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A VLSI Architecture for Lifting-Based Forward and
Inverse Wavelet Transform
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Abstract—In this paper, we propose an architecture that per-
forms the forward and inverse discrete wavelet transform (DWT)
using a lifting-based scheme for the set of seven filters proposed
in JPEG2000. The architecture consists of two row processors, two
column processors, and two memory modules. Each processor con-
tains two adders, one multiplier, and one shifter. The precision of
the multipliers and adders has been determined using extensive
simulation. Each memory module consists of four banks in order to
support the high computational bandwidth. The architecture has
been designed to generate an output every cycle for the JPEG2000
default filters. The schedules have been generated by hand and
the corresponding timings listed. Finally, the architecture has been
implemented in behavioral VHDL. The estimated area of the pro-
posed architecture in 0.18- technology is 2.8 mm square, and the
estimated frequency of operation is 200 Mhz.

Index Terms—JPEG 2000, lifting, VLSI architectures, wavelet
transform.

I. INTRODUCTION

T HE discrete wavelet transform (DWT) is being increas-
ingly used for image coding. This is due to the fact that

DWT supports features like progressive image transmission (by
quality, by resolution), ease of compressed image manipulation,
region of interest coding, etc. DWT has traditionally been imple-
mented by convolution. Such an implementation demands both
a large number of computations and a large storage—features
that are not desirable for either high-speed or low-power appli-
cations. Recently, a lifting-based scheme that often requires far
fewer computations has been proposed for the DWT [1], [2].

The main feature of the lifting based DWT scheme is to break
up the highpass and lowpass filters into a sequence of upper
and lower triangular matrices and convert the filter implemen-
tation into banded matrix multiplications [1], [2]. Such a scheme
has several advantages, including “in-place” computation of the
DWT, integer-to-integer wavelet transform (IWT), symmetric
forward and inverse transform, etc. Therefore, it comes as no
surprise that lifting has been chosen in the upcoming JPEG2000
standard [3].

In the JPEG2000 verification model (VM) Version 8.5 [4], the
following wavelet filters have been proposed: (5, 3) (the high-
pass filter has five taps and the lowpass filter has three taps), (9,
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7), C(13, 7), S(13, 7), (2, 6), (2, 10), and (6, 10). To be JPEG2000
compliant, the coder should be able to at least provide a (5, 3)
filter in lossless mode and a (9, 7) filter in lossy mode. In this
paper, we propose a unified architecture capable of executing
all the filters mentioned above using the lifting scheme. Since
different filters have different computational requirements, we
focus on the configuration that ensures an output in every cycle
for the JPEG2000 part I default filters. The proposed architec-
ture computes multilevel DWT for both the forward and the in-
verse transforms, one level at a time, in a row-column fashion.
There are two row processors to compute along the rows and two
column processors to compute along the columns. While this
arrangement is suitable or filters that require two banded-ma-
trix multiplications [e.g., (5, 3) wavelet], filters that require four
banded-matrix multiplications [e.g., (9, 7) wavelet] require all
four processors to compute along the rows or along the columns.
The outputs generated by the row and column processors (that
are used for further computations) are stored in memory mod-
ules. The memory modules are divided into multiple banks to
accommodate high computational bandwidth requirements. The
architecture has been simulated using behavioral VHDL and the
results compared with C code implementation. The proposed
architecture is an extension of the architecture for the forward
transform that was presented in [5].

A number of architectures have been proposed for calcula-
tion of the convolution-based DWT [6]–[11]. The architectures
are mostly folded and can be broadly classified into serial archi-
tectures (where the inputs are supplied to the filters in a serial
manner) and parallel architectures (where the inputs are sup-
plied to the filters in a parallel manner). The serial architectures
are either based on systolic arrays that interleave the computa-
tion of outputs of different levels to reduce storage and latency
[6]–[8] or on digit pipelining, which implements the filterbank
structure efficiently [9], [10]. The parallel architectures imple-
ment interleaving of the outputs and support pipelining to any
level [11].

Recently, a methodology for implementing lifting-based
DWT that reduces the memory requirements and communica-
tion between the processors, when the image is broken up into
blocks, has been proposed in [12]. An architecture to perform
lifting based DWT with (5, 3) filter that uses interleaving
has been proposed in [13]. For a system that consists of
the lifting-based DWT transform followed by an embedded
zero-tree algorithm, a new interleaving scheme that reduces the
number of memory accesses has been proposed in [14]. Finally,
a lifting-based DWT architecture capable of performing filters
with one lifting step, i.e., one predict and one update step, is
presented in [15]. The outputs are generated in an interleaved
fashion. The datapath is not pipelined, resulting in a large clock
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Fig. 1. Lifting Schemes. (a) Scheme 1. (b) Scheme 2.

period. In contrast, the proposed four processor architecture
can perform transforms with one or two lifting steps one level
at a time. Interleaving is not done since the entropy coder of
JPEG2000 performs the coding in a intra-subband fashion
(coefficients in higher levels are not required along with the
first level coefficients). Furthermore, the data path is pipelined,
and the clock period is determined by the memory access time.

