
 Open access Journal Article DOI:10.1109/JSSC.2003.818292

A VLIW processor with reconfigurable instruction set for embedded applications
— Source link

Andrea Lodi, Mario Toma, Fabio Campi, Andrea Cappelli ...+2 more authors

Institutions: University of Bologna

Published on: 27 Oct 2003 - International Solid-State Circuits Conference

Topics: Very long instruction word, Reconfigurable computing, Instruction set, Datapath and Benchmark (computing)

Related papers:

 The MOLEN polymorphic processor

 A high-performance microarchitecture with hardware-programmable functional units

 Garp: a MIPS processor with a reconfigurable coprocessor

 MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive applications

 Reconfigurable computing: a survey of systems and software

Share this paper:

View more about this paper here: https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-
4d0m0sqjoc

https://typeset.io/
https://www.doi.org/10.1109/JSSC.2003.818292
https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc
https://typeset.io/authors/andrea-lodi-2sbq79zo6d
https://typeset.io/authors/mario-toma-27lsg8f6qv
https://typeset.io/authors/fabio-campi-psavqq7f3l
https://typeset.io/authors/andrea-cappelli-3tytfnkvi2
https://typeset.io/institutions/university-of-bologna-2eizmpk2
https://typeset.io/conferences/international-solid-state-circuits-conference-tt9lhaoa
https://typeset.io/topics/very-long-instruction-word-14mk0amx
https://typeset.io/topics/reconfigurable-computing-k3k3p7je
https://typeset.io/topics/instruction-set-30ziam2r
https://typeset.io/topics/datapath-2o3bd0ze
https://typeset.io/topics/benchmark-computing-2t10njof
https://typeset.io/papers/the-molen-polymorphic-processor-4xnqcfj6ct
https://typeset.io/papers/a-high-performance-microarchitecture-with-hardware-udjxip5i6e
https://typeset.io/papers/garp-a-mips-processor-with-a-reconfigurable-coprocessor-gbf3edng39
https://typeset.io/papers/morphosys-an-integrated-reconfigurable-system-for-data-5431w0perb
https://typeset.io/papers/reconfigurable-computing-a-survey-of-systems-and-software-1bqra3qfdt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc
https://twitter.com/intent/tweet?text=A%20VLIW%20processor%20with%20reconfigurable%20instruction%20set%20for%20embedded%20applications&url=https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc
https://typeset.io/papers/a-vliw-processor-with-reconfigurable-instruction-set-for-4d0m0sqjoc

1876 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

A VLIW Processor With Reconfigurable Instruction
Set for Embedded Applications

Andrea Lodi, Mario Toma, Fabio Campi, Andrea Cappelli, Roberto Canegallo, and Roberto Guerrieri

Abstract—This paper describes a new architecture for
embedded reconfigurable computing, based on a very-long
instruction word (VLIW) processor enhanced with an additional
run-time configurable datapath. The reconfigurable unit is tightly
coupled with the processor, featuring an application-specific
instruction-set extension. Mapping computation intensive al-
gorithmic portions on the reconfigurable unit allows a more
efficient elaboration, thus leading to an improvement in both
timing performance and power consumption. A test chip has been
implemented in a standard 0.18- m CMOS technology. The test
of a signal processing algorithmic benchmark showed speedups
ranging from 4.3 to 13.5 and energy consumption reduced up
to 92%.

Index Terms—Energy consumption, field-programmable gate
array (FPGA), pipeline, reconfigurable processor.

I. INTRODUCTION

P
ROCESSORS suitable for the last generation of embedded

systems are facing opposite constraints. The first relevant

factor is due to the sharp increase in non-recurring engineering

and integration costs caused by the development of the most re-

cent deep-submicron technologies. In order to amortize costs

over high production volumes, and account for shorter time-to-

market in embedded systems development, higher levels of flex-

ibility are needed, thus ensuring reusability.

A second powerful factor is bound to the significant change

in embedded processor workloads that has taken place over

the last years. The typical application environment has grad-

ually shifted toward an increasing computational complexity,

requiring real-time elaborations of tasks such as image, audio,

and video compression and recognition, telecommunications

protocol stack management, and so on. This trend is described

by the so-defined Shannon’s Law [1]. Fig. 1 [3] shows al-

gorithmic complexity for wireless applications compared

with Moore’s law [2]. It can be observed that the increase of

computational requirements cannot be met by technological

developments alone. In order to fill this gap, some kind of

architectural breakthrough is needed. A new balance must

be sought between silicon resources and the patterns for

their computational utilization. The relation between required

complexity and available energy in storage devices for portable

applications appears even worse. Fig. 1 shows that the increase

of capacity of a typical battery is negligible compared to

Manuscript received April 1, 2003; revised June 26, 2003. This work was
supported by STMicroelectronics.

The authors are with the Advanced Research Center for Electronic
Systems (ARCES), University of Bologna, 40136 Bologna, Italy (e-mail:
fcampi@deis.unibo.it).

Digital Object Identifier 10.1109/JSSC.2003.818292

Fig. 1. Computational requirements versus Moore’s law and battery storage.

both algorithmic complexity and technological development.

Therefore, embedded processor design is facing a very strong

push toward both higher flexibility and higher computational

requirements, while in the case of portable applications, it is

also subject to severe power consumption constraints.

