
22

A vlHMM Approach to Context-Aware Search

ZHEN LIAO, Nankai University

DAXIN JIANG, Microsoft Research Asia

JIAN PEI, Simon Fraser University

YALOU HUANG, Nankai University

ENHONG CHEN and HUANHUAN CAO, University of Science and Technology of China

HANG LI, Huawei Noah’s Ark Lab

Capturing the context of a user’s query from the previous queries and clicks in the same session leads to
a better understanding of the user’s information need. A context-aware approach to document reranking,
URL recommendation, and query suggestion may substantially improve users’ search experience. In this
article, we propose a general approach to context-aware search by learning a variable length hidden Markov

model (vlHMM) from search sessions extracted from log data. While the mathematical model is powerful,
the huge amounts of log data present great challenges. We develop several distributed learning techniques
to learn a very large vlHMM under the map-reduce framework. Moreover, we construct feature vectors for
each state of the vlHMM model to handle users’ novel queries not covered by the training data. We test our
approach on a raw dataset consisting of 1.9 billion queries, 2.9 billion clicks, and 1.2 billion search sessions
before filtering, and evaluate the effectiveness of the vlHMM learned from the real data on three search
applications: document reranking, query suggestion, and URL recommendation. The experiment results
validate the effectiveness of vlHMM in the applications of document reranking, URL recommendation, and
query suggestion.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Context-aware search, variable length hidden Markov model

ACM Reference Format:
Liao, Z., Jiang, D., Pei, J., Huang, Y., Chen, E., Cao, H., and Li, H. 2013. A vlHMM approach to context-aware
search. ACM Trans. Web 7, 4, Article 22 (October 2013), 38 pages.
DOI: http://dx.doi.org/10.1145/2490255

1. INTRODUCTION

Capturing the context of a user’s query from the previous queries and clicks in the
same session leads to a better understanding of the user’s information need. A context-
aware approach to document reranking, query suggestion, and URL recommendation

A preliminary version of this article [Cao et al. 2009] appeared in Proceedings of the 18th International
Conference on World Wide Web (WWW’09).
Z. Liao’s research is supported in part by the Microsoft Research Asia Fellowship. J. Pei’s research is
supported in part by an NSERC Discovery Grant, a BCFRST NRAS Endowment Research Team Program
project, and a GRAND NCE project. Y. Huang’s research is supported in part by the National Natural Science
Foundation of China under Grant No. 61105049. All opinions, findings, conclusions and recommendations
in this article are those of the authors and do not necessarily reflect the views of the funding agencies.
Corresponding author’s email: djiang@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1559-1131/2013/10-ART22 $15.00

DOI: http://dx.doi.org/10.1145/2490255

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:2 Z. Liao et al.

Table I. Four Search Sessions from Real Search Logs

UID SID Search session

yahoo

U1 S1 ↓

www.yahoo.com

gmail → hotmail → yahoo

U2 S2 ↓

my.yahoo.com

dictionary → webster → online dictionary

U3 S3 ↓

www.merriam-webster.com

citi bank → webster → chase bank

U4 S4 ↓

www.websteronline.com

may substantially improve users’ search experience. In this article, context is defined as
the previous queries and clicks within the same session before a user’s current query,
and session is extracted by a widely used method [White et al. 2007]: two consecutive
query events are segmented into two sessions if the time interval between them exceeds
30 minutes.

Consider the search sessions in Table I, which are several sessions of different users
from Bing (http://www.bing.com). From the table, we can observe that users’ searching
and clicking behaviors are different in different context settings. First, users’ behaviors
can be different when searching with or without context. For example, when searching
for “yahoo” alone, users are more likely to click the homepage of Yahoo!. When searching
in a sequence “gmail → hotmail → yahoo”, users may want to check personal emails.
Second, users’ behaviors can be different when searching in different contexts. For
example, the next possible queries after searching for “dictionary → webster” are
different from that of “citi bank → webster”. Therefore, in the application of context-
aware search, it is necessary to systematically capture the contexts.

Recently, several studies focused on mining users’ search or browsing logs to improve
users’ search experience. For example, Joachims [2002], Radlinski and Joachims [2005],
and Zhao et al. [2006] used click-through information to improve document ranking.
White et al. [2007] provided URL recommendations to a user by finding the websites
frequently visited by other users with similar information needs. Fonseca et al. [2005],
Huang et al. [2003], and Jones et al. [2006] mined query pairs which were adjacent to
each other or co-occurring in the same sessions, and used those query pairs to derive
candidates for query expansion, suggestion, or substitution. To some extent, those
studies are initiatives towards context-aware search.

Modeling query contexts by mining search sessions is a fundamental and challenging
problem. Although some progress has been made by the previous studies, the state-
of-the-art methods largely consider correlations within query pairs. Such a method
cannot capture well the contexts indicated in the preceding example, which are carried
by a series of queries and clicks. Moreover, each of the previous methods builds a model
only for a specific search application. To achieve general context-aware search, we need
a general model which can be used simultaneously for multiple applications, such as
document reranking, query suggestion, and URL recommendation.

In this article, we propose modeling query contexts by a variable length hidden
Markov model (vlHMM) for context-aware search. Using vlHMM, we can model each
search intention as a state and consider the query and clicked URLs as observations
generated by the state. Then, the whole search process can be modeled as a sequence of

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:3

Fig. 1. Graphical representation of vlHMM.

transitions between states, as illustrated in Figure 1. Simply speaking, a search state
contains different queries and URLs for the same search intention. It is possible that
a state transits to itself.

In Figure 1, let qt be the current query submitted by a user and ut,i (1 ≤ i ≤ Ni)
be the clicked URLs in the search result pages of qt. The vlHMM infers conditional
probability P(st|qt, O1···t−1), where st is the current search intent and O1···t−1 is the
context of qt, which is captured by the past queries q1 . . . qt−1, as well as the clicks
u1,∗, . . . ut−1,∗ for those queries. Based on the inferred search intent st, the vlHMM can
rerank the search results according to the likelihood they would be clicked by users
under the intent st. Moreover, the vlHMM can even predict the user’s next search intent
st+1 by P(st+1|qt, O1···t−1) and generate query suggestions and URL recommendations
accordingly.

The probability distributions of st and st+1 are inferred from not only the current
query but also the whole context observed so far. As shown in the preceding example,
given the current query “webster” alone, the probability of searching for the home-
page of “Webster dictionary” is likely to be higher than that of searching for “Webster
Bank”. However, given the context that the users have searched “citi bank” before,
the probability of searching for “Webster Bank” may increase, while the probability of
searching for “Webster dictionary” may decrease. Consequently, the vlHMM can boost
the “Webster bank” page and provide suggestions about online banking.

Learning hidden Markov models (HMM) and its variants have been well studied in
many applications. However, applying HMM in context-aware search is far from trivial.
Due to the huge amounts of search logs, it is costly to apply the existing algorithms. In
commercial search engines, search logs may contain hundreds of millions of training ex-
amples. For instance, in the raw dataset of our experiments, there are 1.2 billion search
sessions. Moreover, search logs may contain millions of unique queries and URLs, for
example, 12.8 million unique queries and 48.4 million unique URLs in our experimen-
tal data, which make the number of model parameters extremely large. To tackle the
challenge, we propose methods for grouping queries and URLs into states and initialize
model parameters. In our experiments, the number of the states is 7,242,693 and the
size of parameter space can be 1034. We point out that most parameters in the space do
not need to be calculated based on the observation that (1) many queries and URLs are
not related and should not be emitted from the same state, and (2) the state transition
matrix is sparse since many states do not co-occur in the training sessions. There-
fore, the size of actual parameters can be reduced to 108. Then we adapt a distributed
training process to learn a very large vlHMM model under the map-reduce mode. We
further develop a series of techniques for improving the efficiency and scalability of the
training process, including a method for identifying deterministic sessions, a method
for detecting deterministic parameters, and a heuristic approach for data partition.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:4 Z. Liao et al.

Another challenge for the vlHMM model is that users of a commercial search engine
raise novel queries every day. For novel queries not observed in the training data, it
is usually hard to estimate the probabilities they are generated by the hidden states.
Therefore, it is hard to apply the trained model to those novel queries. To handle this
challenge, we construct two types of feature vectors for each state in the vlHMM model.
A machine learning approach is adapted to map novel queries to existing states.

After addressing the preceding challenges in training vlHMM and handling novel
queries, vlHMM can be used online to support context-aware search in various appli-
cations, such as document reranking, query suggestion, and URL recommendation.

We make the following contributions in this article. First, we propose a novel model
for supporting context-aware search. To the best of our knowledge, this is a first attempt
to use the variable length hidden Markov model towards comprehensive modeling
of context-aware search in the applications of query and document recommendation.
Second, we develop efficient algorithms and strategies for learning a very large vlHMM
from huge log data. Third, we develop effective feature vectors to handle novel queries.
Finally, we test our approach on a real dataset of 1.9 billion queries, 2.9 billion clicks,
and 1.2 billion search sessions before filtering. We evaluate the efficiency and scalability
of our training algorithms and examine the effectiveness of the trained vlHMM on three
search applications: document reranking, query suggestion, and URL recommendation.
The experiment results validate the effectiveness of vlHMM in capturing contexts in
the applications of document reranking, URL recommendation, and query suggestion.

The rest of the article is organized as follows. We discuss the related work in
Section 2. We then introduce how to model search sessions through the vlHMM model
in Section 3. The training method of a very large vlHMM and the applications in
context-aware search are presented in Sections 4 and 5, respectively. In Section 6, we
report the experimental results. Finally, we conclude this article and point out some
future research directions in Section 7.

2. RELATED WORK

We summarize related works into following categories: (1) modeling user behaviors
in search sessions; (2) query suggestion using click-through or session logs; (3) user
interests and satisfaction prediction using session logs; (4) HMM and related models.

2.1. Modeling User Search Behaviors

Joachims et al. [2005] conducted studies on users’ browse and click behavior and
learned pairwise user preference on URLs from click-through data. Radlinski and
Joachims [2005] extended the study to query chains where each query chain consists of
a pair of adjacent queries in a session. The learned user preference was then used in the
training of search result rankers [Joachims 2002]. Other than learning pairwise prefer-
ence, several studies focused on modeling users’ sequential clicks in query impressions
[Craswell et al. 2008; Chapelle and Zhang 2009; Dupret and Piwowarski 2008]. For ex-
ample, Craswell et al. [2008] proposed the Cascade Model to describe user clicks. Dupret
and Piwowarski [2008] proposed the User Browsing Model, and Guo et al. [2009] pro-
posed the Dependent Click Model. With the trained click models, the search results
can be ranked according to their estimated relevance to the query. While the previous
studies are effective for deriving user preference from users’ click and browse behavior,
most of them focused on user behavior with respect to individual queries. Although
the study on query chains by Radlinski et al. [2005] involved pairs of adjacent queries,
they did not systematically model the query context. Shen et al. [2005] proposed a
language-model-based approach for context-sensitive retrieval using historical queries
and clicked documents. Later, Xiang et al. [2010] studied different types of context
information and developed four context-aware ranking principles. These studies [Shen

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:5

et al. 2005; Xiang et al. 2010] leveraged document content beyond the queries during
the modeling of context. While these previous works focused on the single task of Web
results ranking, our vlHMM model provides a unified framework for three tasks, that
is, Web results ranking, URL recommendation and query suggestion.

Considering the multitasking behaviors in sessions, Jones and Klinkler [2008] pro-
posed classifying query pairs into the same task via features based on time, word, Web
search results, etc. Their approach achieved more than 90% accuracy in task bound-
ary detection and same task identification. Lucchese et al. [2011] proposed identifying
task-based sessions by combining content (query word, edit distance) and semantic
(Wikipedia) features. Donato et al. [2010] proposed identifying those complex tasks
as research missions which need users to explore multiple pages. Kotov et al. [2005]
proposed modeling and analyzing cross-session search tasks, and they applied a classi-
fication approach to predict the re-visiting likelihood of different tasks. Liao et al. [2012]
validated the effectiveness of task trails over sessions.

2.2. Query Suggestions

The methods using log data for query suggestion generally can be divided into two cat-
egories, namely, document-click-based approaches and session-based approaches. The
document-click-based approaches focus on mining similar queries from a click-through
bipartite graph constructed from search logs. The basic assumption is that two queries
are similar to each other if they share a large number of clicked URLs. For example,
Mei et al. [2008] performed a random walk starting from a given query q on the click-
through bipartite graph to find queries similar to q. Other methods applied various
clustering algorithms to the click-through bipartite graph. After the clustering pro-
cess, the queries within the same cluster are used as suggestions for each other. For
example, Beeferman and Berger [2000] applied a hierarchical agglomerative method
to obtain similar queries in an iterative way. Wen et al. [2001] combined query content
information and click-through information and applied a density-based method, DB-
SCAN [Ester et al. 1996], to cluster queries. Baeza-Yates et al. [2004] used the k-means
to derive similar clusters. These approaches are effective for grouping similar queries
but may have high computational costs and may not scale up to large data.

In the session-based approaches, query pairs that are often adjacent or co-occurring
in the same sessions are mined as candidates for query suggestions. For example,
Huang et al. [2003] mined co-occurring query pairs from session data and ranked
the candidates based on their frequencies of co-occurrence with the user input queries.
Jensen et al. [2006] considered not only the co-occurrence frequencies of the candidates,
but also their mutual information with the user input queries. Boldi et al. [2008] built a
query-flow graph where each node represents a distinct query and a directed edge from
query qi to query qj represents that at least one user submitted query qj immediately
after submitting qi in the same session. An edge (qi, qj) is also associated with a weight
to indicate how likely a user moves from qi to qj . To generate query suggestions, the edge
weights were estimated by the frequencies of observed transitions in search logs, and
a straightforward method is to return the queries qj which have the largest weights of
edges (qi, qj). Alternative methods proposed [Boldi et al. 2008] conduct random walks
starting from either the given query qi or the last k queries visited before qi in the
same session. Several studies extended the work in Boldi et al. [2008] along various
directions. For example, Boldi et al. [2009] suggested labeling the edges in a query-flow
graph into four categories, namely, generalization, specialization, error correction, and
parallel move, and only using the edges labeled as specialization for query suggestion.
Anagnostopoulos et al. [2010] argued that providing query suggestions to users may
change user behavior. They thus modeled query suggestions as shortcut links on a
query-flow graph and considered the resulted graph as a perturbed version of the

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:6 Z. Liao et al.

original one. Then the problem of query suggestion was formalized as maximizing the
utility function of the paths on the perturbed query-flow graph. Sadikov et al. [2010]
extended the query-flow graph by introducing the clicked documents for each query.
The queries qj following a given query qi are clustered together if they share many
clicked documents.

Unlike these preceding session-based methods which only focus on query pairs, we
model a variable-length context of the current query. Although Boldi et al. [2008] and
Huang et al. [2003] used the adjacent queries to select candidates for query suggestions,
they did not model the sequential relationship between the queries of a session in a
systematic way. Those studies could be regarded as initiatives to model partial contexts
of queries using simple mechanisms.

