HTTP Live Streaming”, IETF draft,
March. 2011, http://tools.ietf.org/html/draft-pantos-http-live-
streaming-06 (last access: May, 2011).

[7] C. Müller, C. Timmerer, “A Test-Bed for the Dynamic
Adaptive Streaming over HTTP featuring Session Mobility”,
ACM Multimedia Systems, San Jose, California, USA, Feb.
2011, pp. 271-276.

[8] ISO/IEC CD 23001-6. 2010. Information technology –
MPEG systems technologies – Part 6: Dynamic adaptive
streaming over HTTP (DASH), Guangzhou, China, Oct.
2010.

[9] DASH BasicCM profile, http://www-itec.uni-
klu.ac.at/dash/?page_id=10#SupportedProfile (last access:
May, 2011).

[10] E. Freeman, E. Freeman, K. Sierra, B. Bates, Head First
Design Patterns, O’Reilly Media, Oct. 2004.

[11] DASH at Alpen-Adria-Universität Klagenfurt, http://www-
itec.uni-klu.ac.at/dash (last access: Jul. 2011).

Figure 5. Segment Indexing.

726

	1. INTRODUCTION
	2. Dynamic Adaptive Streaming over HTTP
	3. IMPLEMENTATION
	3.1 VLC Media Player
	3.2 DASH Plugin

	4. DEPLOYMENT
	4.1 DASH Data Model
	4.2 Segment Indexing
	4.3 Deployment Remarks

	5. CONCLUSION AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