An appealing option is to exploit the ever-improving pro-

grammable logic devices technology, combining standard pro-

cessors with embedded configurable gate arrays in various ways

[4]. Such an approach is broadly referred to as reconfigurable

computing. This solution allows the user to configure a set of

required functional units into the programmable hardware at de-

ployment time, featuring a potentially infinite dynamic instruc-

tion set extension. The presence of reconfigurable hardware also

allows reuse of silicon resources, reconfiguring the instruction

set at run-time according to the currently executed algorithm.

In this paper, a new architectural model is proposed for an

embedded processor based on reconfigurable computing. In our

solution, we exploit a high degree of instruction level paral-

lelism coupling a very-long instruction word (VLIW) processor,

featuring a set of digital signal processing (DSP)-specific hard-

wired function units, with a custom designed gate array. The

gate array is tightly integrated within the CPU instruction set

architecture, behaving as part of both the control unit and the

datapath. The processor, called eXtended Instruction Set RISC

(XiRisc), is capable of executing a wide range of algorithms,

including DSP functions, data encryption, telecommunication

protocol handling, and multimedia elaboration. XiRisc signifi-

cantly enhances the timing performance for a given computa-

0018-9200/03$17.00 © 2003 IEEE

LODI et al.: VLIW PROCESSOR WITH RECONFIGURABLE INSTRUCTION SET FOR EMBEDDED APPLICATIONS 1877

tion, while reducing energy consumption with respect to low-

power embedded processors. In comparison with other recon-

figurable processor architectures, such results are achieved with

a considerably smaller increase in silicon resource occupation

and complexity in software development tools.

Section II overviews previous work related to processor and

field-programmable gate array (FPGA) coupling. In Section III,

we give a description of the computational model adopted and of

the VLIW processor architecture. Section IV describes the con-

figurable device in details both at the architectural and circuit

level. Section V presents a silicon prototype of the processor,

and the results achieved are discussed.

II. RELATED WORK

The first experiments to couple a general purpose processor

with an FPGA array in literature are probably the PRISM ma-

chine [5] and the Spyder machine [6]. In both cases, however,

due to the limitations of FPGA technology at that time, the pro-

cessor and the FPGA were located on separate chips, and the

communication between the two was the bottleneck that se-

verely limited the kind of applications that could benefit from

these approaches.

The first architectures that can be defined as reconfigurable

processors are PRISC [7], Chimaera [8], [9], and ConCISe [10].

In these examples, the reconfigurable array is tightly coupled

to the processor core and limited to combinational logic only.

Data is read and written directly to and from the processor reg-

ister file, making the array an additional function unit in the pro-

cessor pipeline. This makes the control logic simple, as almost

no overhead is required in transferring data to the programmable

hardware unit. The utilization of an integrated compiler tool is

also eased by the fine grain of instructions mapped on the recon-

figurable array. The boost in performance that can be achieved

is severely limited by the combinational nature of the reconfig-

urable array.

Later attempts have been focused on introducing not combi-

natorial computation in the embedded gate array [11], [12]. In

these cases, the allowed performance increase is more signifi-

cant, but the definition of an integrated software development

tool is not trivial. Furthermore, in many applications featuring

this functional-unit approach, a severe bottleneck appeared in

the access to data stored in memory. In all of the above described

architectures, both the processor core and the embedded gate

array had to be deeply modified in order to be coupled togheter.

This prevents the easy reuse of existing commercial devices,

thus severely increasing design costs.

To overcome the described limitations, later attempts have

focused on a different architectural model, utilizing larger em-

bedded configurable logic loosely coupled with existing stan-

dard processors. In the GARP machine [13], a custom-designed

gate array works as a coprocessor for a standard million-instruc-

tions-per-second (MIPS) core. Data is exchanged between the

two using dedicated move instructions, causing an overhead due

to explicit communication. If the granularity of tasks mapped

on the array is relatively high (in terms of required execution

cycles), then the communication overhead may be considered

negligible. The array can be considered a configurable datapath

implementing customized pipelines that can be determined by

the configuration. Each row implements a stage in the pipeline.

This solution, if somehow imposing limits on the definition of

possible array-based instructions, makes a direct implementa-

tion of a data flow graph quite straightforward, to the point that

GARP can be programmed using a retargeted C compiler rather

than involving HDL languages.

The Molen processor [14] is another example of reconfig-

urable architecture, where instructions are decoded by an arbiter

determining which unit is targeted. “Normal” instructions are

computed by the hardwired core processor (CP) while appli-

cation-specific instructions are computed on the reconfigurable

logic. One of the main points of interest is that the processor core

does not need to be redesigned to support the reconfigurable

unit. Nevertheless, the communication overhead introduced is

comparable to that of processors based on the functional unit

model like PRISC and Chimaera. Different from Garp and other

previous attempts, Molen does not attempt to propose a mean for

hardware/software co-compilation. In fact, tasks to be mapped

on the programmable hardware unit are considered in the source

code as atomic tasks, primitive operations microcoded in the

processor architecture. Configurations are not determined by

compilation, but defined as part of the processor design itself.

This allows the architecture a large degree of freedom in the def-

inition of the programmable array structure; in fact, Molen can

exploit commercial FPGAs, taking advantage of the technology

development in this field, while maintaining the basic architec-

tural framework [15].

In conclusion, many solutions have been proposed in recent

years, featuring various degrees of tradeoffs among perfor-

mance, flexibility, and area. The availability of high-level

programming tools (e.g., C language) not involving a hardware

design (e.g., HDL description) is also a major factor that has

to be taken into account.