2.3. User Interests and Satisfaction Prediction

User interests can be predicted using similar behavior of other users or context infor-
mation. White et al. [2007] proposed mining frequently visited websites from browse
logs and recommending to a user the URLs frequently visited by other users with
similar information needs. White et al. [2010] assigned the topics from the taxonomy
created by the Open Directory Project (http://www.dmoz.org/) to three types of context.
The first type considered the preceding queries only, while the second and third types
added clicked and browsed documents by the user. The authors confirmed that user
interests are largely consistent within a session, and thus context information has good
potential to predict the users’ short-term interests. White et al. [2009] explored various
sources of contexts in browsing logs and evaluated their effectiveness for the prediction
of user interests. For example, besides the preceding pages browsed within the current
session, the authors also considered the pages browsed in a long history, the pages
browsed by other users with the same interests, and so on. They found a combination
of multiple sources performed better than a single source. Mei et al. [2009] proposed
using query sequences in sessions for four types of tasks, including sequence classifica-
tion, sequence labeling, sequence prediction, and sequence similarity. They found that
many tasks, such as segmenting queries in sessions according to use interests, could
benefit from the use of context information.

User behaviors in session trails can also be used to determine user satisfaction. Fox
et al. [2005] studied relationships between implicit feedback signals and explicit user
satisfaction ratings. They collected sessions with labeled information from 146 partic-
ipants by IE add-on. According to gene analysis on patterns of user behaviors, they
found that dwell time on search result pages is a good indicator for user satisfaction.
Hassan et al. [2010] further formulated user search processes by Markov models and
learned successful and unsuccessful user search behavior models.

2.4. Hidden Markov Model

HMMs have been widely used in various domains, such as speech recognition [Rabiner
1989] and bioinformatics [Durbin et al. 1999]. Wang et al. [2006] developed the notion of
vlHMM and applied a vlHMM to mine four kinds of interesting patterns from 3D motion
capture data. We use a vlHMM to model query contexts in this article. Our approach is
critically different from that of Wang et al. [2006] because our vlHMM automatically
adapts to users’ search sessions instead of learning an optimized set of contexts. The
training of HMMs has also been well studied in the literature. The classical learning
algorithm is the Baum-Welch algorithm [Baum et al. 1970], which is essentially an
EM algorithm [Dempster et al. 1977]. However, the existing methods cannot be scaled
up to huge log data because of their high computational complexity. Recently, parallel
and distributed training of very large machine learning models has attracted much
interest. For example, Chu et al. [2006] applied the map-reduce programming model

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:7

[Dean and Ghemawat 2004] to a variety of learning algorithms. However, how to train
HMMs from huge logs remains a challenging open problem. This article introduces a
series of techniques for improving the scalability and efficiency of the training process
of vlHMM. First, to handle very large-scale search log data, we develop a series of
techniques and substantially improve the scalability and the efficiency of the training
process. Second, we present new techniques for handling novel queries that are not
contained in the training data. We also improve the parameter initialization method
and report the empirical evaluation results on a much larger real dataset.

3. VLHMM MODEL

In this section, we describe the variable length hidden Markov model for modeling user
search intents in a session. We consider search intent as atomic user information need
which can be satisfied by one or several webpages. Here atomic user information need
represents the low level of user information need. For instances, the search intent may
be finding the homepage of an organization, finding the lyrics of a song, or finding the
entry of E-mail login, but not as a high level as planning for a trip which may contain
booking tickets, choosing a hotel, and renting a car. We assume that queries and URLs
are conditionally independent given an intent. This is a natural assumption in search.
For example, given that the intent is to find the homepage of “Microsoft Research
Asia”, the conditional probabilities of raising the queries of “Microsoft Research Asia”,
“MSRA”, and “MS Research Beijing” should be the same with and without considering
the URL. The converse is true as well. Given that the intent is to find the homepage,
the conditional probabilities of clicking the URL of ‘‘www.msra.cn’’ should be the same
with and without considering the queries.

We choose a hidden Markov model rather than a Markov chain to model query
intents, since search intents are not directly observable. If we model individual queries
and URLs directly as states in a Markov chain, we have to use a large number of
states and thus the complexity of the model is high, and we also lose the semantic
relationship among the queries and the clicked URLs under the same search intent.
Therefore, to achieve better modeling, we assume that queries and clicks are generated
by some hidden states where each hidden state corresponds to one search intent.

There are different types of HMMs. The first order HMM (1-HMM) has been widely
used in various applications, such as speech recognition [Rabiner 1989] and bioinfor-
matics [Durbin et al. 1999]. For context-aware search, we choose higher-order HMMs.
This is because 1-HMM assumes that the probability distribution of the state st is
independent of the previous states s1, . . . , st−2, given the immediately previous state
st−1. In search processes, this assumption usually does not hold. For example, given
that a user searched for Hotmail at time point t − 1, the probability PWebster that the
user searches for “Webster Dictionary” at the current time point t may still depend
on some of the previous states, such as st−2, st−3, etc. For instance, the probability of
searching “Webster Dictionary” may be smaller if the user searched for “citi bank” at
a time point before t − 1. Therefore we consider employing higher-order HMMs rather
than 1-HMM, since vlHMM is a natural and flexible combination of all-order HMMs.

Given a set of hidden states {s1, . . . , sNs
}, a set of queries {q1, . . . , qNq

}, a set of URLs
{u1, . . . , uNu

}, and the maximal length Tmax of state sequences, a variable length hidden
Markov model is defined as follows.

—The transition probability distribution � = {P(si|Sj)}, where Sj is a state sequence
with length T j < Tmax, P(si|Sj) is the probability that a user transits to state si

given the previous states sj,1, sj,2, . . . , sj,T j
, and sj,t(1 ≤ t ≤ T j) is the tth state in

sequence Sj .

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:8 Z. Liao et al.

—The initial state distribution � = {P(si)}, where P(si) is the probability that state si

occurs as the first element of a state sequence.
—The emission probability distribution for each state sequence � = {P(q,U |Sj)},

where q is a query, U is a set of URLs, Sj is a state sequence of length T j ≤ Tmax, and
P(q,U |Sj) is the joint probability that a user raises the query q and clicks the URLs
U from state sj,T j

after the user’s (T j − 1) steps of transitions from state sj,1 to sj,T j
.

We assume that query q and URLs U are conditionally independent given the state
sj,T j

, that is, P(q,U |sj,T j
) ≡ P(q|sj,T j

)
∏

u∈U P(u|sj,T j
). Under these assumptions, the

emission probability distribution � becomes (�q,�u) ≡ ({P(q|si)}, {P(u|si)}). First, as
described before in Section 3, when the search intent is given, it can be assumed that the
queries and URLs are conditionally independent. Second, the assumption can reduce
the computation cost. Since the number of parameters in the distribution P(q,U |sj,T j

)
is larger than that of the distributions P(q|sj,T j

) and P(u|sj,T j
).

Our task of training a vlHMM model is to learn the parameters � = (�,�,�q,�u)
from search logs. A search log is basically a sequence of query events and click events.
As mentioned previously, we separate consecutive query events into different sessions
based on widely used 30-minute time cut-off threshold. Note that the click events for a
query are always assigned to the same session with the corresponding query event.

Since the parameters � contain un-observed hidden states, we choose the expecta-
tion maximization algorithm (EM) for parameter inference. The parameter inference
process is described as follows.

LetX = {O1, . . . , ON} be the set of training sessions, where a session On (1 ≤ n ≤ N) of
length Tn is a sequence of pairs 〈(qn,1,Un,1) . . . (qn,Tn

,Un,Tn
)〉, and qn,t and Un,t (1 ≤ t ≤ Tn)

are the tth query and the set of clicked URLs among the query results, respectively.
Moreover, we use un,t,k to denote the kth URL (1 ≤ k ≤ |Un,t|) in Un,t. LetY = {S1 . . . , SM}
be the set of all possible state sequences, sm,t be the tth state in Sm ∈ Y (1 ≤ m ≤ M),
and St−1

m be the subsequence sm,1, . . . , sm,t−1 of Sm.
Basically, we want to find � to maximize the likelihood function L as follows.

L = ln P(X |�) =
∑

n

ln P(On|�) =
∑

n

ln
∑

m

P(On, Sm|�). (1)

Then we construct an auxiliary function Q(�r+1,�r) to iteratively update � for
maximizing L [Bilmes 1998].

Q(�r+1
,�

r) = E[ln P(X ,Y|�r+1)|X ,�
r] =

∑

n,m

P(Sm|On,�
r) ln P(On, Sm|�r+1), (2)

where �r is the set of parameter values obtained in the last round of iteration.
The E-step estimates the expectation of hidden states based on obtained �r as follows.

P(Sm|On,�
r) =

P(On, Sm|�r)

P(On|�r)
, (3)

where P(On|�
r) =

∑
Sm

P(Sm, On|�
r) and P(On, Sm|�r) = P(On|Sm,�r) · P(Sm|�r) =

(
∏Tn

t=1 Pr(qn,t|sm,t)
∏

k Pr(un,t,k|sm,t)) · (Pr(sm,1)
∏Tn

t=2 Pr(sm,t|S
t−1
m)).

The M-step maximizes Q(�r+1,�r) by the following formulas.

Pr+1(si) =

∑
n,m P

(
Sm|On,�

r
)
δ(sm,1 = si)∑

n,m P
(
Sm|On,�

r
) . (4)

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:9

Table II. An Example of a Hidden State and the Initial
Emission Probabilities

Queries P0(q|s)

city of bothell 0.52

bothell wa 0.20

bothell washington 0.14

city of bothell washington 0.07

city bothell washington 0.01

URLs P0(u|s)

ci.bothell.wa.us 0.21

bothellwashington.com 0.17

ci.bothell.wa.us/dept/pd/pdindex.html 0.15

explorebothell.com 0.14

nwmaps.net/bothell 0.05

ihsadvantage.com/h/hotels/bothell/wa/us 0.02

dianasflowers.com 0.01

Pr+1(q|si) =

∑
n,m P

(
Sm|On,�

r
) ∑

t δ(sm,t = si ∧ q = qn,t)∑
n,m P

(
Sm|On,�

r
)∑

t δ(sm,t = si)
. (5)

Pr+1(u|si) =

∑
n,m P

(
Sm|On,�

r
) ∑

t δ(sm,t = si ∧ u ∈ Un,t)∑
n,m P

(
Sm|On,�

r
) ∑

t δ(sm,t = si)
. (6)

Pr+1(si|Sj) =

∑
n,m P

(
Sm|On,�

r
)
δ
(
∃t St−1

m = Sj ∧ sm,t = si

)
∑

n,m P
(
Sm|On,�

r
)
δ
(
∃t St−1

m = Sj

) . (7)

In these equations, δ(p) is a boolean function which equals to one if the predicate p is
true and zero otherwise.

4. TRAINING A VERY LARGE VLHMM

Although the EM algorithm has been widely used to train HMMs, there are still several
challenges to applying it on huge search log data.

First, the EM algorithm needs a user-specified number of hidden states. However,
in our problem, the hidden states correspond to user search intents whose number is
unknown. Based on the explanation of search intent in Section 3, it is natural to group
similar queries which have the same clicked webpages as search intent. To address this
challenge, we apply the mining techniques developed in Liao et al. [2011] as a prior
process to the parameter learning process. To be specific, we construct a click-through
bipartite graph and derive a collection of query clusters [Liao et al. 2011]. For each
cluster Q of queries, we find all URLs U such that each URL u ∈ U is connected to at
least one query q ∈ Q in the click-through bipartite graph. A unit of query and URL
cluster (Q,U) will be extended to correspond to a hidden state. The total number of
hidden states is then determined by the total number of query clusters. For example,
Table II shows a state which is mined from a real dataset. In our experiments, there
are more than 7 million states.

Second, a search log often contains a huge amount of training sessions. For example,
in our experiments, the training data set contains 1.2 billion sessions. Even after
pruning, the distinct number of sessions is more than 100 million. It is impractical
to learn a vlHMM from such a huge training dataset using a single machine. To
address this challenge, we deploy the learning task on a distributed system under the

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:10 Z. Liao et al.

map-reduce programming model [Dean and Ghemawat 2004]. We will describe the
map stage and the reduce stage in Section 4.1.

Third, it is well known that the EM algorithm converges at a local maximum of the
data likelihood [Dempster et al. 1977]. Therefore, it is critical to set appropriate initial
values for model parameters. Moreover, since the log data usually contains millions of
unique queries and URLs, the space of parameters is extremely large. For example, the
real dataset used in our experiments leads to more than 1034 parameters. To handle
those challenges, we develop a special strategy for model parameter initialization based
on the clusters mined from the click-through bipartite graph. As shown in Table II,
the queries and URLs with nonzero emission probabilities from the same state are
semantically related. Moreover, we will show in Section 4.2 that our initialization
strategy can greatly reduce the number of parameters to be reestimated. Theoretically,
the number has an upper bound. Based on our proposed initialization method, the
magnitude of parameters can be reduced to 108.

Fourth, although the map-reduce programming model and our initialization strategy
make it feasible to train a very large vlHMM, the huge volume of the session data and
the extremely large number of model parameters still present great challenges for the
performance of the training process. To further improve the efficiency and scalability
of our training process, we develop several techniques in Section 4.3, including the
methods to identify deterministic sessions and deterministic parameters, as well as a
heuristic for data partition.

Finally, a search log only covers the historical queries and clicks. In the online
stage, users raise novel queries every day. Therefore, the vlHMM model learned offline
from search log data cannot handle the novel queries received online. To address this
problem, we construct two types of feature vector for each state in Section 4.4. Those
feature vectors will be used to capture users’ novel queries.

ALGORITHM 1: The EM Training Process under the Map-Reduce Programming Model

Input: training data X ; initial model parameters �0

1: partition X into subsets {Xk};
2: while not converged do
3: call map and reduce

Function: map(a subset of training data Xk, model parameters �r)

1: load model parameters �r−1;
2: for each session On ∈ Xk do
3: for each possible state sequence Sm do
4: let pn,m = P(Sm|On,�

r) by Equation 3;
5: emit key/value pairs as in Table III;

Function: reduce(intermediate key k, value list valList)
// each element in valList is a tuple (val1, val2)

1: let sum1 = 0, sum2=0;
2: for each element (val1, val2) in valList do
3: sum1+= val1; sum2 += val2;
4: output(k, sum1/sum2);

4.1. Distributed Learning of Parameters

Map-reduce is a programming model for distributed processing of large datasets
[Dean and Ghemawat 2004]. In this article, the map and reduce steps correspond to
“expectation” (E-step) and “maximization” (M-step), respectively. In the map stage,
each machine (called a process node) receives a subset of data as input and produces
a set of intermediate key/value pairs. In the reduce stage, each process node merges

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:11

Table III. Key/Value Pairs Emitted at the Map Stage

Key Value

si V aluen,1 =
∑

m Pn,mδ(sm,1 = si)

V aluen,2 =
∑

m Pn,m

(si, q j) V aluen,1 =
∑

m Pn,m

∑
t δ(sm,t = si ∧ q j = qn,t)

V aluen,2 =
∑

m Pn,m

∑
t δ(sm,t = si)

(si, uj) V aluen,1 =
∑

m Pn,m

∑
t δ(sm,t = si ∧ uj ∈ Un,t)

V aluen,2 =
∑

m Pn,m

∑
t δ(sm,t = si)

(si, S j) V aluen,1 =
∑

m Pn,mδ(∃t St−1
m = S j ∧ sm,t = si)

V aluen,2 =
∑

m Pn,mδ(∃t St−1
m = S j)

all intermediate values associated with the same intermediate keys and outputs the
final computation results.