The rest of the paper is organized as follows. In Section II,
we give a brief overview of the lifting scheme. Precision anal-
ysis has been conducted for all the filters in Section III. The
proposed architecture, including the memory organization and
the control structure, are explained in Section IV. The timing
performance of the architecture is discussed in Section V. The
implementation details are presented in Section VI. The paper
is concluded in Section VII. The lifting matrices for the filters
are included in the Appendix.

II. L IFTING-BASED DWT

The basic principle of the lifting scheme is to factorize the
polyphase matrix of a wavelet filter into a sequence of alter-
nating upper and lower triangular matrices and a diagonal ma-
trix [1], [2]. This leads to the wavelet implementation by means
of banded-matrix multiplications.

Let and be the lowpass and highpass analysis fil-
ters, and let and be the lowpass and highpass synthesis
filters. The corresponding polyphase matrices are defined as

and

It has been shown in [1] and [2] that if is a complementary
filter pair, then can always be factored into lifting steps as

or

where is a constant. The two types of lifting schemes are
shown in Fig. 1.

Scheme 1 [see Fig. 1(a)], which corresponds to the
factorization, consists of three steps:

1) Predictstep, where the even samples are multiplied by the
time domain equivalent of and are added to the odd
samples;

2) Updatestep, where updated odd samples are multiplied
by the time domain equivalent of and are added to
the even samples;

3) Scalingstep, where the even samples are multiplied by
and odd samples by .

The inverse DWT is obtained by traversing in the reverse di-
rection, changing the factor to , factor to , and
reversing the signs of coefficients in and .

In Scheme 2 [see Fig. 1(b)], which corresponds to the
factorization, the odd samples are calculated in the first step, and
the even samples are calculated in the second step. The inverse
is obtained by traversing in the reverse direction.

Due to the linearity of the lifting scheme, if the input data is
in integer format, it is possible to maintain data to be in integer
format throughout the transform by introducing a rounding
function in the filtering operation. Due to this property, the
transform is reversible (i.e., lossless) and is called the integer
wavelet transform (IWT) [16]. It should be noted that filter
coefficients need not be integers for IWT. However, if a scaling
step is present in the factorization, IWT cannot be achieved. It
has been proposed in [16] to split the scaling step into additional
lifting steps to achieve IWT. We do not explore this option.

Example: Let us consider the (5, 3) filter, with the following
filter coefficients:

Highpass:
Lowpass:

The polyphase matrix of the above filter is
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A possible factorization of , which leads to a band matrix
multiplication (in the time domain), is

If the signal is numbered from 0 and if even terms are considered
to be the lowpass values and the odd terms the highpass values,
we can interpret the above matrices in the time domain as

where

where s are the signal values, ands are the transformed signal
values. Note that the odd samples are calculated from even sam-
ples, and even samples are calculated from the updated odd sam-
ples. The corresponding matrices and are shown in the
following. Here, , and .

The transform of the signal is , whereas
the inverse is .

In this work, we have considered a block wavelet transform
with a single sample overlap wavelet transform (SSOWT), as
recommended in JPEG2000 VM [4]. As a result, the number
of elements in a row or a column is odd. In addition, the first
and last values in the input signal do not change on applying the
transform. In JPEG2000 Part I [3], symmetric extension is sug-
gested to be performed at the boundaries, and in JPEG2000 Part
II [3], a slightly different definition of SSOWT is used. How-
ever, both of these cases can be easily handled with minimal
changes to address the generation scheme in the proposed ar-
chitecture. In this paper, we discuss all the details of the archi-
tecture based on the VM definition of the SSOWT.

1) Classification of Filters: We classify the wavelet filters
based on the number of factorization matrices: A two-matrix
factorization, corresponding to one predict and one update
step, is denoted by 2 , and a four-matrix factorization, corre-
sponding to two predict steps and two update steps, is denoted
by 4 . The wavelet filters (5, 3), C(13, 7), S(13, 7), (2, 6),
(2, 10) correspond to 2 , whereas filters (9, 7) and (6, 10)

TABLE I
WIDTHS OF THEBANDS IN THE MATRICES

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISONBETWEEN CONVOLUTION AND

LIFTING-BASED SCHEMES FOR AHIGHPASS, LOWPASSPAIR

correspond to 4 . Furthermore, filters (5, 3), C(13, 7), S(13,
7), and (9, 7) use lifting Scheme 1 [see Fig. 1(a)], whereas (2,
6), (2, 10), and (6, 10) use lifting Scheme 2 [see Fig. 1(b)].
Filters (2, 6), (2, 10), (9, 7), and (6, 10) require a scaling step.
The factorization matrices for the seven filters are given in the
Appendix. The width of the band of the matrices for the various
filters is given in Table I. The wider the band, the higher the
number of computations, and the higher the amount of storage
that is required for the intermediate results.