A broad classification can be made according to the size of

the hardware programmable logic and its degree of proximity to

the CPU [16]:

• Loosely coupled architectures [13], [14] (coprocessor

model) usually featuring large reconfigurable devices

(often commercial FPGAs). Performance is improved

in applications where it is possible to extract a compu-

tation-intensive coarse-grained task loosely interacting

with the remaining application parts. Hardware/software

partitioning is made manually, and the reconfigurable

device is programmed using HDL languages.

• Tightly coupled architectures [7]–[12], [17] (func-

tional-unit model), usually featuring smaller reconfig-

urable devices especially suited for fine-grained tasks

strongly interacting with the processor execution flow.

This allows good performances for a wider range of

applications and the possibility of describing algorithms

using high-level programming languages.

III. SYSTEM ARCHITECTURE

XiRisc is a VLIW processor based on the classic RISC

five-stages pipeline [18]. It includes hardwired functional units

1878 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

Fig. 2. System architecture.

for DSP calculations and an additional pipelined run-time

configurable datapath (PiCo gate array, GA or PiCoGA),

acting as a repository of virtual application-specific functional

units. XiRisc is a load/store architecture (Fig. 2), where

all data loaded from memory are stored in the register file

before they are actually computed by functional units. The

processor fetches two 32-bit instructions each clock cycle,

which are executed concurrently on the available functional

units, determining two symmetrical separate execution flows

called data channels. General-purpose functional units perform

typical DSP calculations such as 32-bit multiply–accumulation,

automatic hardware loop iteration, single-instruction–mul-

tiple-data (SIMD) ALU operations, and saturation arithmetic.

The reconfigurable functional unit provides the capability

of dynamically extending the processor instruction set with

application-specific multicycle instructions, thus achieving

run-time configurability. The architecture is fully bypassed, to

maintain high data throughput through hardware resources.

The PiCoGA is tightly integrated in the processor core, just

like any other functional unit, receiving inputs from the register

file and writing back results to the register file, but differently

than traditional functional unit in that more complex tasks can

be executed. First, in order to better exploit instruction-level par-

allelism, the PiCoGA supports up to four source and two des-

tination registers for each assembly instruction issued. More-

over, PiCoGA can hold an internal state across several compu-

tations, thus reducing the pressure on connection from/to the

register file. Elaboration on the two hardwired data channels

and the reconfigurable data path is concurrent, thus improving

parallel computations. For instance, data memory access and

PiCoGA elaboration may be done concurrently, thus reducing

the memory bandwidth bottleneck. Synchronization and consis-

tency between program flow and PiCoGA elaboration is granted

by hardware stall logic based on a register locking mechanism,

which handles read-after-write hazards.

Dynamic reconfiguration is handled by a special assembly in-

struction, which loads a configuration inside the array reading

from an on-chip dedicated memory called configuration cache.

In order to avoid stalls due to reconfiguration when different

PiCoGA functions are needed in a short time span, several con-

figuration may be stored inside the array, and are immediately

available. Thus, the processor instruction set has been extended

with two types of instructions, as shown in [19]:

• GA-load, which loads a configuration inside the

PiCoGA;

• GA-op, which starts the computation of an application-

specific function stored in the array.

The proposed computational model takes advantage of the

synergy between different application specific functional units

tightly integrated into the same core. A reconfigurable device

behaving as a coprocessor needs to implement an entire com-

putational kernel to achieve high throughput because the com-

munication overhead to the processor core is otherwise consid-

erable. As a consequence, when a kernel is composed of both

functions suitable to be mapped in a reconfigurable device and

operators which could not be efficiently implemented, it is often

completely computed in the processor core, leaving the array

LODI et al.: VLIW PROCESSOR WITH RECONFIGURABLE INSTRUCTION SET FOR EMBEDDED APPLICATIONS 1879

Fig. 3. PiCoGA structure.

unused. In our model, the communication overhead between the

PiCoGA and the other functional units is small, thus allowing

to distribute the different operations included in a single kernel

to the functional unit that fits them best. Wide multipliers, vari-

able shifters, and medium access controls (MACs), which are so

difficult to implement efficiently in traditional reconfigurable

devices, could be executed in dedicated hardwired functional

units, while the configurable unit exploits parallelism of even

small portion of kernels. In this way, the use of the PiCoGA in-

creases considerably, justifying its cost in terms of area for a

wide range of applications.

IV. PIPELINED CONFIGURABLE GATE ARRAY

In the past, a few attempts have been carried out in order

to design a configurable unit tightly integrated in a processor

core. Their study led to some guidelines that have to be followed

to achieve a significant gain in the performance of the overall

system.

First, the configurable unit should be able to perform com-

plex functions that require multicycle latency. The PiCoGA is

designed to implement a peculiar pipeline where each stage cor-

responds to a piece of computation, so that high-throughput cir-

cuits can be mapped. The array is also provided with a control

unit which controls pipeline activity, just as if it were an addi-

tional datapath. A sequence of PiCoGA instructions can then be

processed, filling the pipeline in order to exploit parallelism.