In our training process (see Algorithm 1), we first partition the training data into
subsets and distribute each subset to a process node. In the map stage, each process
node scans the assigned subset of training data once. For each training session On, the
process node infers the posterior probability Pn,m = P(Sm|On,�

r) by Equation (3) for
each possible state sequence Sm and emits the key/value pairs, as shown in Table III.

In the reduce stage, each process node collects all values for an intermediate key. For
example, suppose a key (si, qj) is assigned to process node pnk. Then pnk receives a list

of values {(V aluen,1, V aluen,2)} (1 ≤ n ≤ N) and derives P(qj |si) by
∑

n V aluen,1∑
n V aluen,2

. The other

parameters, P(q|si), P(u|si), and P(si|Sj) are computed in a similar way.

4.2. Assigning Initial Values

In the vlHMM model, we have four sets of parameters, the initial state probabili-
ties {P(si)}, the query emission probabilities {P(q|si)}, the URL emission probabili-
ties {P(u|si)}, and the transition probabilities {P(si|Sj)}. Let the number of states be
Ns, the number of unique queries be Nq, the number of unique URLs be Nu, and
the maximal length of a training session be Tmax. We can derive that |{P(si)}| = Ns,

|{P(q|si)}| = Ns · Nq, |{P(u|si)}| = Ns · Nu, |{P(si|Sj)}| =
∑Tmax

t=2 (Ns)
t, and the total number

of parameters is N = Ns · (Nq + Nu +
∑Tmax

t=2 (Ns)
t−1). How to assign the initial values

for those model parameters presents great challenges. First, since the EM algorithm
converges at a local maximum, the initial values greatly influence the training results.
Therefore, the first challenge is how to assign appropriate initial parameter values.
Second, since a search log may contain millions of unique queries and URLs, and there
may be millions of states derived from the click graph, the number of parameters can be
extremely large. Thus, the second challenge is how to reduce the number of parameters
that need to be reestimated in the EM iterations.

Our idea is to take the advantage on the semantic correlation among queries,
URLs, and search intents. For example, a user is unlikely to raise the query “Harry
Potter” to search for the official website of the Beijing Olympic 2008. Similarly,
a user who raises query “Beijing Olympic 2008” is unlikely to click on the URL
harrypotter.warnerbros.com. This observation suggests that although we have a
huge space of possible parameters, the optimal solution is sparse—the values of most
emission and transition probabilities are zero.

To reflect the inherent relationship among queries, URLs, and search intents, we
can assign the initial parameter values based on the correspondence between a cluster
Ci = (Qi,Ui) and a state si, where Qi is a query cluster derived from a click-through
bipartite graph by the method in Cao et al. [2008], and Ui is the set of URLs such that
each URL u ∈ Ui is connected to at least one query q ∈ Qi in the click-through bipartite

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:12 Z. Liao et al.

Fig. 2. URLs and search intents of query “time”.

Table IV. Initial Query and URL Emission Probability via Random Walks [Cao et al. 2009] and
the New Method

Random Walk Initialization New Initialization

Queries P0(q|s1) P0(q|s2) P0(q|s3) P0(q|s1) P0(q|s2) P0(q|s3)

time 0.3624 0.3163 0.7135 0.1684 0.5612 0.2662

world time 0.4628 0.404 0 0.7199 0.0397 0

US time 0.1264 0.1104 0 0.0165 0.3215 0

Time magazine 0 0.1078 0.2432 0 0.0201 0.5663

URLs P0(u|s1) P0(u|s2) P0(u|s3) P0(u|s1) P0(u|s2) P0(u|s3)

u1 = timea...clock 0.5807 0.5069 0.1778 0.9032 0.0498 0

u2 = time.gov 0.3612 0.3153 0.4215 0.0471 0.9181 0

u3 = time.com 0.058 0.1721 0.3883 0 0.032 0.9044

Note: We omit some queries and URLs with nonzero emission probabilities for conciseness
of presentation.

graph. As illustrated in Table II, the queries Qi and the URLs Ui of a cluster Ci are
semantically correlated and jointly reflect the search intent represented by state si. One
possible method is to assign a nonzero probability to P(q|si) and P(u|si), respectively,
if q ∈ Ci and u ∈ Ci. However, such assignments make the model deterministic since
each query can belong to only one cluster. In practice, many queries are ambiguous and
should belong to multiple clusters.

Consider the example of query “time”, as shown in Figure 2. From the log data, we
can observe that users who issued query “time” clicked on three URLs u1 = http://
timeanddate.com/worldclock, u2 = http://time.gov, and u3 = http://time.com for
10,175, 24,121, and 6,540 times, respectively. We further examine the content of these
three webpages and find the pages are about “world time”, “the U.S. time”, and the
“Time magazine”, respectively. Therefore, “time” is an ambiguous query and ideally
it should be grouped together with not only query “world time” in cluster C1, but
also query “U.S. time” in cluster C2, and further query “time magazine” in cluster C3.
However, the clustering algorithm in Cao et al. [2008] will assign “time” only to cluster
C2, since u2 = http://time.gov receives the largest number of clicks.

To allow an ambiguous query to belong to multiple concepts, one approach is to
conduct random walks on click-through graphs. As shown in our previous study [Cao
et al. 2009], we can limit random walks within two steps. First, we expand each cluster
Ci = (Qi,Ui) into C ′

i = (Q′
i,U ′

i), where Q′
i is a set of queries such that each query q′ ∈ Q′

i
is connected to at least one URL u ∈ Ui in the click-through bipartite graph, and U ′

i is
a set of URLs such that each URL u′ ∈ U ′

i is connected to at least one query q′ ∈ Q′
i.

Then, we assign P0(q|si) =

∑
u′∈U ′

i
Count(q,u′)

∑
q′∈Q′

i

∑
u′∈U ′

i
Count(q′,u′) and P0(u|si) =

∑
q′∈Q′

i
Count(q′,u)

∑
q′∈Q′

i

∑
u′∈U ′

i
Count(q′,u′) ,

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:13

where Count(·, ·) is the number of times that a URL is clicked as an answer to a query
in the search log. Table IV shows the initialization results for the example query
“time” in Figure 2. As we can see, query “time” is assigned to all the related states
with nonzero initial parameters. However, the random walk approach also brings
in noises. For example, state s1 has nontrivial emission probabilities for two URLs:
http://timeanddate.com/worldclock and http://time.gov. Intuitively, those URLs
are about different topics and should not be generated by the same state.

To address these challenges, we revise the method in Cao et al. [2009]. Instead of
expanding both Qi and Ui, our new method only expands the query set Qi but fixes the
URL set Ui. The rationale is that queries are often ambiguous and bearing multiple
intents, while URLs are relatively focused and usually about a single topic. In the
following, we use the example of query “time” in Figure 2 to explain the details of
our new initialization process. For each cluster Ci = (Qi,Ui), we first initialize the

P0(u|si) ∝

∑
q∈Qi

P(u|q)

|Qi |
. This method lets every query in the state vote for the likelihood of

P0(u|si) and avoid the probability being biased by popular queries. Next, we initialize
the query emission probabilities by P0(q|si) ∝

∑
u∈Ui

P(q|u) · P0(u|si), where P(q|u)

estimates the likelihood that u transits to q by Count(q,u)∑
q′∈Qi

Count(q′,u) . The idea is that if all

URLs in state si are more often clicked as answers to query q, then q is more likely
to be generated by the state. Consequently, the new initialization results of “time”
example are also shown in Table IV. As a result, about 5% (658,977 out of 12,769,284)
unique queries have nonzero emission probabilities from multiple states.

The initial emission probabilities are not only semantically meaningful. Moreover,
they have the following nice properties.

LEMMA 4.1. The query emission probability at the rth round of iteration Pr(q|si) = 0,
if the initial value P0(q|si) = 0.

PROOF. We focus on the numerator of Equation (5). For any pair of On and Sm, if On

does not contain query q, the numerator is zero, since
∑

t δ(sm,t = si ∧ qn,t = q) = 0.
Suppose On contains query q. Without loss of generality, suppose q appears in On

only at step t1, that is, qn,t1 = q. If sm,t1 �= si, then the numerator is zero, since
∑

t δ(sm,t =
si ∧ qn,t = q) = δ(sm,t1 = si ∧ qn,t1 = q) = 0. Otherwise, if sm,t1 = si and qn,t1 = q,
then P(On|Sm,�r−1) = Pr−1(q|si) · (

∏
t �=t1

Pr−1(qn,t|sm,t)) · (
∏

t Pr−1(Un,t|sm,t)). Therefore,

if Pr−1(q|si) = 0, then P(On|Sm,�r) = 0, and thus P(Sm|On,�
r) = 0 (Equation (3)).

In summary, for any On and Sm, if Pr−1(q|si) = 0, then P(Sm|On,�
r−1) ·

∑
t δ(sm,t =

si ∧ qn,t = q) = 0, and thus Pr(q|si) = 0. Therefore, Pr(q|si) = 0 if P0(q|si) = 0.

Similarly, we can prove the following lemmas.

LEMMA 4.2. The URL emission probability at the rth round of iteration Pr(u|si) = 0,
if the initial value P0(u|si) = 0.

LEMMA 4.3. The state initial probability at the rth round of iteration Pr(si) = 0, if
the initial value P0(si) = 0.

LEMMA 4.4. The transition probability at the rth round of iteration Pr(si|Sj) = 0, if

the initial value P0(si|Sj) = 0.

Based on these lemmas, for each training session On, we can construct a set of
candidate state sequences Ŵn which are likely to generate On.

Definition 4.5 (Candidate States). Let On be the nth training example, Tn be the
length of On, and On,t = (qn,t,Un,t) be the tth (1 ≤ t ≤ Tn) observation of On, where

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:14 Z. Liao et al.

qn,t and Un,t be the tth query and the tth set of clicked URLs in On, respectively. The
set of candidate states Candn,t for On,t includes all the states s such that (P0(qn,t|s) �=

0) ∧ (∀un,t,k∈Un,t
P0(un,t,k|s) �= 0).

In the following, we extend the definition of candidate states for the tth observation
On,t to the definition of candidate state sequences for the whole session On.

Definition 4.6 (Candidate State Sequences). Let Ot
n be the sequence of the first t

observations of the nth training example On and Tn be the length of On. The set of
candidate state sequences Ŵt

n for Ot
n is the Cartesian product of the candidate state

sets Candn,1, . . . , Candn,t, that is, Ŵt
n = {sn,1 . . . sn,t|sn,i ∈ Candn,i, 1 ≤ i ≤ t ≤ Tn}, where

Candn,i is the set of candidate states for the ith observation of On. In particular, when
t = Tn, ŴTn

n is simply denoted by Ŵn.

LEMMA 4.7. Let On be the nth training example and Ŵn be the set of candidate state

sequences of On. ∀Sm �∈ Ŵn, P(Sm|On,�
(r−1)) = 0.

PROOF. According to the definition of candidate state sequences Ŵn (Definition 4.6),
for any Sm �∈ Ŵn, there must exist t (1 ≤ t ≤ Tn) such that sm,t �∈ Candn,t, where Tn is the
length of On, sm,t is the tth state in Sm, and Candn,t is the set of candidate states for the
tth observation of On. From the definition of candidate states Candn,t (Definition 4.5), if
sm,t �∈ Candn,t, then either P0(qn,t|sm,t) = 0 or ∃un,t,k ∈ Un,t such that P0(un,t,k|sm,t) = 0).
In other words, if sm,t �∈ Candn,t, then P0(qn,t|sm,t)

∏
k P0(un,t,k|sm,t) = 0. Therefore, we

have

∀Sm �∈ Ŵn,

Tn∏

t=1

P0(qn,t|sm,t)
∏

k

P0(un,t,k|sm,t) = 0

⇒∀Sm �∈ Ŵn,

Tn∏

t=1

Pr−1(qn,t|sm,t)
∏

k

Pr−1(un,t,k|sm,t) = 0 (Lemmas 4.1 and 4.2)

⇒∀Sm �∈ Ŵn, P(On, Sm|�r−1) = 0

⇒∀Sm �∈ Ŵn, P(Sm|On,�
r−1) = 0. (Equation (3)

Lemma 4.7 suggests that for each training session On, only the state sequences in Ŵn

are possible to contribute to the update of parameters in Equations (4)–(7).
After constructing candidate state sequences, we assign the values to P0(si) and

P0(si|Sj) as follows. First, we compute the whole bag of candidate state sequences
Ŵ+ = Ŵ1 + · · · + ŴN, where ‘+’ denotes the bag union operation, and N is the total

number of training sessions. We then assign P0(si) = Count(si)
|Ŵ+|

and P0(si|Sj) =
Count(Sj◦si)

Count(Sj)
,

where Count(si), Count(Sj), Count(Sj ◦ si) are the numbers of the sequences in Ŵ+ that
start with state si, subsequence Sj , and the concatenations of Sj and si, respectively.

This initialization limits the number of active parameters (i.e., the nonzero parame-
ters in the EM iterations of the training process) to an upper bound C, as indicated in
the following theorem.

THEOREM 4.8. Given training sessions X = {O1 . . . ON} and the initial values as-
signed to parameters, as described in this section, the number of parameters updated in

one iteration of the training of a vlHMM is at most C = Ns · (1+ Nsq + Nsu)+|Ŵ| · (T −1),

where Ns is the number of states, Nsq and Nsu are the average sizes of {P0(q|si)| P0(q|si) �=

0} and {P0(u|si)| P0(u|si) �= 0} over all states si, respectively, Ŵ is the set of unique state

sequences in Ŵ+, and T is the average length of the state sequences in Ŵ.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:15

PROOF. Let �̃i, �̃i, �̃i
q and �̃i

u be the sets of active initial state probabilities, transition
probabilities, query and URL emission probabilities in the ith iteration, respectively.
Using Lemmas 4.1 and 4.2, we immediately have |�̃i

q| ≤ Ns · Nsq and |�̃i
u| ≤ Ns · Nsu.