2) Comparison With Convolution:The number of com-
putations required for calculation of a highpass, lowpass pair
of wavelet transforms using convolution and lifting scheme is
given in Table II. The reduction in the number of multiplications
for the lifting scheme is significant for odd-tap filters compared
with convolution. For even-tap filters, the convolution scheme
has fewer or an equal number of multiplications. The number
of additions is lower for lifting in both odd and even tap
filters. Such reductions in the computational complexity makes
lifting-based schemes attractive for both high throughput and
low-power applications.

III. PRECISIONANALYSIS

We have carried out a comparison study between the
floating-point and the fixed-point implementations (using C) to
determine the number of bits required for “satisfactory” lossy
and lossless performance in the fixed-point implementation.
We have used three gray-scale images—baboon, barbara, and
fish—each of size 513 513, with 8-bit pixels and carried out
the study for five levels of decomposition. The results are vali-
dated with 15 gray scale images (8-bit pixels) from USC-SIPI
database [17] (Images-5.2.08–10, 7.1.01–04, 7.1.06–10, boat,
elaine, ruler, and gray21 from the Miscellaneous directory).
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A. Filter Coefficients

The filter coefficients for the seven filters considered range
from 0.003 906 to 2. In order to convert the filter coefficients
to integers, the coefficients are multiplied with 256 (i.e., shifted
left by 8 bits). The range of the coefficients is now 1 to 512,
which implies that the coefficients require 10 bits to be repre-
sented in 2’s complement form. At the end of the multiplication,
the product is shifted right by 8 to get the required result. This
is implemented in hardware by rounding the eight least signifi-
cant bits. The products are rounded to the next highest integer.
For instance, numbers are rounded to 966, and num-
bers are rounded to 965. It should be noted that instead
of applying rounding on the result of the filter operation (which
results in bigger accumulators) as in [16], rounding is applied
to the individual product terms.

B. Signal Values

The signal values have to be shifted left as well in order
to increase the precision; the extent of the shift is determined
using image quality analysis. In order to experiment with
shifts ranging from 0 to 5 bits, we introduce additional bits
(ABs). In conventional fixed-point filter implementation,
instead of shifting the input samples, the coefficients are
shifted appropriately. This method cannot be directly applied
to lifting-based filter implementation. Consider the general
structure in lifting-based schemes

where and are the filter coefficients, s are the signal sam-
ples, and is the transform value. We observe that sincehas
a coefficient of 1, if the filter coefficients are shifted by extra
bits, a shifting operation has to be performed on theterm to
maintain the data alignment. To avoid this, the signal values are
shifted at the input.

Example: Consider the general structure in a lifting-based
scheme with

and . The floating-point implementa-
tion result is . Let us assume that coefficients are
shifted left by 8 bits (and rounded to nearest integer) and number
of ABs . Then,

and . The products are
and . Shifting the product

right by 8 bits and rounding will yield 63 and 1236. There-
fore, . This should be interpreted
as round decimal equivalent of two LSBs of
round .

C. Results

All through this work, we define SNR as

SNR (dB)
Signal

Signal fixed point data

where “Signal” corresponds to the original image data.
The SNR values, for the baboon image, after five levels of for-

ward and inverse transform with truncation and rounding, are
given in Tables III and IV, respectively. Filters (2, 6)L and (2,
10)L are scaling step-free factorizations of (2, 6) and (2, 10) fil-

TABLE III
SNR VALUES AFTER FIVE LEVELS OF DWT WITH TRUNCATION

FOR BABOON IMAGE

TABLE IV
SNR VALUES AFTER FIVE LEVELS OF DWT FOR WITH ROUNDING

FOR BABOON IMAGE

ters given in [18]. Finally, even though the lifting coefficients
for (5, 3) and (2, 6)L filters are multiples of 2 and can be imple-
mented using shift operations, we have used multiplications in
this analysis for comparison purposes.

From the tables, we see that for (5, 3) and (2, 6)L filters to
obtain lossless performance, truncation with five ABs is suffi-
cient, but for the rest of the filters, which can attain lossless per-
formance, rounding is required. In case of lossy filters, such as
(2, 6) and (2, 10) filters, rounding does not improve the perfor-
mance significantly, but for (6, 10) and (9, 7) filters, rounding
improves performance by 30 dB. Based on these observations,
we conclude that rounding is essential for better performance.