Moreover, the configurable unit should preserve its state

across instruction executions. A new PiCoGA instruction

may use the results of previous ones stored on the array, thus

reducing the pressure on the register file. Since most of the

bit-level control logic would be computed in the standard pro-

cessor pipeline, the configurable unit should have a granularity

suitable for multibit datapath implementations. At the same

time, the PiCoGA should be flexible enough to compensate the

other functional units for the kind of computations that are not

efficient.

Finally, a tight integration in the processor core gives the op-

portunity to use the PiCoGA in many different computational

cores. Therefore, run-time reconfiguration is necessary to sup-

port new sets of dynamically defined instructions.

A. PiCoGA Structure

The PiCoGA is an array of rows, each representing a pos-

sible stage of a customized pipeline. The datapath width should

comply with the processor data width, so each row is able to

process 32-bit operands. As shown in Fig. 3, each row is con-

nected to other rows with configurable interconnect channels

and to the processor register file with six 32-bit global busses.

In a single cycle, four words can be received from the register

file and up to two words can be produced for writeback oper-

ations. The busses span the whole array, so that any row can

access them, improving routability.

Pipeline activity is controlled by a dedicated configurable

control unit, which generates three signals for each row of the

array. The first one enables computation on the pipeline stage,

allowing the registers in the row to sample new data. In every

cycle, only rows having input data ready are activated. In this

way, a state stored in flip-flops inside the array can be cor-

rectly held and at the same time unnecessary power dissipation

is avoided. The second signal controls initialization steps of a

state held inside the array, while the third enables a burst write

of lookup tables (LUTs) with data available in the processor reg-

ister file.

Each row is composed of 16 reconfigurable logic cells

(RLCs) and a configurable horizontal interconnect channel.

Vertical channels have 12 pairs of wires, while horizontal ones

have only eight pairs of wires. Switch blocks adjacent to each

RLC connect vertical and horizontal wires.

1880 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

Fig. 4. Reconfigurable logic cell structure.

Since most of the remaining portion of control logic not

mapped in the processor standard dataflow is implemented in

the configurable control unit, the array core can be data-path

oriented. Therefore, the PiCoGA has a 2-bit granularity for

both interconnections and LUTs, except for input connection

blocks which have 1-bit granularity. This can be considered a

good tradeoff, since bit-level operators such as bit permutation,

which are frequent in cryptography algorithms, are not well

supported by other functional units.

B. Configuration Caching

Since the PiCoGA is tightly integrated in the processor core,

it can be frequently used for many different computational ker-

nels. Reconfiguration of traditional FPGAs can take hundreds

or most frequently thousands of clock cycles, depending on the

reprogrammed region size. Although computation can still con-

tinue on other processor resources, scheduling will hardly find

enough instructions to avoid stalls. This could overcome any

benefit from the use of dynamically configurable arrays. Fur-

thermore, in some algorithms the function to be implemented

is only known at the time it has to be executed, so that no pre-

ventive reconfiguration can be performed. In such cases, many

computational kernels can hardly take advantage of the presence

of a configurable unit.

Three different approaches have been adopted to overcome

these limitations. First, the PiCoGA is provided with a first-level

cache, storing four configurations for each reconfigurable logic

cell [20], [21]. Context switch takes place in a single clock cycle,

providing four immediately available PiCoGA instructions. Fur-

ther increases in the number of functions simultaneously sup-

ported by the array can be obtained exploiting partial run-time

reconfiguration (PRTR), which gives the opportunity for repro-

gramming only the portion of the PiCoGA needed by the con-

figuration. As a consequence, different configurations can be

simultaneously loaded in different regions of the same context

of the array.

The PiCoGA may concurrently execute one computation in-

struction and one reconfiguration which configures the next in-

struction to be performed. By doing so, miss occurrences should

be highly reduced, even when the number of used configurations

is large.

Finally, reconfiguration time can be shortened exploiting a

wide configuration bus to the PiCoGA. The RLCs in a row are

programmed concurrently throug 192 dedicated wires, taking

up to 16 cycles to have a complete reconfiguration. A dedicated

second-level cache on chip (configuration cache) is needed to

provide such a wide bus, while the whole set of available func-

tions can be stored in an off-chip, possibly nonvolatile memory.

C. Reconfigurable Logic Cells

An RLC is composed of a cluster of two LUTs (Fig. 4). LUTs

have 2-bit granularity, that is, 4-bit inputs and 2-bit outputs

(4:2). A total of six inputs from the configurable interconnect

channels are provided to the RLC which can be used to imple-

ment logic functions with different granularity combining the

two LUTs together. A two level multiplexing stage controlled

by two of the inputs performs the combination of LUT outputs.

By doing so, mapping of either a 6:1, a 5:2, or a 4:4 logic func-

tion is allowed. An RLC contains four registers, one for each

output, which are controlled by the configurable control unit.

RLC outputs are internally routed back to the input block, in

order to implement the cascade of two LUTs or logic holding

a state such as accumulators. A block controlled by the con-

trol unit is introduced on the feedback path to support different

kinds of state initialization. At first, a 4:1 multiplexer is set to

propagate either a constant value or a value coming from one of

the RLC inputs, providing an initial value for the static variable

held. Then, as soon as the control unit determines that the initial

value is no longer needed, data coming either from the internal

loop or from another RLC input are propagated by the multi-

plexer for normal operations.