Moreover, from the construction of Ŵ, we can see that in any iteration of the training
process, any state sequences Sm �∈ Ŵ cannot contribute to the update of P(si) and
P(si|Sj). Therefore, |�̃i| ≤ |{P0(si)| P0(si) �= 0}| ≤ Ns and |�̃i| ≤ |Ŵ| · (T − 1).

In practice, the upper bound C given by Theorem 4.8 is often much smaller than the

size of the whole parameter space N = Ns · (Nq + Nu +
∑Tmax

t=2 Nt−1
s). For example, in our

experimental data, Nsq = 2.91 ≪ Nq = 1.2 × 107, Nsu = 14.1 ≪ Nu = 4.8 × 107, and

|Ŵ| · (T − 1) = 4.7 × 106 ≪ Ns ·
∑Tmax

t=2 Nt−1
s ∼ |Ns|

5 ∼ 1.99 × 1034, since Ns is 7,242,693
in our experiments.

Our initialization strategy also enables an efficient training process. According to
Equations (4)–(7), the complexity of the training algorithm is O(k · N · |Ŵn|), where
k is the number of iterations, N is the number of training sessions, and Ŵn is the
average number of candidate state sequences for a training session. In practice, Ŵn

is usually small, for example, 1.45 in our experiments. Although N is a very large
number (1.2 billion in our experiments), we can distribute the training sessions on
multiple machines, as discussed in Section 4.1. Our empirical study shows that the
training process converges fast. In our experiments, k is around 10.

4.3. Further Scaling-up Training Process

In the previous sections, we developed a distributed training method under the
map-reduce programming model as well as a special initialization strategy to make it
feasible to train a very large vlHMM. However, the huge amounts of session data and
the extremely large number of model parameters still present great challenges for the
performance of the training process. To further improve the efficiency and scalability
of our training process, we develop several techniques in this section, including (1) a
method for identifying deterministic sessions, (2) a method for detecting deterministic
parameters, and (3) a heuristic for data partition. The experimental results in
Section 6.4 show that those techniques can reduce the training time substantially. For
example, when we used five process nodes and the full training data, the three tech-
niques reduce the overall training time by 65%, 34%, and 18%, respectively. Moreover,
the combination of all three techniques reduces the overall training time by 70%.

4.3.1. Identifying Deterministic Sessions. In the EM training process, the E-step infers the
probability distribution over the state sequences for the training sessions, while the M-
step updates the model parameters. Intuitively, if the probability distribution over the
state sequences for some training session On never changes during the iteration, then
it is not necessary to infer On repeatedly in the E-step during the iteration. Moreover,
the contribution of On to the update of model parameters in the M-step can be fixed.
Based on this idea, we develop the concept of deterministic sessions.

Definition 4.9 (Deterministic Sessions). Let On be the nth training example and Ŵn

be the set of candidate state sequences, as defined in Definition 4.6. On is a deterministic
session if |Ŵn| = 1.

According to Lemma 4.7 and Definition 4.9, for any deterministic session On′ , there
exists only one Sm′ such that P(Sm′ |On′ ,�(i−1)) �= 0. It is easy to show that for each
deterministic session On′ , its contribution to either the denominator or the numerator of
any update formula for model parameters (Equations (4)–(7)) in each round of iteration
is a constant. Without loss of generality, let us consider the numerator of the update

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:16 Z. Liao et al.

Table V. Constant Values for Model Parameter Updates from
Deterministic Sessions X

Key Constant Values from X

si
Constn′,1 =

∑
On′ ∈X

δ(sm′,1 = si)

Constn′,2 = |X |

(si, q j)
Constn′,1 =

∑
On′ ∈X

∑
t δ(sm′,t = si ∧ q j = qn′,t)

Constn′,2 =
∑

On′ ∈X

∑
t δ(sm′,t = si)

(si, uj)
Constn′,1 =

∑
On′ ∈X

∑
t δ(sm′,t = si ∧ uj ∈ Un′,t)

Constn′,2 =
∑

On′ ∈X

∑
t δ(sm′,t = si)

(si, S j)
Constn′,1 =

∑
On′ ∈X

δ(∃t St−1
m′ = S j ∧ sm′,t = si)

Constn′,2 =
∑

On′ ∈X
δ(∃t St−1

m′ = S j)

Note: For each session On′ ∈ X , Sm′ is the only candidate
state sequence.

formula for P(si) (Equation (4)) as an example. The contribution of a deterministic
session On′ to the numerator of Equation (4) is

∑
m P(Sm|On′ ,�(i−1))δ(sm,1 = si). Since

On′ is a deterministic session, let Sm′ be the only candidate state sequence corresponding
to On′ . Then, for any state sequence Sm, we have P(Sm|On′ ,�(i−1)) = 0 if m �= m′, and
P(Sm|On′ ,�(i−1)) = 1, otherwise. Therefore, the contribution of On′ to the numerator
of Equation (4) can be reduced to δ(sm′,1 = si). In other words, if the first state sm′,1

in Sm′ is si, the contribution is one; otherwise, it is zero. Since Sm′ is determined
after the initialization process (Section 4.2), the contribution of On′ to the numerator
of Equation (4) is a constant. Similarly, we can prove the contribution of On′ to the
denominator or numerator of any update formula from Equation (4) to Equation (7) is
a constant.

From this discussion, we can divide the training examples X into two subsets, where
X ⊆ X contains all the deterministic sessions, while X̃ = X \X contains the remaining
sessions. Then those deterministic sessions only need to be inferred once in the first
round of iterations. In the following rounds of iteration, we can simply reuse the values
in Table V without inferring with the deterministic sessions. For example, the value

of P(si) can be estimated by
Constn′ ,1+V aluen,1

Constn′ ,2+V aluen,2
, where Valuen,1 and Valuen,2 are calculated

according to Table III only on the sessions in X̃ .
In practice, since the percentage of ambiguous queries is low, most observations in

sessions map to unique states. Consequently, deterministic sessions occupy a large
percentage in the training data, for example, about 80% in our experimental data.
Such a large percentage of deterministic sessions can greatly reduce the runtime for
each iteration of the EM algorithm. In our empirical study, the runtime for the E-step
and M-step on the full data reduced by 75% and 35%, respectively, when five process
nodes were used (see experiments in Section 6.4). Although we need a pre-processing
step to identify deterministic sessions and calculate the values in Table V, the cost
for that step is very small compared to the reduction of runtime for the E-step and
M-step. Consequently, the overall training time on the full data, including that for the
pre-processing step, E-step, and M-step, reduces by 70% when five process nodes were
used.

4.3.2. Detecting Deterministic Parameters. In the preceding discussion, we focused on
the training sessions whose contributions to model parameters remain fixed during
the EM iteration process. We further consider whether there are model parameters
whose values never change after initialization. Clearly, for those parameters, we can

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:17

save the computation cost to update them. As a special case, we discussed in Section 4.2
that a model parameter will remain zero if its initial value is zero. Here we explore
more general cases.

Definition 4.10 (Sibling states). A state sj is a sibling state of state si if ∃n, t such
that the set of candidate states Candn,t (see Definition 4.5) for the tth observation of the
training session On contain both si and sj . In particular, sj is a sibling state at position
1 of si if ∃n such that the set of candidate states Candn,1 for the first observation of On

contains both si and sj .

LEMMA 4.11. The initial state probability P(si) is a constant value if state si does not
have any sibling state at position 1.

PROOF. To prove P(si) is a constant, we actually need to prove Equation (4) is a
constant. Since the denominator of Equation (4) is a constant, we only focus on the
numerator. For any session On, P(Sm′ |On,�

r−1) = 0 holds for any Sm′ �∈ Ŵn (Lemma 4.7),
where Ŵn is the set of candidate state sequences for On. Therefore,

∑
m P(Sm|On,�

(r−1)) ·

δ(sm,1 = si) is equivalent to
∑

Sm∈Ŵn
P(Sm|On,�

(r−1)) · δ(sm,1 = si).
The candidate state sequences Sm in Ŵn have two cases. In the first case, si �∈

Candn,1. In this case, δ(sm,1 = si) = 0 holds for all Sm in Ŵn, and thus
∑

Sm∈Ŵn

P(Sm|On,�
(r−1))δ(sm,1 = si) = 0.

In the second case, si ∈ Candn,1. Since si does not have any sibling state at po-
sition 1, according to Definition 4.10, we have Candn,1 = {si}, and δ(sm,1 = si) = 1
holds for all Sm ∈ Ŵn. In this case, we can derive

∑
Sm∈Ŵn

P(Sm|On,�
r−1) ·

δ(sm,1 = si) =
∑

Sm∈Ŵn
P(Sm|On,�

r−1) =
∑

m P(Sm|On,�
r−1) = 1.

In summary of the preceding two cases, if si does not have any sibling state at
position 1, then for any session On,

∑
m P(Sm|On,�

r−1) · δ(sm,1 = si) is either zero when
si �∈ Candn,1 or one otherwise. Since Candn,1 for any session On is determined after the
initialization process, if si does not have any sibling state at position 1, the numerator
of Equation (4) is a constant.

Similarly, we can prove both the numerator and the denominator of either
Equation (5) or Equation (6) are both constants and derive the following lemma.

LEMMA 4.12. The query and URL emission probabilities P(q|si) and P(u|si) are con-
stant values if state si does not have any sibling state.

Definition 4.13 (Sibling State Sequences). Let Sj be a state sequence with length
t. A state sequence Sj is a sibling state sequence of Si if (1) the length of Sj is t, and
(2) ∃n, t such that the set of candidate state sequences Ŵt

n (see Definition 4.6) for the
first t observations of the training session On contains both Si and Sj .

The following lemma can be proved similar to Lemma 4.11.

LEMMA 4.14. The transition probability P(si|Sj) is a constant value if the state se-
quence Sj ◦ si does not have any sibling state sequence.

In our experimental data, the percentages of deterministic parameters among
nonzero parameters are 91%, 65%, 57%, and 10% for initial state probabilities, query
emission probabilities, URL emission probabilities, and state transition probabilities,
respectively. As mentioned previously, the reason for the large percentages of deter-
ministic parameters is that most queries are not ambiguous and most observations in
sessions only map to unique states. Since the deterministic parameters do not need to
be updated iteratively in the EM process, in our empirical study, the runtime for the

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:18 Z. Liao et al.

Table VI. Example Where Two Sessions Share Lots of Parameters

Observations States Parameters

O1 (q1, u1) ⇒ (q2, u2) s1 ⇒ s2 p(q1|s1), p(u1|s1), p(q2|s2), p(u2|s2), p(s1), p(s2|s1)

O2 (q1, u1) ⇒ (q3, u2) s1 ⇒ s2 p(q1|s1), p(u1|s1), p(q3|s2), p(u2|s2), p(s1), p(s2|s1)

ALGORITHM 2: A Heuristic Data Partition Method

Input: Training sessions X , the limit of main memory Mmax;
Output: A subset of training sessions Xk for each process node k;
Initialize: State list Lk = ∅, Size of used memory Mk = 0 for each process node pnk;

1: for each training session On ∈ X do
2: for each process node k do
3: derive the set of states Sn from the candidate state sequences Ŵn by Definition 4.6;
4: let S+

k = Sn\Lk;
5: compute the size M+

k of the parameters associated with the sates in S+
k ;

6: if ∃k such that Mk + M+
k < Mmax then

7: assign On to the process node pnk′ with the minimum M+
k ;

8: Mk′ + = M+
k ;

9: else
10: // starts a new round of partition
11: for each process node pnk do let Lk = ∅ and Mk = 0;
12: randomly assign On to a process node pnk′ ;
13: compute the size M+ of the parameters associated with the sates in Sn;
14: let Mk′ + = M+;

E-step and M-step on the full data was reduced by 40% and 20%, respectively, with five
process nodes used. Although we need an extra pre-processing step to detect determin-
istic parameters, the cost for that step is small compared to the saving in the E-step
and M-step. For example, in our empirical study, the overall runtime, including that
for the pre-processing step, the E-step, and the M-step, for the full training dataset was
reduced by 34% when five process nodes were used (see the experiment in Section 6.4).

4.3.3. A Heuristic for Data Partitioning. During the training process of the vlHMM model,
each process node carries out the E-step on a subset of training data and infers the
probability distribution for the training sessions. Suppose a process node pnk is as-
signed with a subset of training sessions Xk. Based on the preceding discussion, we
can determine the set of model parameters �k needed by the inference procedure for
Xk. If the whole set of �k can be loaded into main memory, then the node can directly
carry out the E-step. Otherwise, the node can adopt a divide-and-conquer approach.
To be specific, the node can divide Xk into several blocks Xkb such that the parameters
needed by the inference procedure for each block can be loaded into main memory.

However, the divide-and-conquer approach does not utilize the overlapped parame-
ters among different sessions. Consider the two sessions O1 and O2 in Table VI, where
each session involves six parameters in the inference stage. An interesting observation
is that most of the parameters for infering these two sessions are in common. There-
fore, if these two sessions are assigned to the same process node, the node only needs
to hold seven parameters to infer these two sessions, instead of 6 + 6 = 12 parameters.
Based on this idea, we adopt a heuristic approach and assign training sessions that
share many common parameters into the same process node.

Algorithm 2 shows our heuristic data partition method. Each process node pnk main-
tains a state list which traces the states whose parameters will be loaded into pnk

during the E-step. The data partition process scans the training sessions one by one.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:19

For each training session On, the method derives the set of candidate state sequences
Ŵn, as defined in Definition 4.6, and then determines the set Sn of states involved in Ŵn.

In the next step, the partition process checks the state list Lk for each process node pnk

and finds out how many extra states S+
k the process node needs to cover the whole set of

Sn. In other words, S+
k = Sn \ Lk. According to Lemmas 4.1 to 4.4, any model parameter

will remain zero if its initial value is zero. Therefore, each state si can be associated
with four fixed sets of parameters (�i,�qi,�ui,�i), where �i = {P0(si)} if P0(si) > 0 or
�i = ∅; otherwise, �qi = {P0(q|si)|P

0(q|si) > 0}, �ui = {P0(u|si)|P
0(u|si) > 0}, and �i =

{P0(si|Sj)|P
0(si|Sj) > 0}. Using this property, the partition process can calculate how

much extra memory M+
k a process node needs to hold the parameters associated with

the states in S+
k . If the size of the parameters associated with the states in Lk of a process

node pnk already reaches the limit of main memory, the corresponding M+
k is set to ∞.

The partition process then chooses the process node with the minimum M+
k to assign

the training session On. The assignment of training sessions continues until no process
node can add the parameters for a new session. At this point, the partition process
clears the state list Lk for each process node and starts the next round of assignments.
The whole partition process stops when all training sessions have been assigned.

Compared with the random partition method, the heuristic method can greatly re-
duce the number of blocks for each process node since it tries to maximize the sharing
of model parameters in the inference stage. For example, in our experiments on the
full data with five process nodes in the system, the maximum number of blocks to be
processed by a process nodes reduces from five under random partition to only one
under the heuristic partition method (see Section 6.4). Consequently, the runtime for
the E-step was reduced by 40%. Note that since the heuristic data partition method
does not reduce the number of parameters to be updated, the runtime for the M-step is
the same. Moreover, unlike the random partition method, which actually does not need
any computational cost to assign the training sessions, the cost by the heuristic method
is nontrivial. However, the cost is still small compared to the reduction in runtime for
the E-step. In our empirical study, the heuristic data partition method brought 18%
reduction in the overall training time, including that for the heuristic partition time,
E-step, and M-step, with the full data and five process nodes used.

4.4. Constructing Feature Vectors

Now we have derived a set of high-quality states after the E-M step, where each state
contains a set of queries and a set of URLs. In the online stage of vlHMM model
application, users may raise new queries which are not covered by the log data. To
handle such new queries, we create two feature vectors for each state. Let S be a state
and s be the corresponding cluster, the URL feature vector for s, denoted by −→s URL is the
L2-normalized vector in URL space. Particularly, the jth element of the feature vector

of s is −→s URL[j] = norm(P(uj |s)) =
P(uj |s)√∑

u′
j
∈U [P(u′

j |s)]2
, where norm(·) is the L2 normalization

function and P(uj |s) is the final emission probability after iteration. Besides the URL
feature vector, we also create a term feature vector for s based on the terms of the
queries in s. To be specific, for each query qi ∈ Qs(Qs means the query set of the state s),
we can represent qi by its terms as −→q term[t] = norm(t f (t, qi) · isf (t)), where t f (t, qi) is
the frequency of term t in qi, isf (t) = log Ns

Ns(t)
is the inverse state frequency of t, Ns is the

total number of states, and Nc(t) is the number of states containing term t. The term

feature vector for state s is defined as −→s term[t] =

∑
qi∈Qs

−→qi
term[t]

|S|
, where |Qs| is the number

of queries in S. We will describe the details of training a model to use these two feature
vectors to handle new queries at the online stage in Section 6.5.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:20 Z. Liao et al.

5. MODEL APPLICATION

The previous sections focus on the offline training of the vlHMM from search logs. In
this section, we discuss how to apply the learned vlHMM to various search applications,
including document reranking, query suggestion, and URL recommendation.

Suppose the system receives a sequence O of user events, where O consists of a
sequence of queries q1, . . . , qt, and for each query qi (1 ≤ i < t), the user click on a set
of URLs Ui. We first construct the set of candidate state sequences ŴO, as described in
Section 4.2, and infer the posterior probability P(Sm|O,�) for each state sequence Sm ∈
ŴO, where � is the set of model parameters learned offline. We can derive the probability

distribution of the user’s current state st by P(st|O,�) =

∑
Sm∈Ŵo

P(Sm|O,�)·δ(sm,t=st)∑
Sm∈Ŵo

P(Sm|O,�) , where

δ(sm,t = st) indicates whether st is the last state of Sm (= 1) or not (= 0). One strength
of the vlHMM is that it provides a systematic approach for not only inferring the
user’s current state st, but also predicting the user’s next state st+1. Specifically, we
have P(st+1|O,�) =

∑
Sm∈Ŵo

P(st+1|Sm) · P(Sm|O,�), where P(st+1|Sm) is the transition
probability learned offline. To keep our presentation simple, we omit the parameter �

in the remaining part of this section.
Once the posterior probability distributions of P(st|O) and P(st+1|O) have been in-

ferred, we can conduct the following context-aware actions.

Document Reranking. Let St = {st| P(st|O) �= 0} and U be a ranked list of URLs
returned by a search engine as the answers to query qt. We compute the posterior
probability P(u|O) for each URL u ∈ U by

∑
st∈St

P(u|st) · P(st|O). Then, we rerank
the URLs in the posterior probability descending order. Furthermore, we use Borda’s
ranking fusion method [Borda 1781] to combine the original ranking of search engine
and current ranking of vlHMM. We combine original ranking of search engine R0

with vlHMM-based ranking R1. The final ranking scores are merged as: score(u) =

α · 1
R0(u) + (1 − α) · 1

R1(u) , where α ∈ [0, 1] is set as 0.2 since we found that the re-ranking

performance of all methods are nearly optimal while α ∈ [0.1, 0.3] for all methods.

URL Recommendation. Let Ut+1 = {u| st+1 ∈ St+1, P(u|st+1) �= 0}. For each URL
u ∈ Ut+1, we compute the posterior probability P(u|O) =

∑
st+1∈St+1

P(u|st+1) · P(st+1|O),
and recommend the top Ku URLs with the highest probabilities, where Ku is a user-
specified parameter.

Query Suggestion. Let St+1 = {st+1| P(st+1|O) �= 0} and Qt+1 = {q| st+1 ∈
St+1, P(q|st+1) �= 0}. For each query q ∈ Qt+1, we compute the posterior probability
P(q|O) =

∑
st+1∈St+1

P(q|st+1) · P(st+1|O), and suggest the top Kq queries with the high-
est probabilities, where Kq is a user-specified parameter.

There are two issues in the online application of the vlHMM. First, users may raise
new queries and click URLs which do not appear in the training data. In the ith
(1 ≤ i < t) round of interaction, if either the query or at least one URL has been
seen by the vlHMM in the training data, the vlHMM can simply ignore the unknown
queries or URLs and still make the inference and prediction based on the remaining
observations. As discussed in Section 4.4, given a new query qt in the online session,
we can build a URL feature vector −→qt

URL for qt based on the the clicked URLs by
formula −→qt

URL[j] = norm(Count(qt, uj)), where Count(qt, uj) denotes the click count on
uj by users after submitting qt, norm(·) is the L2 normalization function. If users do
not click any URLs, we use top ten search results returned by the search engine to
build −→qt

URL. Besides the URL feature vector, we can merge the snippets of the top ten
search results of qt and create a term feature vector −→qt

term for qi in Section 4.4. In the
online stage, we propose a two-stage approach for mapping novel queries to known

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:21

state. First, we retrieve top K similar states as candidates based on Euclidian distance
||
−→qt

URL −
−→s URL|| and ||

−→qt
term−

−→s term||. Second, we extract features for query-state pairs
and use a pre-trained model to judge which state the query should be mapped to. The
detailed steps can be found in Section 6.5.

The second issue with the online application of our vlHMM is the strong requirement
on efficiency. Given a user input sequence O, the major cost in applying the vlHMM de-
pends on the sizes of the candidate sets ŴO, St, St+1, Qt+1, and Ut+1. In our experiments,
the average numbers of ŴO, St, and St+1 are all less than 10 and the average numbers
of Qt+1 and Ut+1 are both less than 100. Moreover, the average runtime of applying the
vlHMM to one user input sequence is only 0.1 milliseconds. In cases where the sizes
of candidate sets are very large or the session is extremely long, we can approximate
the optimal solution by discarding candidates with low probabilities or truncating the
session. Since we only rerank top URLs returned by a search engine and suggest the
top queries and URLs generated by vlHMM, such approximations will not lose much
accuracy.

6. EXPERIMENTAL RESULTS

In this section, we report the results from a systematic empirical study using a large
search log from a major commercial search engine. We examine the efficiency of our
vlHMM training method and the effectiveness of using the learned vlHMM in three
context-aware search applications.

6.1. Data Set and Preparation

To train a vlHMM, we use a large search log from a major commercial search engine
collected from August 2009 to October 2009. We only focus on the Web searches in
English from the U.S. market. The log data set contains 1.9 billion queries, 2.9 billion
clicks, and 1.2 billion sessions. The data set involves 535 million unique queries and
396 million unique URLs. From the raw search log, we extract user sessions, as de-
scribed in Section 3. The distribution of the session lengths follows the power law and
about 50% of the sessions contain at least two rounds of interaction. These observations
are consistent with those in previous studies (e.g., [Huang et al. 2003]).

Based on our observation, those infrequent (tail) query sequences are noisy and those
long sessions with many queries also contain many noises. If we build our model based
on them, then the suggestion performance will decrease. Since the focus of this article
is to test the performance of all methods in context-aware search applications, we leave
the fine tuning of noise reduction on session data as possible future work and conduct
simple pruning strategies as follows. We remove a user session 〈(q1,U1), . . . , (qT ,UT)〉
only if the frequency of the query sequence (q1, . . . , qT) is less than a threshold min sup.
In our experiments, min sup is set to 5. Consequently, 52% of the sessions in the log
data set are pruned. After the pruning process, we manually inspect some sessions with
lengths longer than 5, and find many of them contain meaningless query sequences.
Since, the total number of sessions longer than five is actually small (9,885 distinct
cases). Therefore, we remove all of them. Note we do not remove sessions with one
query and corresponding clicks since those sessions can change the distribution of the
parameters P(q|s) and P(u|s) in vlHMM.

Table VII shows the statistics of the dataset before and after the pre-processing.
Although 97.6% unique queries and 87.8% unique URLs are removed by the pre-
processing, the resulting dataset still keeps 38.1% of the original query occurrences,
34.0% of the original URL clicks, and 52.5% of the original user sessions. As shown
in previous work (e.g., [Baeza-Yates and Tiberiet 2007]), this is because the query
occurrences and URL clicks in search logs follow the power law distribution. In our
search applications, sessions with length =1 can be used in document reranking, while

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:22 Z. Liao et al.

Table VII. Data Statistics Before and After Pre-processing

Raw search log Training data

Num. of unique queries 535,847,264 12,769,284

Num. of unique URLs 396,922,801 48,418,579

Num. of query occurrences 1,932,773,655 737,145,967

Num. of clicks 2,885,798,105 982,388,395

Num. of sessions 1,224,211,869 643,318,202

Table VIII. Distribution of Sessions w.r.t. the
Length of Query Sequence

of Queries Distinct # of Sessions

2 10,734,074

3 407,846

4 44,313

5 10,950

sessions with length ≥2 can be used in URL recommendation and query suggestion.
The distribution of sessions with respect to the lengths of query sequence is shown
in Table VIII. In the experiments, about 0.5 millions of distinct sessions contain more
than two queries. We use these sessions to evaluate the contextual assumptions and
the vlHMM.

6.2. Verify the Context Difference Observatin

Before building the vlHMM for context-aware applications, we test the context differ-
ence here. Let q, u, qs, and c denote the current query, the ranked URLs, the suggested
query, and the context, respectively. Take URL ranking as an example—the ranked
URLs for a given query q are generated by P(u|q). When context information c is
available, the rankings of URLs are generated by P(u|q, c). Since we are using the top
ranked URLs in our applications, we use generalized Kendall’s tau [Fagin et al. 2003]
to compare the difference between P(u|q) and P(u|q, c) instead of the distance between
distributions, such as KL-divergence. In the experiments, we focus on the top five URLs
or queries generated by different models.

Given two ordered lists π1 and π2, we can get all objects O from them. There are four
cases for each object pair (oi,o j) from O, where oi �= o j . (1) If they both exist in π1 and
π2 and the preference of (oi,o j) is different in π1 and π2, then Kmin = Kmin +1. (2) If both
oi and o j exist in one rank list π1 or π2, and only one of oi or o j exists in another rank
list, Kmin = Kmin + 1 if the higher ranked object in one list does not exist in another
one. (3) If one of oi or o j exists in π1 and another one exists in π2, then Kmin = Kmin + 1.
(4) If both oi and o j exist in one list and neither oi nor o j exists in another list, Kmin

keeps the same. Furthermore, we can normalize Kmin to [0,1] and a bigger value of Kmin

indicates a bigger difference.
Based on the training dataset in Table VII, we compute different URL ranking and

query suggestion models and use Kmin to measure the difference. We compare in total
four pairs of methods for a given q: (1) P(u|q) and P(u|q, c); (2) P(u|q, c1) and P(u|q, c2);
(3) P(qs|q) and P(qs|q, c); (4) P(qs|q, c1) and P(qs|q, c2). Here we take query suggestion
as example. Since P(qs|q) =

∑
c P(qs, c|q) =

∑
c P(qs|q, c) · P(c|q), and P(c|q) does not

affect the suggestion while given context c and test query q, we compare P(qs|q, c1) and
P(qs|q, c2) to unveil the differences among context models. Therefore, the comparisons
of (2) and (4) are supplementary to the comparisons of (1) and (3), respectively.

The results are shown in Table IX. The value K
avg
min is obtained by the average between

Model A and Model B, while Kmax
min is obtained by maximum difference models from

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:23

Table IX. Generalized Kendall’s tau for Top-5 URL Rankings and Query
Suggestions of Different Context Observations

Application Model A Model B K
avg
min Kmax

min

document Re-ranking
P(u|q) P(u|q, c) 0.2952 0.3788

P(u|q, c1) P(u|q, c2) 0.2019 0.3810

Query Suggestion
P(qs|q) P(qs|q, c) 0.3311 0.4638

P(qs|q, c1) P(qs|q, c2) 0.3370 0.6347

Note: K
avg
min is the average result among all contexts. Kmax

min is the average
result from maximum different contexts.

Fig. 3. The number of states with respect to the number of nonzero initial queries (left) and URL (right)
emission probabilities.

Model A and Model B. For example, for P(u|q) and P(u|q, c), K
avg
min is obtained from

the average of all c’s, but Kmax
min is obtained from the maximum different rankings

between P(u|q) and P(u|q, cmax) given a special context cmax. Take the pair P(u|q) and
P(u|q, c) as an example—K

avg
min measures the average differences between context and

non-context models, while Kmax
min measures the maximum differences between context

and non-context models. A value of Kmin larger than 0.2 at top-5 positions can indicate
certain differences in URL rankings or query suggestions.

From Table IX, we can find that (1) The top-5 URL rankings based on P(u|q) and
P(u|q, c) are different, and the top-5 query suggestions based on P(qs|q) and P(qs|q, c)
are different. These results verify that with or without context, users’ behaviors are
different. (2) The top-5 URL rankings based on P(u|q, c1) and P(u|q, c2) are different
and the top-5 query suggestions based on P(qs|q, c1) and P(qs|q, c2) are different. The
results indicate that users’ querying and clicking behaviors recorded in the search
logs are different for context-aware URL ranking and query suggestion. (3) The gap
between methods in query suggestion is bigger than the gap in URL ranking. This
observation indicates that for query suggestion, there are bigger differences between
context and non-context methods than in URL ranking. Overall, it is necessary to
capture high-order context information for context-aware search.

6.3. Initializing and Updating Model Parameters of vlHMM

To determine the number of states and assign initial parameter values, we apply the
clustering algorithm [Liao et al. 2011] and derive 7,242,693 clusters of queries. We
thus have 7,242,693 states in the vlHMM and then initialize the parameter values, as
described in Section 4.2.