A single RLC can implement a 2-bit adder using the two

LUTs to compute both results with carry-in equal to 0 and 1. The

LODI et al.: VLIW PROCESSOR WITH RECONFIGURABLE INSTRUCTION SET FOR EMBEDDED APPLICATIONS 1881

Fig. 5. Lookup table configuration and burst write.

same multiplexers, which combine LUT outputs, can be used to

propagate the right result on the base of the carry-in value in a

carry–select fashion. At the same time, a dedicated carry gen-

eration block computes sum carry-out signals, both in the case

of carry-in equal to 0 and 1, which are fed into a carry chain

block performing fast lookahead logic. Since the implementa-

tion of a 2-bit adder needs only two RLC outputs as result, the

other two outputs can be used to route the final carry-out and the

overflow bit, in the case of signed operands. Besides sum carry

logic, other bit-serial computations have been introduced in the

carry generation block, which could take advantage of the fast

propagation chain, such as comparison, OR and XOR operators.

Exploiting the input block of the RLC to invert signals, even

more operators can be efficiently mapped in the same way.

Since LUTs are well suited for compactly storing data inside

the PiCoGA, a mechanism for writing them at execution time

has been provided (Fig. 5). Each LUT is addressed for configu-

ration as a memory with four 8-bit words, in order to have fast

reconfiguration of the array. Using the same addressing, a burst

write mechanism is provided which is able to store four 2-bit

data from the global lines in one clock cycle. It is thus possible

to store all 32-bit registers of the processor register file into a

single PiCoGA row in only eight clock cycles. Address genera-

tion for burst write is performed by a 3-bit counter controlled by

two signals provided by the control unit for initialization (init)

and write (burst on) phases.

D. Carry Chain Logic

Each RLC contains a dedicated carry chain block performing

level-one lookahead logic. Dedicated wires along each row, di-

rectly connecting configurable cells, are also provided to have

fast propagation of carry signals.

A standard carry–select architecture is implemented ex-

ploiting a 2-to-1 multiplexer, driven by the carry-in signal

coming from the previous RLC, which selects the correct

carry-out. If we consider the implementation of a -bit adder,

the critical path delay of a simple carry-select architecture

passes through multiplexers, one for each RLC used. A

level-one lookahead technique has been applied in order to

Fig. 6. Level-one lookahead carry chain logic.

reduce roughly by one half the total number of cascaded

multiplexers. Adopting this kind of architecture, a group of

RLCs in a row implementing an adder need to be characterized

as a sequence of even RLCs alternated with odd ones. Odd and

even RLCs use different logic for carry propagation. However,

in order to maintain the placement of any unconstrained adder

in a row, we designed identical RLCs, implementing both odd

and even branches of the chain. An additional multiplexer is

required to select which of the two branches is actually used,

while four more signals dedicated to the chain have to be

added to the standard carry-out signal. In Fig. 6, the utilized

multiplexers are highlighted, showing that the critical path

passes only through the multiplexer of even RLCs.

Special care is needed in the configuration of the RLC com-

puting the least significant bit (LSB). It must be an odd-type

RLC, and its carry generation block must be configured to pro-

duce identical outputs, in order to ignore carry chain input sig-

nals coming from the two previous RLCs.

With the proposed carry chain, the longest path passes

through multiplexers if is even and

if is odd. Even though a standard-cells synthesis and au-

tomatic back-end flow was adopted for the design of RLC

logic, comprising carry logic, a 32-bit addition at 150 MHz in

a 0.18- m technology was achieved.

E. Decoder-Based Multicontext Interconnections

In typical FPGAs, each switch connecting two lines in the

routing channel is individually driven by a dedicated SRAM

cell which stores a configuration bit. In the case of multicontext

arrays, each SRAM needs to be replicated times, in order to

have immediately available configurations, thus considerably

increasing area occupation.

The architecture proposed is based on the introduction of a

decoding stage for each line possibly connecting to wires in the

routing channel (see Fig. 7), in order to reduce the number of

configuration memories. If we consider the case of an input

line to a logic block which can be connected to wires of

the routing channel, the number of memories needed becomes

instead of . With regard to delays, the scheme

adopted does not increase them with respect to the typical case,

as only one pass transistor is passed when connecting two lines;

1882 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

Fig. 7. Decoder-based multicontext structure applied to an RLC input.

on the contrary, the reduction in area should also reduce para-

sitic capacitance and delays.

The application of this approach to an output of a logic block

obviously reduces routability, as only a single wire of the routing

channel can be connected to the line from the RLC. However,

in [22], the impact of a similar structure on routability was in-

vestigated, showing that only a small penalty has to be paid.

In order to achieve considerable area reduction, both memory

cells and decoder have been carefully designed. Since memory

area becomes more and more important as the number of con-

texts grows, single-ended cells were used to compose a 1-bit

multicontext SRAM as shown in Fig. 7. Two different lines

are provided for writing and reading, so that reconfiguration

of a context can take place while another one is computing.

In order to keep the pass gate used for writing small, the tra-

ditional six-transistors scheme has been extended with an addi-

tional nMOS (Fig. 8) which can be turned off when a high value

needs to be stored. This solution offers a much more compact

layout than the one designed simply increasing the pass gate

width, and shows to be even more convenient when scaling to

0.13- m technology.

With regard to the decoder, a special circuit has been designed

in order to have minimum area occupation even at the expense of

increased latency. In Fig. 9, the schematic of a 3-8 decoder is de-

picted where all transistors are minimum sized; similar schemes

can obviously be obtained for any number of lines that need

to be connected. The decoder structure is based on an nMOS

pull-down net and a pMOS tree, which minimizes the number

of transistor in the pull-up net. Since in classic schemes most

of the area occupation is due to the pull-down net, which needs

nMOS transistors for each decoder output, a dif-

Fig. 8. SRAM cell schematic for each context.