Figures 3(a) and 3(b) show the distributions of the number of states with respect
to the number of nonzero initial query and URL emission probabilities, respectively.
Both approximately follow the power law distribution. Let Nsq and Nsu be the average
numbers of nonzero parameters P0(q|s) and P0(u|s) in all states, respectively. In our

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:24 Z. Liao et al.

Table X. Comparison of the Actual Number, the Upper Bound, and
the Whole Space of Parameters

Actual Number Upper Bound Whole Space

#P(si) 6,552,900 7,242,693 7,242,693

#P(q|si) 13,324,578 21,076,236 9.24 × 1013

#P(u|si) 87,825,540 102,121,791 3.51 × 1014

#P(si |S j) 4,507,873 4,721, 451 1.99 × 1034

Fig. 4. Q(�, �(i−1)) (left) and average difference of all parameters (right) in each iteration.

experiments, Nsq = 2.91 and Nsu = 14.1. It means that on average, different users
formulate 2.91 queries and click 14.1 URLs for a common search intent. We further
compute the set of candidate state sequences Ŵ given the initialization of P0(q|s) and
P0(u|s). For the 643, 318, 202 training sessions, there are only 11, 060, 773 unique can-
didate state sequences. The reason being that users with similar search intents often
have similar search sequences and thus can be modeled by the same state sequence.

Table X compares the size of the whole parameter space, the actual number of pa-
rameters estimated in the training process, and the upper bound given by Theorem 4.8.
Since we have 7 million states, 12 million unique queries, and 48 million unique URLs,
the size of the whole parameter space can be calculated by multiplication. For example,
the whole space of P(q|si) is obtained by multiplying the size of queries and the size of
states. However, based on Theorem 4.8, the size of all parameters P(q|si) is bounded by
Nsq × Ns, where Nsq is the average number of queries within one state and Ns denotes
the number of states. For the upper bound of parameter P(si|Sj), we obtain the aver-

age length of state sequence T = 2.047 and |Ŵ| = 4,507,873 from the training sessions.
Therefore, the upper bound of P(si|Sj) is obtained by |Ŵ| · (T −1) = 4, 721, 451. Clearly,
the actual number of estimated parameters is significantly smaller than the size of the
whole parameter space and the upper bound is tight. In particular, the actual number
of estimated transition parameters is smaller than the size of the parameter space by
a factor of 1026, since the magnitude of the upper bound is 108 and that of the whole
space is 1034. There are two reasons for this factor. First, the session length follows the
power law distribution, and a large part of sessions are short—of length one or two.
Second, queries and clicked URLs in the same sessions are semantically related. Thus,
the actual number of state sequences appearing in logs is significantly smaller than
that of all possible combinations.

Figures 4(a) and 4(b) show the value of the object function Q(�,�(i−1)) and the aver-
age difference of all parameters in one iteration, respectively. As a result, the training
process converges fast and our vlHMM model can improve about 10% data likelihood.

6.4. Efficiency and Scalability of Training vlHMM

In this section, we first use Algorithm 1 as the baseline to test the efficiency and
scalability of our distributed training process. In the baseline method, we adopt the

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:25

Fig. 5. The runtime of (a) E-step and (b) M-step, and (c) the average number of blocks on a process node for
different sizes of training data.

random partition method and apply the divide-and-conquer approach if the size of
the model parameters assigned to a process node is too large to be held in the main
memory. After testing the baseline method, we incorporate the techniques developed
in Section 4.3 into the baseline method and evaluate their effectiveness. We test all
the methods on five, ten, and twenty process nodes, respectively. According to Figure 4,
the EM iteration converges after ten rounds. Therefore, we carry out ten rounds of EM
iterations for each test.

Figures 5(a) and 5(b) show the runtime of the E-Step and M-Step on 40%,50%, . . . ,
and 100% of the full data. We can observe the following trends in Figure 5(a). First,
the more process nodes used, the shorter the runtime for the E-step. For example,
the runtime needed for the E-step on the full data by five, ten, and twenty process
nodes is approximately in ratio 4:2:1. This suggests that our algorithm scales well with
respect to the number of process nodes. Second, the increase of runtime is not linear
with respect to the size of the data. For example, when ten process nodes are used,
the runtime of the E-step increases sharply at 60%, 80%, and 100% of the data. The
nonlinear increase can be explained by Figure 5(c), which shows the number of data
blocks processed by a process node. In the divide-and-conquer approach, if the training
data assigned to a process node involves too many parameters to be held in the main
memory, the algorithm will split the training data into blocks such that the parameters
needed by a block can be held in the main memory. Each time a process node processes
a block of training sessions, it needs to scan the whole parameter file once. Since the
parameter file is large (e.g., a 4.6G file containing 111,154,758 parameters for the full
data), the disk I/O time becomes the major cost in the E-step. Consequently, the more
blocks to be scanned, the longer runtime it takes. In Figure 5(c), when ten process
nodes are used, the number of data blocks processed by a process node increases by
one at 60%, 80%, and 100% of the data. Consequently, the runtime increases sharply at
those points. In Figure 5(b), the runtime of M-step increases in O(n

K
log n

K
), where n is

the total number of key-value pairs and K is the number of process nodes. Comparing
Figures 5(a) and 5(b), we can see the runtime of M-step is about one eighth that of
E-step. In other words, the runtime of the training process is dominated by the E-step.
Therefore, to improve the efficiency of the training process, it is more effective to speed
up the E-step.

In the following, we evaluate the techniques developed in Section 4.3 to further scale
up the baseline training method. Table XI shows the percentage of improvements in
terms of running time in E-step, M-step, and overall at 100% of training data. We can
see that all techniques improve the efficiency and combining them together achieves
best performance. The improvements are due to the following reasons. Deterministic
sessions consist of more than 80% of the whole sessions, deterministic parameters con-
sist of more than 50% of all parameters, and number of blocks is reduced with heuristic

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:26 Z. Liao et al.

Table XI. Percentage of Improvements in Terms of Running Time by Different Scaling-up
Methods on the Whole Training Data

Scale up techniques % of in E-step % of in M-step % of Overall

Deterministic Sessions 75/70/65 35/30/15 65/60/52

Deterministic Parameters 40/35/40 20/30/25 34/31/36

Data Partition 40/25/25 (no improvements) 18/18/24

Combined 81/80/79 63/66/65 70/68/61

Note: The improvements are shown for 5/10/20 nodes.

Fig. 6. The runtime of (a) E-step and (b) M-step, (c) average percentage of parameters of a process node
with three techniques applied over those without the techniques applied, (d) average number of blocks
processed by a process node, (e) the runtime of preprocessing steps, and (f) the total runtime of EM and
preprocessing, for different sizes of training data. The solid and dotted curves correspond to the cases in
which the combination of techniques is used and notused, respectively.

partition method. To give a better understanding of the improvements, we show the ef-
ficiency performance of combining all the techniques in Figure 6. Figures 6(a) and 6(b)
compare the runtime of the E-step and M-step with respect to different sizes of training
data before and after applying the combination of techniques. Figure 6(e) shows the
runtime for the pre-processing step and Figure 6(f) shows the overall runtime with
and without the combination of techniques. We can see that the extra cost for the pre-
processing by the three techniques is much smaller than the gain in the E-step and
M-step. Overall, the training time is reduced significantly.

6.5. Performance of Query State Mapping

We employ a two-stage method for mapping unknown queries into states in a vlHMM,
as described in Section 5. The first stage is to retrieve candidate states with term and
URL feature vectors, and the second stage is to employ a supervised learning method
to make the decision on the mapping. Retrieving candidate states at the first stage
can help exclude the states which are not relevant to the given query. We utilize a

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:27

Table XII. Coverage of vlHMM and vlHMM+

Method
document re-ranking Query Sug. / URL Rec.

Non-Context Context Non-Context Context

vlHMM 69.12% 54.78% 46.31% 34.01%

vlHMM+ 84.63% 72.60% 49.27% 38.67%

human-labeled dataset consisting of query-state pairs to learn the model. Here we
evaluate the query state mapping method.

We sample 137 queries which do not exist in the training data for learning the
mapping model. We retrieve the top-5 candidate states by calculating the similarity
between term feature vectors and top-5 candidate states by calculating the similar-
ity between URL feature vectors. The similarity calculation is based on the Euclidian
distance between term (or URL) feature vectors. Then the retrieved query-state pairs
are labeled as relevant, partially relevant, and irrelevant. 97 queries (70%) have rele-
vant candidate states. Many queries have multiple partially relevant states. Finally we
take the relevant (205) and irrelevant (186) query-state pairs as positive and negative
examples and train a linear SVM model with the query-based, state-based, and query-
state pairwised features. The three-fold cross-validation results show that accuracy of
classification is 78.77%, precision is 87.05%, and recall is 65.05%.

6.6. Improve the Coverage of vlHMM by vlHMM+

If a query can be recognized by vlHMM, then one can perform reranking, suggestion,
and recommendation by using the model. If it cannot be recognized, then one can
employ the mapping model to assign it to a state of vlHMM. We use vlHMM+ to
denote the vlHMM with coverage enhancement hereafter. The learned mapping model
in Section 6.5 is used for constructing the vlHMM+. We conduct the coverage testing
on both single query sessions and multiple-query sessions. The number of single query
session is 100,000 and the number of multiple-query session is 43,105. The results are
reported in Table XII.

From Table XII, we can observe the following trends. First, the coverage for docu-
ment reranking is higher than that for query suggestion and URL recommendation,
no matter whether context is utilized or not. This is because we only need to infer state
st for document reranking. However, to provide query suggestion and URL recommen-
dation, we not only need to infer state st, but also state st+1. In some cases, a state st

does not transit to any other states, and thus no query suggestion or URL recommen-
dation can be provided. The reason being that the states in vlHMM are derived from a
click-through bipartite graph. Once st+1 is inferred, there must exist at least one query
q and one URL u such that P(q|st+1) and P(u|st+1) are nonzero. Note that the coverage
for query suggestion and URL recommendation is the same.

Second, the coverage of document reranking, query suggestion, and URL recommen-
dation with context is lower than those without context. For document reranking, the
lower coverage indicates that the queries issued by users at the second, third, . . . , po-
sitions in sessions tend to be more diverse. In other words, it is more likely to meet
a novel query at those positions. For query suggestion and URL recommendation, the
lower coverage comes from a second reason. That is, the more queries a user has typed
in a search session, the more likely the user ends the session. Therefore, the training
data available with contexts are less than those without contexts.

Finally, vlHMM+ has broader coverage than vlHMM. For document reranking,
vlHMM+ can improve the coverage by 22% and 33% for non-context and context cases,
respectively. For query suggestion and URL recommendation, vlHMM+ increases the
coverage by more than 6% and 13% for non-context and context cases, respectively.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:28 Z. Liao et al.

Fig. 7. The performance of reranking by vlHMM and baselines.

6.7. Performance of Document Reranking

We conduct reranking experiments on a human-labeled dataset and click-through
log dataset. The baselines used in the experiments are: (1) the click-based method
which utilizes the click frequencies of the query-URL pairs for reranking; (2) ran-
dom walk with restart method [Gao et al. 2009; Craswell and Szummer 2007; Deng
et al. 2009; Tong et al. 2006] which utilizes the click-through bipartite graph for ranking
propagation; (3) HMM which is the first-order hidden Markov model. Other related
works such as [Shen et al. 2005; Xiang et al. 2010] also conduct context-aware rerank-
ing. However, since they also use document but vlHMM does not, it is not possible to
conduct a fair comparison. In a word, all compared methods are log-based methods.

To show how vlHMM performs document reranking, we give out some examples
here. In a test session with only two queries q1 →q2 which can be mapped to states
s1→s2, the results of HMM and vlHMM are identical, since both of them utilize the
distribution of P(s1), P(s2|s1), and P(u|s2). If there are three testing queries with state
sequence s1→s2→s3, the performance of vlHMM and HMM are different because HMM
will utilize the probabilities P(s1), P(s2|s1), P(s3|s2), and P(u|s3), but vlHMM will utilize
the probabilities P(s1), P(s2|s1), P(s3|s1, s2), and P(u|s3). Note that P(·|s2) is different
from P(·|s1, s2).

In the experiments on the human-labeled dataset, 500 test sessions with single
queries and 500 test sessions with multiple queries are sampled, respectively. For each
test session, we crawl the top ten results of the last query and utilize the log-based
methods to conduct reranking using Borda’s Fusion method described in Section 5. The
top search results of the last query are labeled as five levels: perfect, excellent, good,
fair, and bad. For single-query test sessions, the search results are labeled only based
on the last queries. For multiple-query test sessions, the annotators are asked to label
the search results based on the whole sessions.

NDCG@k, a widely used information retrieval measure, is employed in reranking:

NDCG@k = 1
Z

∑
i

2r(i)−1
log2(i+1) , where Z is the normalization factor and r(i) is the relevance

degree of the document ranked at position i. The score of r(i) is set as: perfect = 5,
excellent = 4, good = 3, fair = 1, and bad = 0. We compare the final search rankings
in terms of NDCG@1, NDCG@3, and NDCG@5. The experiment results are shown
in Figure 7. We find that (1) log-based methods perform better than the search en-
gine (p-value<0.01, t-test). (2) log-based methods have comparable performance in
single-query sessions in which context information is not available. (3) When context
information is available, HMM, vlHMM, vlHMM+ perform better than the click-based
method (p-value<0.05, t-test). (4) When there are more than three queries in the test
sessions, vlHMM performs best among all approaches.

We further evaluate the reranking performance on a larger user click dataset. To
conduct this experiment, we construct three testing datasets from another search log

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:29

Table XIII. Mean Click Positions (MCP) of All Methods on All Test Sets

S1 (1 query) S2 (2 queries) S3 (>=3 queries)

Methods N=18,710 N=26,819 N=41,042

Search Engine 1.8166 2.2154 2.6127

Click-based 1.6514 2.0451 2.3017

Rand-Walk 1.6508 2.0107 2.2869

HMM 1.6828 1.9824 2.2148

vlHMM 1.6828 1.9824 2.0297

vlHMM+ 1.6835 1.9850 2.0297

which is not used in the training process: (1) S1: randomly sampled 18,710 sessions
with single query; (2) S2: randomly sampled 26,819 sessions with two queries; (3) S3:
sampled 41,042 sessions with more than three queries. Note that sampled testing
sessions with larger than three queries can be totally matched by vlHMM, since if the
testing session cannot be matched, vlHMM will degenerate to lower-order HMM. Note
that those long sessions are good to show the differences between all methods, since
vlHMM can capture long contexts but other methods cannot.

Specifically, for testing query qi and clicked URL set Ui, we calculate average clicked
position by a reranking method on the basis of Borda’s Fusion method, described in
Section 5. Then all testing cases are aggregated to get the mean average click position

[Xiang et al. 2010] for the method: MCP =

∑
q

∑
ui∈Ui

R(ui)∑
i |Ui |

, where rank R can be derived

from the log data. Smaller values of MCP indicate better performance.
The results on the user click dataset are reported in Table XIII. From the results,

we can see that while context information is available, the context-based approaches
(HMM, vlHMM, vlHMM+) are better than non-context approaches (click-based,
Rand-Walk). For single-query sessions, the performances of non-context approaches
(click-based, Rand-Walk) are slightly better than context approaches (HMM, vlHMM,
vlHMM+). The gap of performance between context and non-context approaches
is bigger at S3, since the testing sessions with length as one or two are randomly
sampled, but testing sessions with three or more queries are sampled based on
the vlHMM. As previously explained, those long sessions are good for showing the
differences between all methods, since vlHMM can capture long contexts but other
methods cannot. VlHMM+ can cover 22% and 32% more queries than vlHMM on S1

and S2, respectively. The performance of vlHMM+ on additional queries are 1.6951
and 1.9906 at S1 and S2, respectively. On S3, since vlHMM can cover all cases, the
performances of vlHMM and vlHMM+ are the same.

To show the effectiveness of vlHMM over baselines, we give out two kinds of examples.
The first kind of example shows the effectiveness of vlHMM over non-context methods.
The second kind shows the effectiveness of vlHMM over HMM.

Table XIV shows the first example of rankings for query “ritz” by vlHMM with and
without considering the context information. As we can see, the query “ritz” bears
intentions of digital camera and luxury hotel. While there is no context information
available, the webpage of digital cameras are ranked higher. However, if the user
searched “fredericksburg va” before, then it is more likely the user is looking for the
hotel. Since the pattern of searching a “ritz” hotel after a location exists in the training
logs, vlHMM can boost the ranking of hotels higher. We can infer that the user is plan-
ning a trip and the query “fredericksburg va” represents the destination. In contrast,
the click-based method cannot infer this intention.

Table XV shows the second example, where vlHMM performs better reranking than
HMM. While the input sequence is “online dictionary → gmail → webster”, vlHMM
successfully boosts the ranking of URL http://websters-online-dictionary.org,

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:30 Z. Liao et al.

Table XIV. Ranking of vlHMM with and without Using Context Information

Without context With context

fredericksburg va ⇒ ritz

ritz ↓

http://fredericksburgva.gov

1

Digital Cameras / Electronics at...

1

Luxury Hotels & Luxury Resorts...

Digital camera reviews, consumer electro... The Ritz-Carlton features luxury hotels...

http://www.ritzcamera.com http://www.ritzcarlton.com

2

Luxury Hotels & Luxury Resorts...

2

Digital Cameras / Electronics at...

The Ritz-Carlton features luxury hotels... Digital camera reviews, consumer electro...

http://www.ritzcarlton.com http://www.ritzcamera.com

3

The Fun of RITZ!

3

Luxury London Hotels - The Ritz...

Ritz it up with the best tasting Ritz ever! The Ritz London official website...

http://www.nabiscoworld.com/ritz http://www.theritzlondon.com

Table XV. Ranking of HMM and vlHMM for Testing Sequence “online dictionary → gmail → webster”

HMM vlHMM

1

Dictionary and Thesaurus...

1

Dictionary and Thesaurus......

Free online dictionary, thesaurus, ... Free online dictionary, thesaurus, ...

http://www.merriam-webster.com http://www.merriam-webster.com

2

Home | Webster University

2

Webster’s Online Dictionary...

Webster University, a worldwide institution... Our mission is to create the largest...

http://www.webster.edu http://websters-online-dictionary.org

which is an online dictionary. However, HMM cannot capture the high-order
context.

6.8. Performance of URL Recommendation

In this section, we evaluate the effectiveness of vlHMM in the task of URL recommen-
dation. We use a manually labeled small-scale session dataset and large-scale session
dataset. We adopt two baselines: (1) Following-Click, which borrows the idea from
White et al. [2007], where browse logs are used. Given a test query q, it counts in the
training data the frequency of a URL following the searches of q, and recommends
the top K URLs with the highest co-occurring frequencies. Following-Click does not
consider the context of q. (2) First-order HMM. Note that for URL recommendation,
models are built for predicting the next states given the current and previous states,
and thus the recommended URLs are generated from next possible states but not the
current state, which is different from document reranking.

In the manually labeled dataset, 200 single-query sessions and 200 multiple-query
sessions are randomly sampled. All the recommendation methods generate at most
five recommendations. The queries and URLs in the session as well as the content
of recommended URLs are presented to the annotators. The recommended URLs are
labeled as meaningful, not meaningful, and unknown. The unknown cases are those
which are not easy to judge, and thus are discarded.

We calculate the quality of the URL recommendations of vlHMM, vlHMM+, and the
baselines by calculating the ratio of meaningful cases to not-meaningful cases in the
manually labeled dataset. The results are presented in Figure 8. We can observe that
the performances of vlHMM and vlHMM+ are better than those of Following-Click and
HMM, especially on multiple-query sessions. This is because the baseline methods do
not utilize context information. Using a t-test and p-value threshold 0.05, we rejected

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:31

Fig. 8. Quality of URL recommendation on labeled data.

Fig. 9. Precision and recall of the URLs recommended by vlHMM and baselines.

the hypotheses that vlHMM and HMM have the same performance on multiple-query
sessions and that vlHMM and Following-Click have the same performance.

Next, since human labeling is expensive, we also make use of user clicks in evalu-
ation. Specifically, for each extracted session O = 〈(q1,U1), . . . , (qT ,UT)〉, we use qT −1

as the test query and consider UT —the set of URLs clicked by the user—as the ground
truth. Note that the clicked URLs are approximately taken as relevant URLs. Then
we can measure the performance of the recommendation by calculating precision and
recall of clicked URLs. Suppose that vlHMM recommends a set of URLs R, then pre-
cision is calculated as |R∩UT |

|R|
and recall is calculated as |R∩UT |

|UT |
. Figures 9(a) and 9(b)

compare the precision of all the methods with respect to the number of recommenda-
tions K, while Figures 9(c) and 9(d) compare recalls. From these figures, we can see that
precisions decrease and recalls increase when K becomes larger. This is because the
larger the number of K, the more recommendations are provided. A larger number of
recommendations can cover more clicked URLs but can also add more unclicked URLs.
Figures 9(a) and (c) show that all the methods have comparable precisions and recalls
in single-query sessions. In contrast, in multiple-query sessions, where the context
information is available, vlHMM substantially outperforms the baselines.

Table XVI shows an example of URL recommendation for the query “webster” by
vlHMM. When not utilizing context information, both Following-Click and vlHMM

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:32 Z. Liao et al.

Table XVI. URL Recommendation of vlHMM with and without Context Information

Without context With context

citibank ⇒ webster

webster ↓

https://online.citibank.com

1

Dictionary.com · Find the Meanings...

1

Bank of America · Home · Personal

Dictionary.com - the largest and most... Welcome to Bank of America...

http://dictionary.reference.com/ https://www.bankofamerica.com

2

Thesaurus.com · Find Synonyms...

2

American Express Credit Cards...

Thesaurus.com - the largest and most... American Express offers world-class...

http://www.thesaurus.com https://www.americanexpress.com

3

Dictionary, Encyclopedia and...

3

People’s United Bank

Online Dictionary - Multiple dictionaries... Welcome to People’s United Bank...

http://www.thefreedictionary.com https://www.peoples.com

conclude that the user is more likely to search for the Merriam-Webster online dic-
tionary. Therefore, the top recommended websites are related to the online dictionary.
However, if the user searched for “citibank” before, it is more likely to search for the
Webster online bank. With the context information, vlHMM recommends websites
about online banking, which seems to be more reasonable.

6.9. Performance of Query Suggestion

We follow the evaluation method in Cao et al. [2008] and Liao et al. [2011] to evaluate
the performance of query suggestions made by the vlHMM methods. We compare
vlHMM and vlHMM+ with several baselines: (1) context-aware concept-based approach
[Cao et al. 2008; Liao et al. 2011] (denoted as CACB), (2) first-order HMM (denoted
as HMM), (3) state-based co-occurrence method [Huang et al. 2003] (denoted as Co-
occur) and (4) set-based context method (denoted as Set-based). Note that HMM and
vlHMM exploit sequential contexts, while co-occur and set-based approaches exploit
co-occurring or set contexts.

Here we describe the training process of all models by representing the training data
as a set of tuples (sequence, suggestion).

(1) Given a sequence (s1 → s2), methods vlHMM, CACB, HMM, Set-based generate
tuple (s1, s2), while method Co-occur generates tuples (s1, s2) and (s2, s1).

(2) Given a sequence (s1 → s2 → s3), methods vlHMM and CACB generate tuples (s1,
s2), (s1 → s2,s3), method HMM generates (s1,s2), (s2,s3), method Co-occur generates
(si,sj), where i �= j, 1 ≤ i ≤ 3, and 1 ≤ j ≤ 3, and method Set-based generates (s1,
s2), (s1 → s2, s3), (s2 → s1, s3).

(3) Given a sequence (s1 → s2 → s3 → s4), methods vlHMM and CACB generate (s1,s2),
(s1 → s2, s3), and (s1 → s2 → s3, s4), method HMM generates si → si+1 where
1 ≤ i ≤ 3; method Co-occur generates (si, sj) where i �= j, 1 ≤ i ≤ 4, and 1 ≤ j ≤ 4,
and method Set-based generates (s1, s2), (s1 → s2, s3), (s2 → s1, s3), (s1 → s2 → s3,
s4), (s1 → s3 → s2, s4), (s2 → s1 → s3, s4), (s2 → s3 → s1, s4), (s3 → s1 → s2, s4),
(s3 → s2 → s1, s4).

After generating the (sequence, suggestion) tuples, we aggregate all pairs having the
same sequence for query suggestion.

As described in Table VIII, we have 10,734,074, 407,846, 44,313, and 10,950 sessions
of lengths 2, 3, 4, and 5, respectively. We report the number of candidate sequences
generated by all models in Table XVII. We have following observations based on the
results.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:33

Table XVII. Number of Candidate Sequences Generated by All Models

candidate sequence Co-occur Set-based HMM vlHMM/CACB

(q1, qs) 24,665,980 12,078,444 11,726,505 11,197,183

(q1 → q2, qs) — 1,344,370 — 463,109

(q1 → q2 → q3, qs) — 528,678 — 55,263

(q1 → q2 → q3 → q4, qs) — 262,800 — 10,950

Fig. 10. Quality of query suggestion on labeled data.

(1) Both vlHMM and HMM can use context information to infer the hidden states,
which is good for capturing the user intention of ambiguous queries. However,
since in HMM P(st|st−1, st−2) = P(st|st−1), then HMM can only generate adjacent
pairs based on training data. This leads to weak capability of leveraging contextual
information.

(2) Both vlHMM and Set-based can use contextual information for providing sug-
gestions. However, Set-based will generate more unseen sequences based on
observed sequences. On the one hand, Set-based will cover more testing cases
based on combinatorial observation generation. On the other hand, its precision
will decrease due to the improvement of recall. That is because users are searching
sequentially and previous queries may not be good suggestions for later queries.
For example, users may begin a session with a typo keyword (such as “googgle”),
the name of a search engine (such as “Bing”), or a frequently visited website (such
as “Facebook”, “Gmail”), while using these first queries, as suggestions by the
Co-occur and Set-based methods may decrease the quality of suggestions.

Moreover, to improve the coverage of vlHMM in the test stage, we set a back-off if the
given test sequence cannot be captured, as described in Section 5. For example, given
a test case (q1 → q2), we use vlHMM to infer its state sequence (s1 → s2) and apply all
models on it. If s1 → s2 is not observed before, vlHMM backs off to s2.

We randomly sample 500 single-query sessions and 500 multiple-query sessions as
testing datasets. Each method is allowed to provide up to five suggestions for one test-
ing case. Then the judges are given the test and suggested queries with their top search
results and required to judge whether the suggestion is good or bad. If a suggestion
is labeled as bad, the method is considered to make an error. The overall suggestion
quality is evaluated by accuracy of suggestions. Figure 10 shows the labeling results.
From the figure, we can observe that (1) while context information is not used, Co-occur
performs worse than HMM, CACB, vlHMM, and vlHMM+; (2) while context informa-
tion is used, CACB, vlHMM, and vlHMM+ perform better than HMM & Co-occur, and
Co-occur performs better than HMM; (3) vlHMM, vlHMM+, and CACB have similar
performances. In our experiments, the coverage of CACB on multiple-query sessions
is 29.45%, while vlHMM reaches 34.01% and vlHMM+ further improves to 38.67%.
The reason being that vlHMM utilizes the clusters which are the same as CACB, but
vlHMM assigns more queries to new states, as shown in Section 4.2. (4) vlHMM+ covers

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:34 Z. Liao et al.

Table XVIII. Query Suggestions by Co-occur and HMM

Test Case Co-occur HMM

007 007 games 007 games

james bond james bond

james bond 007 movies james bond 007 movies

oo7 007 actors

007 actors daniel craig

“1 day discount disneyland tickets discount single day disneyland ticket

disneyland tickets ” disneyland ticket aaa discount disneyland ticket

disneyland com free disneyland tickets

disneyland discount tickets disneyland ticket prices

disneyland disneyland tickets

Table XIX. Query Suggestions by vlHMM, Co-occur, and HMM

Method Test Cases

edmonton journal → calgary herald the sun → the mirror

HMM edmonton journal the sun

google the mail

hotmail daily star

lethbridge herald google

calgary herald obituaries digital spy

Co-occur google the mail

hotmail the daily star

the telegram google

vancouver province newspaper the star

kijiji digital spy

vlHMM the telegram sky news uk

mississauga library chronicle echo

medicine hat news shopping telly

janet charlton mr paparazzi

vancouver province the daily star

6% and 13% more queries than vlHMM in single and multiple testing cases. The overall
qualities of vlHMM+ are 0.88 and 0.86 at non-context and context test cases, and the
qualities of vlHMM+ on additional queries are 0.80 and 0.81 at non-context and context
test cases. Compared to vlHMM, which has qualities of 0.90 and 0.87, vlHMM+ sacri-
fices some accuracy for coverage. Using t-test and p-value threshold 0.05, we rejected
the hypotheses that vlHMM and Co-occur have the same performance on single-query
sessions, and that vlHMM, Co-occur, HMM, and Set-based have the same performance
on multiple-query session. At the same time, the statistical significance test suggests
that vlHMM, vlHMM+, and CACB are not significantly different in performance.

In the following, we show three kinds of examples to compare different approaches.
The first kind of example shows the effectiveness of HMM over Co-occur. The second
shows the effectiveness of vlHMM over HMM. The third shows the effectiveness of
vlHMM over the Set-based method.

Table XVIII shows the first kind of example. The Co-occur and HMM methods are
compared to show why we should consider the order of queries for query suggestion.
For example, for query “007”, Co-occur suggests “oo7”, which appears to be a typo of
“007” and is not necessary. For query “1 day discount disneyland tickets”, Co-occur
suggests more general queries, which are not as good as suggestions from HMM.