Fig. 9. 3:8 decoder scheme.

ferent solution has been adopted. As depicted in Fig. 9, decoder

outputs are connected two by two with pass transistors

so that only one more nMOS transistor is needed as a pull-down

circuit for each output.

V. RESULTS

Several digital signal processing algorithms (Table I) were

implemented on the XiRisc processor and tested on a proto-

type chip, in order to measure power consumption, timing per-

formance, and area cost. Area occupation is a major issue for

reconfigurable architectures, especially those based on the co-

processor model, since computation-intensive portions of al-

gorithms are entirely mapped on the embedded programmable

device. On the other hand, XiRisc allows the programmer to

choose an appropriate hardware/software partitioning, ensuring

flexibility in the area–performance tradeoff. This is shown in

Table II, where different implementations of the same algo-

rithm are presented, exploiting various degrees of parallelism.

A 24-row PiCoGA is compared with a 48-row one, considering

that area occupations in a 0.18- m technology are: 1.2 mm

for the VLIW core, 9 mm for instructions and data cache,

2 mm for configuration cache and PiCoGA interface logic,

and 0.6 mm for each PiCoGA row. The area increase shown

in Table II compares a standard VLIW processor (including in-

struction and data caches) with a XiRisc processor (adding the

LODI et al.: VLIW PROCESSOR WITH RECONFIGURABLE INSTRUCTION SET FOR EMBEDDED APPLICATIONS 1883

TABLE I
PiCoGA AREA REQUIRED AND SPEED-UP FOR SOME

SIGNAL PROCESSING ALGORITHMS

TABLE II
AREA VERSUS SPEED-UP TRADEOFF

Fig. 10. Chip micrograph.

area contributions due to PiCoGA, configuration cache and in-

terface logic). Analyzing these numbers and speed-up figures,

a 24-row PiCoGA seems to be a good tradeoff for target ap-

plications. Considering technology scaling (i.e., m),

the best tradeoff will move toward implementations with more

rows, thus increasing the advantages of the proposed architec-

ture.

A prototype test chip (Fig. 10) that couples the VLIW pro-

cessor with an eight-row PiCoGA has been fabricated using

0.18- m 1.8-V, six-metal-layers CMOS technology. This is ad-

equate for simple mappings (e.g., DES) and for basic measure-

ments. This prototype has a large area overhead due to the pres-

ence of testing structures and layout inefficiencies, which re-

quires a row area of 1.9 mm . Information concerning the chip

is summarized in Table III.

A software development environment based on a customiza-

tion of the GNU-Gcc toolchain [24] has been used to support

TABLE III
TEST CHIP INFORMATION

TABLE IV
POWER CONSUMPTION FOR A STANDARD VLIW PROCESSOR

TABLE V
ROW ACTIVITY RATE

architecture programming and benchmarking. The availability

of a software profiling environment offers an appropriate mean

to manually determine critical computation kernel that should

be implemented on the PiCoGA.

Table I shows speed-ups for several algorithms, calculated

through VHDL logic simulations and confirmed by experi-

mental results. Comparisons are made counting the number

of execution cycles with respect to a DSP-like architecture,

namely, a standard RISC enhanced by the most common DSP

features. These figures, ranging from 4.3 to 13.5 , prove the

flexibility of the presented architecture which is effective for a

wide range of different algorithms.

A special effort was made for low-power architectural and

circuit design, since this is a key issue for embedded applica-

tions. By analyzing the main sources of power consumption

for standard processor (reported in Table IV), it is clear that

the main contribution (about 75%) is due to memory accesses

(instruction and data), and every tested algorithm roughly

presents the same distribution. These results were obtained

through logic simulations, and are confirmed by measurements

made on a previous prototype [25] which does not include the

1884 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

TABLE VI
POWER CONSUMPTION FOR XiRisc PROCESSOR

Fig. 11. Normalized energy consumption histogram.

PiCoGA. Since a new instruction is fetched every clock cycle,

the only way to reduce instruction memory energy consumption

is to reduce the number of execution cycles. In fact, instruction

memory consumption scales proportionally with speedup,

therefore, a VLIW architecture enhanced by the PiCoGA

achieves both speedup and instruction memory consumption

reduction. Several tests have shown that access to data memory

roughly scales with speedup. In fact, the execution on PiCoGA

allows an improved efficiency for data management (e.g.,

data stored locally on PiCoGA), thus reducing data memory

consumption. Additional power consumption due to PiCoGA

computation is small compared to the overall value. In fact

only PiCoGA rows involved in computations and activated by

the row control unit require additional energy, while the unused

portions of the PiCoGA are kept inactive. Measurements

show that the average energy consumption for a computation

which involves a row in one cycle is 200 pJ. Since the average

PiCoGA activity rate is very low and each reconfigurable cell

is unused for the most time, this technique is very effective.

Activity rate values, obtained through logic simulations, are

shown in Table V.

Combining simulation values from Table V with power con-

sumption measurements of a PiCoGA row and the remaining

XiRisc parts, it is possible to give a reliable PiCoGA con-

sumption estimate also for algorithms that do not fit on the

prototype chip, due to its limited number of rows. The final

results are summarized in Fig. 11 and in Table VI, which

show the advantages of the proposed architecture, compared

with standard DSP, with an energy consumption reduction up

to 92%.