Table XIX shows the second kind of example in which context information is avail-
able. From the table, we can observe that HMM tends to suggest queries which have

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:35

Table XX. Query suggestion by vlHMM and Set-Based

Method Test Cases

ask jeeves → google trade it → gmail

Set-Based yahoo bristol gumtree

ask jeeves question bristol homechoice

ask jeeves kids homeswapper

google images

ask

vlHMM google images gmail login

google maps gmail settings

wikipedia ebay

yahoo craigslist

google services gmail chat

been observed before. Co-occur tends to boost popular but irrelevant queries, such as
“google”. In contrast, vlHMM can suggest queries which are more relevant given the
contexts. Therefore, the performances of vlHMM and vlHMM+ are the best.

Table XX shows the third kind of example to compare vlHMM and the Set-based
method. From the table, we can observe that the suggestions generated by vlHMM
are better than those of set-based method. For example, given a query sequence “ask
jeeves → google”, we may conjecture that users will want to go to some search engine for
further searching. Therefore, the suggestion “yahoo” seems to be reasonable in the Set-
based and vlHMM methods. However, the set-based method will suggest suggestions,
such as “ask jeeves question”, since it observes the sequence “google → ask jeeves →
ask jeeves question” from the training data. Based on the annotations, this kind of
suggestions is not useful for sequence “ask jeeves → google”. In contrast, vlHMM will
provide better suggestions, such as “google maps” and “wikipedia”. It is the same for
the second example. Overall, vlHMM is better than Set-based method.

7. CONCLUSIONS

In this article, we proposed a general approach to context-aware search by learning a
variable length hidden Markov model (vlHMM) from search sessions extracted from
log data. We tackled the challenges of learning a large vlHMM with millions of states
from hundreds of millions of search sessions by developing a strategy for parameter
initialization which can greatly reduce the number of parameters to be estimated in
practice. We devised a method for distributed vlHMM learning under the map-reduce
model, and we further developed several techniques for improving the efficiency of the
distributed learning substantially. Moreover, to handle new queries, we constructed
both term and URL feature structures for the states in the learned vlHMM model.

In the experiments, we verified the observation that users’ search behaviors are
different in different context settings. We compared vlHMM with several baselines in
document reranking, document recommendation, and query suggestions. We found that
vlHMM works well with long context, especially when the test cases have more than
two queries. Particularly, in document reranking, vlHMM can outperform traditional
HMM when test cases have more than three queries. In query suggestion, vlHMM can
outperform HMM when test cases have more than two queries. We validated that the
sequential context models (e.g., HMM and vlHMM) can outperform the non-sequential
models (e.g., Co-occur and Set-based approaches) in query suggestion. Besides, our
acceleration approach can reduce 70% of training time for vlHMM. The term and URL
feature structures for handling new queries can improve the coverage of vlHMM by
about 20% for document reranking and about 10% for query suggestion.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:36 Z. Liao et al.

There are several possible extensions of this work. First, we only modeled the search
behaviors as context in this work, while we believe that the browsing behaviors are also
important for context modeling. Second, the states of our vlHMM were initialized via
the clustering results on a query-URL bipartite graph. The reason being that we want
to obtain the states in an efficient way. However, there can be various ways to construct
states. For examples, we can randomly assign queries or URLs into a fixed number of
states and train the vlHMM or learn a topical model, such as LDA, on the session data.
It is interesting to compare the efficiency and effectiveness of different approaches for
state initialization. Third, our vlHMM is an unsupervised approach, where the model
is trained without human supervision. It is better if we can leverage small amounts
of labeled data to improve the model. One possible way is to try semisupervised or
weakly-supervised methods. Last but not least, we trained vlHMM with a maximum
order of 5 and pruned less frequent and longer sessions. The reason being that we
want to improve the accuracy of the model by pruning noisy data. It is better if we can
mine the cross-session contexts and extend our approach in even longer contexts. In
addition, better denoising techniques are also preferred for processing the huge amount
of search logs.

REFERENCES

ANAGNOSTOPOULOS, A., BECCHETTI, L., CASTILLO, C., AND GIONIS, A. 2010. An optimization framework for query
recommendation. In Proceedings of the 3rd ACM International Conference on Web Search and Data
Mining (WSDM’10). ACM, New York, NY, 161–170.

BAEZA-YATES, R. A. AND TIBERIET, A. 2007. Extracting semantic relations from query logs. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07).
76–85.

BAEZA-YATES, R. A., HURTADO, C., AND MENDOZA, M. 2004. Query recommendation using query logs in
search engines. In Proceedings of the 9th International Conference on Extending Database Technology
(EDBT’04) Workshop on Clustering Information over the Web. 588–596.

BAUM, L., PETRIE, T., SOULES, G., AND WEISS, N. 1970. A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41, 1, 164–171.

BEEFERMAN, D. AND BERGER, A. 2000. Agglomerative clustering of a search engine query log. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00).
407–416.

BILMES, J. 1998. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian
mixture and hidden markov models. Tech. rep. Intetrnational Computer Science Institute, Berkley, CA.

BOLDI, P., BONCHI, F., CASTILLO, C., DONATO, D., AND VIGNA, S. 2009. Query suggestions using query-flow
graphs. In Proceedings of the Workshop on Web Search Click Data (WSCD’09). 56–63.

BOLDI, P., BONCHI, F., CASTILLO, C., DONATO, D., GIONIS, A., AND VIGNA, S. 2008. The query-flow graph: Model and
applications. In Proceeding of the 17th ACM Conference on Information and Knowledge Management
(CIKM’08). 609–618.

BORDA, J. C. 1781. Mémoire sur les élections au scrution. Histoire de l’Académie Royal des Sciences.

CAO, H., JIANG, D., PEI, J., CHEN, E., AND LI, H. 2009. Towards context-aware search by learning a very
large variable length hidden Markov model from search logs. In Proceedings of the 18th International
Conference on World Wide Web (WWW’09). 191–200.

CAO, H., JIANG, D., PEI, J., HE, Q., LIAO, Z., CHEN, E., AND LI, H. 2008. Context-aware query suggestion
by mining click-through and session data. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD).

CHAPELLE, O. AND ZHANG, Y. 2009. A dynamic bayesian network click model for Web search ranking. In
Proceedings of the 18th International Conference on World Wide Web (WWW’09). 1–10.

CHU, C.-T., KIM, S. K., LIN, Y.-A., YN, Y., BRADSKI, G., NG, A. Y., AND OLUKOTUN, K. 2006. Map-reduce for
machine learning on multicore. In Proceedings of the 20th Annual Conference on Neural Information
Processing Systems (NIPS’06). MIT Press, Combridge, MA, 281–288.

CRASWELL, N. AND SZUMMER, M. 2007. Random walks on the click graph. In Proceedings of the 30th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’07).
239–246.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

A vlHMM Approach to Context-Aware Search 22:37

CRASWELL, N., ZOETER, O., TAYLOR, M., AND RAMSEY, B. 2008. An experimental comparison of click position-bias
models. In Proceedings of the 1st ACM International Conference on Web Search and Data Mining
(WSDM’08). 87–94.

DEAN, J. AND GHEMAWAT, S. 2004. MapReduce: Simplified data processing on large clusters. In Proceedings of
the 6th Symposium on Operating System Design and Implementation (OSDI’04). USENIX Association,
Berkeley, CA.

DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. 1977. Maximal likelihood from incomplete data via the EM
algorithm. J. Royal Stat. Soci. Ser B, 39, 1–38.

DENG, H., KING, I., AND LYU, M. R. 2009. Entropy-biased models for query representation on the click graph.
In Proceedings of the 32th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’09). 339–346.

DONATO, D., BONCHI, F., CHI, T., AND MAAREK, Y. 2010. Do you want to take notes?: Identifying research
missions in Yahoo! search pad. In Proceedings of the 19th International Conference on World Wide Web
(WWW’10). ACM, New York, NY, 321–330.

DUPRET, G. E. AND PIWOWARSKI, B. 2008. A user browsing model to predict search engine click data from past
observations. In Proceedings of the 31st Annual ACM SIGIR International Conference on Research and
Development in Information Retrieval (SIGIR’08). 331–338.

DURBIN, R., EDDY, S. R., KROGH, A., AND MITCHISON, G. 1999. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, U.K.

ESTER, M., KRIEGEL, H., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD). 226–231.

FAGIN, R., KUMAR, R., AND SIVAKUMAR, D. 2003. Comparing top k lists. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’03). Society for Industrial and Applied Mathematics,
Philadelphia, PA, 28–36.

FONSECA, B. M., GOLGHER, P., PÔSSAS, B., RIBEIRO-NETO, B., AND ZIVIANI, N. 2005. Concept-based interactive
query expansion. In Proceedings of the ACM CIKM International Conference on Information and
Knowledge Management (CIKM’05). 696–703.

FOX, S., KARNAWAT, K., MYDLAND, M., DUMAIS, S., AND WHITE, T. 2005. Evaluating implicit measures to improve
Web search. ACM Trans. Inf. Syst. 23, 147–168.

GAO, J., YUAN, W., LI, X., DENG, K., AND NIE, J.-Y. 2009. Smoothing clickthrough data for Web search ranking.
In Proceedings of the 32th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’09). 355–362.

GUO, F., LIU, C., AND WANG, Y.-M. 2009. Efficient multiple-click models in Web search. In Proceedings of the
2nd ACM International Conference on Web Search and Data Mining (WSDM’09). 124–131.

HASSAN, A., JONES, R., AND KLINKNER, K.-L. 2010. Beyond DCG: User behavior as a predictor of a successful
search (WSDM’10). ACM, New York, NY, 221–230.

HUANG, C., CHIEN, L., AND OYANG, Y. 2003. Relevant term suggestion in interactive Web search based on
contextual information in query session logs. J. Am. Soc. Inf. Sci. Technol. 54, 7, 638–649.

JENSEN, E. C, BEITZEL, S., CHOWDHURY, A., AND FRIDER, O. 2006. Query phrase suggestion from topically tagged
session logs. In Proceedings of the 7th International Conference on Flexible Query Answering Systems
(FQAS’06). Lecture Notes in Computer Science, vol. 4027, Springer, Berlin Heidelberg, 185–196.

JOACHIMS, T. 2002. Optimizing search engines using clickthrough data. In Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02). ACM,
New York, NY.

JOACHIMS, T., GRANKA, L., PAN, B., HEMBROOKE, H., AND GAY, G. 2005. Accurately interpreting clickthrough
data as implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’05). 154–161.

JONES, R. AND KLINKNER, K. L. 2008. Beyond the session timeout: Automatic hierarchical segmentation of
search topics in query logs. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management (CIKM’08). ACM, New York, NY, 699–708.

JONES, R., REY, B., MADANI, O., AND GREINER, W. 2006. Generating query substitutions. In Proceedings of the
15th International Conference on World Wide Web (WWW’06). ACM, New York, NY, 387–396.

KOTOV, A., BENNETT, P., WHITE, R., DUMAIS, S., AND TEEVAN, J. 2005. Modeling and analysis of cross-session
search tasks. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’05).

LIAO, Z., JIANG, D., CHEN, E., PEI, J., CAO, H., AND LI, H. 2011. Mining concept sequences from large-scale
search logs for context-aware query suggestion. ACM Trans. Intell. Syst. Technol. 3, 17:1–17:40.

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

22:38 Z. Liao et al.

LIAO, Z., SONG, Y., HE, L.-W., AND HUANG, Y. 2012. Evaluating the effectiveness of search task trails. In Proceed-
ings of the 21st International Conference on World Wide Web (WWW’12). ACM, New York, NY, 489–498.

LUCCHESE, C., ORLANDO, S., PEREGO, R., SILVESTRI, F., AND TOLOMEI, G. 2011. Identifying task-based sessions in
search engine query logs. In Proceedings of the 4th ACM International Conference on Web Search and
Data Mining (WSDM’11). ACM, New York, NY, 277–286.

MEI, Q., KLINKNER, K., KUMAR, R., AND TOMKINS, A. 2009. An analysis framework for search sequences. In Pro-
ceeding of the 18th ACM Conference on Information and Knowledge Management (CIKM’09). 1991–1996.

MEI, Q., ZHOU, D., AND CHURCH, K. 2008. Query suggestion using hitting time. In Proceeding of the 17th ACM
Conference on Information and Knowledge Management (CIKM’08). 469–478.

RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications inspeech recognition.
Proc. IEEE 77, 2, 257–286.

RADLINSKI, F. AND JOACHIMS, T. 2005. Query chains: Learning to rank from implicit feedback. In Proceedings of
the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’05).
ACM, New York, NY.

SADIKOV, E., MADHAVAN, J., WANG, L., AND HALEVY, A. 2010. Clustering query refinements by user intent. In
Proceedings of the International Conference on World Wide Web (WWW’10). 841–850.

SHEN, X., TAN, B., AND ZHAI, C.-X. 2005. Context-sensitive information retrieval using implicit feedback. In
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’05). ACM, New York, NY, 43–50.

TONG, H., FALOUTSOS, C., AND PAN, J.-Y. 2006. Fast random walk with restart and its applications. In
Proceedings of the 6th International Conference on Data Mining (ICDM’06). IEEE Computer Society,
Washington, DC, 613–622.

WANG, Y., ZHOU, L., FENG, J., WANG, J., AND LIN, Z.-Q. 2006. Mining complex time-series data by learning
Markovian models. In Proceedings of the 6th International Conference on Data Mining (ICDM’06). IEEE
Computer Society, Washington, DC, 1136–1140.

WEN, J., NIE, J., AND ZHANG, H. 2001. Clustering user queries of a search engine. In Proceedings of the 10th
International Conference on World Wide Web (WWW’01). 162–168.

WHITE, R. W., BAILEY, P., AND CHEN, L. 2009. Predicting user interests from contextual information. In
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’09). 363–370.

WHITE, R. W., BENNETT, P. N., AND DUMAIS, S. T. 2010. Predicting short-term interests using activity-based
search context. In Proceedings of the 19th ACM International Conference on Information and Knowledge
Management (CIKM’10). 1009–1018.

WHITE, R. W., BILENKO, M., AND CUCERZAN, S. 2007. Studying the use of popular destinations to enhance Web
search interaction. In Proceedings of the 30th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’07). 159–166.

XIANG, B., JIANG, D., PEI, J., SUN, X., CHEN, E., AND LI, H. 2010. Context-aware ranking in Web search. In
Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’10). ACM, 451–458.

ZHAO, M., LI, H., RATNAPARKHI, A., HON, H.-W., AND WANG, J. 2006. Adapting document ranking to users
preferences using click-through data. In Proceedings of the Asia Information Retrieval Symposium
(AIRS’06). 26–42.

Received June 2011; revised February, August 2012, January, May 2013; accepted May 2013

ACM Transactions on the Web, Vol. 7, No. 4, Article 22, Publication date: October 2013.