Fig. 12. Energy consumption versus number of clock cycles between two
reconfigurations.

A further contribution to energy consumption is due to

dynamic reconfiguration, but this is not present during normal

execution. In fact, since reconfiguration happens only once at

the beginning of PiCoGA computations, the overall average

power consumption depends on the number of execution

cycles. Fig. 12 depicts this relation, and shows that the impact

of reconfiguration consumption becomes negligible when

a given configuration is used for more than 1000 cycles.

Typically, a configuration is active for a far larger number of

cycles. For instance, 1000 cycles are needed to encrypt 80

bytes with DES algorithm or to compute the parity check of

300 bytes. Therefore, in most situations, its possible to neglect

reconfiguration overhead, considering only execution energy.

VI. CONCLUSION

A new architecture for reconfigurable computing, tightly inte-

grating a run-time reconfigurable pipelined datapath (PiCoGA)

with a VLIW processor core, has been presented. A prototype

chip has been implemented, and testing proved the flexibility of

this approach, allowing a more efficient elaboration of a wide

range of signal processing algorithms. Through application-spe-

cific instructions mapped on GA, speedups ranging from 4.3

to 13.5 are achieved, while instruction and data memory ac-

cesses are reduced allowing an energy consumption reduction

up to 92%.

LODI et al.: VLIW PROCESSOR WITH RECONFIGURABLE INSTRUCTION SET FOR EMBEDDED APPLICATIONS 1885

ACKNOWLEDGMENT

The authors would like to thank L. Lavagno, C. Passerone,

and A. La Rosa of the Politecnico di Torino for software tools

development.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J., vol. 27, pp. 379–423, 623–656, July, Oct. 1948.
[2] G. E. Moore, “Cramming more components onto integrated circuits,”

Electronics, vol. 38, no. 8, pp. 114–117, Apr. 1965.
[3] J. M. Rabaey, “Silicon platforms for the next generation systems—What

role does reconfigurable hardware play?,” in Proc. 9th Int. Workshop

Field Programmable Logic and Applications, Aug. 2000, pp. 277–285.
LNCS 1896.

[4] A. DeHon, “The density advantage of reconfigurable computing,” IEEE

Computer, vol. 33, pp. 41–49, Apr. 2000.
[5] P. Athanas and H. Silverman, “Processor reconfiguration through in-

struction-set metamorphosis,” IEEE Computer, vol. 26, pp. 11–18, Mar.
1993.

[6] C. Iseli and E. Sanchez, “Spyder: a SURE (SUperscalar and REconfig-
urable) processor,” J. Supercomput., vol. 9, no. 3, pp. 231–252, 1995.

[7] R. Razdan and M. Smith, “A high-performance microarchitecture with
hardware-programmable functional units,” in Proc. 27th Annu. Int.

Symp. Microarchitecture, Nov. 1994, pp. 172–180.
[8] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera reconfigurable

functional unit,” in Proc. IEEE Symp. FPGAs for Custom Computing

Machines, Napa Valley, CA, Apr. 1997, pp. 87–96.
[9] Z. A. Ye, N. Shenoy, and P. Banerjee, “A C compiler for a processor

with a reconfigurable functional unit,” in Proc. ACM/SIGDA Int. Symp.

Field Programmable Gate Arrays, Feb. 2000, pp. 95–100.
[10] B. Kastrup, A. Bink, and J. Hoogerbrugge, “ConCISe: a compiler-driven

CPLD-based instruction set accelerator,” in Proc. 7th Annu. IEEE Symp.

Field-Programmable Custom Computing Machines, Napa Valley, CA,
Apr. 1999, pp. 92–100.

[11] R. Wittig and P. Chow, “OneChip: an FPGA processor with reconfig-
urable logic,” in Proc. IEEE Symp. Field-Programmable Custom Com-

puting Machines, Napa Valley, CA, Mar. 1996, pp. 126–135.
[12] J. Jacob and P. Chow, “Memory interfacing and instruction specification

for reconfigurable processors,” in Proc. ACM/SIGDA Int. Symp. Field

Programmable Gate Arrays, Monterey, CA, Feb. 1999, pp. 145–154.
[13] J. R. Hauser and J. Wawrzynek, “Garp: a MIPS processor with a recon-

figurable coprocessor,” in Proc. 1997 IEEE Symp. Field Programmable

Custom Computing Machines, 1997, pp. 12–21.
[14] S. Vassiliadis, S. Wong, and S. Coţofană, “The MOLEN ��-coded pro-

cessor,” in Proc. 11th Int. Conf. Field Programmable Logic and Appli-

cation (FPL), 2001, pp. 275–285.
[15] S. Wong, S. Vassiliadis, and S. Coţofană, “Future directions of (pro-

grammable and reconfigurable) embedded processors,” in Proc. 2nd

Workshop System Architecture Modeling and Simulation (SAMOS2002),
2002, pp. 1–18.

[16] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C.
Ebeling, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V. K. Prasanna,
and H. A. E. Spaanenburg, “Seeking solutions in reconfigurable com-
puting,” IEEE Computer, vol. 30, pp. 38–43, Dec. 1997.

[17] J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfig-
urable public-key cryptography processor,” IEEE J. Solid-State Circuits,
vol. 36, pp. 1808–1820, Nov. 2001.

[18] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative

Approach. San Mateo, CA: Morgan Kaufmann, 1996.
[19] F. Campi, R. Canegallo, A. Cappelli, R. Guerrieri, A. La Rosa, L.

Lavagno, A. Lodi, C. Passerone, and M. Toma, “A reconfigurable
processor architecture and software development environment for
embedded systems,” presented at the Reconfigurable Architectures
Workshop, Nice, France, Apr. 2003.

[20] A. DeHon, “DPGA-coupled microprocessors: Commodity ICs for the
early 21st century,” in Proc. IEEE Symp. Field-Programmable Custom

Computing Machines, Napa Valley, CA, Apr. 1994, pp. 31–39.
[21] S. Trimberger, D. Carberry, A. Jhonson, and J. Wong, “A time multi-

plexed FPGA,” in Proc. IEEE Symp. Field-Programmable Custom Com-

puting Machines, Napa Valley, CA, Apr. 1997, pp. 34–40.

[22] V. Baena-Lecuyer, M. A. Aguirre, A. Torralba, L. G. Franquelo, and J.
Faura, “Decoder-driven switching matrices in multicontext fpgas: Area
reduction and their effect on routability,” in Proc. IEEE Int. Symp. Cir-

cuits and Systems, vol. 1, 1999, pp. 463–466.
[23] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. Guerrieri,

“A pipelined configurable gate array for embedded processors,” in Proc.

ACM Symp. Field-Programmable Gate Arrays, Feb. 2003, pp. 21–30.
[24] A. La Rosa, L. Lavagno, and C. Passerone, “A software development

tool chain for a reconfigurable processor,” in Proc. Int. Conf. Compilers,

Architecture and Synthesis for Embedded Systems, 2002, pp. 93–98.
[25] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusable 32-bit VLIW

Risc core,” in Proc. 27th Eur. Solid State Circuits Conf., Sept. 2001,
pp. 456–459.

Andrea Lodi received the Electrical Engineering and
the Ph.D. degrees from the University of Bologna,
Bologna, Italy, in 1998 and 2002, respectively.

Since 1998, he has been a Consultant for STMi-
croelectronics in the fields of signal-processing
algorithms and innovative architectures of sys-
tems-on-chips and reconfigurable devices. He is
currently with the Advanced Research Center on
Electronic Systems (ARCES), Bologna, Italy.

Mario Toma received the Dr.Eng. degree in
electronics and the Ph.D. degree from the University
of Bologna, Bologna, Italy, in 1998 and 2002,
respectively.

Since 1999, he has been a Consultant for STMi-
croelectronics for the application of innovative CAD
CMOS design platforms on digital system-on-chip
design. He is currently with the Advanced Reasearch
Center on Electronic Systems (ARCES), Bologna,
Italy.

Fabio Campi received the M.Sc. degree in micro-
electronics and the Ph.D. degree in electronics and
computing science from the University of Bologna,
Bologna, Italy, in 1999 and 2003, respectively.

In 1995 and 1996, he was with the Tampere Uni-
versity of Technology, Tampere, Finland, as Visiting
Student. Since 1999, he has been a Consultant for
Central Research and Development, STMicroelec-
tronics, for the application of innovative CMOS
design platforms on digital system-on-chip design.
He is currently with the Advanced Reasearch Center

on Electronic Systems (ARCES), Bologna. His main research interests are
VLSI system-on-chip design, embedded microprocessors, and development of
advanced architectures and algorithms for digital signal processing.

Andrea Cappelli received the Dr.Eng. degree
in electrical engineering form the University of
Bologna, Bologna, Italy, in 2002, where he is
currently working toward the Ph.D. degree.

Since 2002, he has also been a Consultant for
STMicroelectronics.

1886 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

Roberto Canegallo received the degree in electronic
engineering from the University of Pavia, Pavia, Italy.

From 1992 to 1999, he was with STMicroelec-
tronics, Agrate Brianza, Italy, conducting research
on a wide variety of topics in mixed-analog systems,
such as optical character recognition, image sensors,
and multilevel nonvolatile Flash memories. In 1999,
he joined the joint Laboratory ST/University of
Bologna, Bologna, Italy. His current research inter-
ests include the development of three-dimensional
high-bandwidth chip-to-chip communication.

Roberto Guerrieri received the Electrical Engi-
neering and the Ph.D. degrees from the University
of Bologna, Bologna, Italy.

He is currently an Associate Professor in elec-
trical engineering with the University of Bologna.
Beginning in 1986, he was visiting the Department
of Electrical Engineering and Computer Science,
University of California at Berkeley, and the
Department of Electrical Engineering at the Mass-
achusetts Institute of Technology, Cambridge. He
has published more than 90 papers in various fields

including numerical simulation of semiconductor devices, numerical solution
of Maxwell’s equations, and parallel computation on massively parallel
machines. Recently, his work has focused on integrated silicon systems to
solve various problems such as optical and capacitive smart sensors, integrated
digital circuits for speech and video processing and analog circuits for fuzzy
controllers. In 1998, he became Director of the Laboratory for Electronic
Systems, a joint venture of the University of Bologna and STMicroelectronics
for the development of innovative designs of systems on chip.

Dr. Guerrieri received the Best Paper Award from the IEEE in 1992 for his
work in the area of process modeling.