From Table IV, we also conclude that for lossless perfor-
mance, five ABs are required. To determine the number of ABs
required for lossy performance, we have to consider two cases:
implicit quantization and explicit quantization. In the first case,
the DWT coder is followed by a lossless entropy coder; there-
fore, the required quantization is performed by controlling the
precision of the DWT coefficients. If this is the case, then two
ABs are sufficient to obtain “satisfactory” performance with

dB SNR. In the second case, the DWT coder is followed
by a explicit quantizer, which is followed by a lossless entropy
coder as in JPEG2000. In this case, five ABs are required to
obtain the best possible SNR performance as the quantization
would introduce substantial loss in SNR.

Once the number of ABs are fixed, we need to determine the
width of the data path. This can be done by observing the max-
imum/minimum values for the transformed values at the end
of each level of decomposition and taking the largest/smallest
among them. The maximum and minimum values for the ba-
boon, barbara, fish, and ruler images with ABs are given in
Table V.

From Table V, we see that 16 bits are required to represent the
transform values (in 2’s complement representation). It should
be noted that values in Table V are obtained at the end of the
filtering operation, but the individual products can be greater
than the final values. Indeed, this is the case for few of the
coefficients in case of ruler image using the (9, 7) filter. In such
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TABLE V
MAXIMUM AND MINIMUM VALUES WITH ABs = 5

cases, the product is saturated at 16 bits. As the occurrences
of such coefficients are very limited, the SNR performance is
not affected. Using similar analysis, it was found that 13 bits of
precision is required when ABs .

Based on these observations, in our architecture, the data path
width is fixed at 16 bits. The adders and shifters are designed for
16-bit data. The multiplier multiplies a 16-bit number (signal
value) by a 10-bit number (filter coefficient) and then rounds the
product with eight LSBs (to account for the increased precision
of the filter coefficients) and two MSBs (16 bits are required
to represent the outputs and therefore, the two MSBs would be
sign extension bits) to form a 16-bit output.

IV. PROPOSEDVLSI ARCHITECTURE

The proposed architecture calculates the forward transform
(DWT) and the inverse transform (IDWT) in row-column
fashion on a block of data of size . To perform the
DWT, the architecture reads in the block of data, carries out
the transform, and outputs the LH, HL, and HH data at each
level of decomposition. The LL data is used for the next level
of decomposition. To perform the IDWT, all the sub-bands
from the lowest level are read in. At the end of the inverse
transform, the LL values of the next higher level are obtained.
The transform values of the three subbands (LH, HL, and HH)
are read in, and the IDWT is carried out on the new data set.

The architecture, as shown in Fig. 2, consists of a row module
(two row processors RP1 and RP2 along with a register file
REG1), a column module (two column processors CP1, CP2
and a register file REG2), and two memory modules (MEM1,
MEM2). As mentioned earlier, DWT and IDWT are symmet-
rical if the lifting scheme is used. Hence, in the rest of the paper,
we discuss all the details in terms of DWT as an extension to
IDWT is straightforward.

Fig. 2. Block diagram of the proposed architecture.

Fig. 3. Data flow for (a) 2M filters and (b) 4M filters.

A. Data Flow for 2 Filters

In the 2 case (i.e., when lifting is implemented by two fac-
torization matrices), processors RP1 and RP2 read the data from
MEM1, perform the DWT along the rows, and write the data
into MEM2. Processor CP1 reads the data from MEM2, per-
forms the column wise DWT along alternaterows, and writes
the HH and LH subbands into MEM2 and Ext.MEM. Processor
CP2 reads the data from MEM2, performs the column-wise
DWT along therowson which the CP1 did not work, and writes
LL sub-band to MEM1 and HL sub-band to Ext.MEM. The data
flow is shown in Fig. 3(a).

B. Data Flow for 4 Filters

In the 4 case (i.e., when lifting is implemented by four fac-
torization matrices), there aretwo passeswith transform along
one dimension being calculated in a pass. In the first pass, RP1
and RP2 read in the data from MEM1, execute the first two ma-
trix multiplications, and write the result into MEM2. CP1 and
CP2 execute the next two matrix multiplications and write re-
sults (highpass and lowpass terms along the rows) to MEM2.
This finishes the transform along rows. In the second pass, the
transform is calculated along columns. At the end of the second
pass, CP1 writes HH and LH sub-bands to Ext.MEM, whereas
CP2 writes the LL sub-band to MEM1 and the HL sub-band to
Ext.MEM. The data flow is shown in Fig. 3(b).

C. Transform Computation Style

In the 2 case, the latency and memory requirements would
be very large if the column transform is started after finishing
the row transform. To overcome this, the column processors also
have to work row-wise. This is illustrated in Fig. 4 for the (5, 3)
filter for a signal of length 5.
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Fig. 4. Row and column processor data access patterns for the forward (5, 3)
transform withN = 5.

RP1 calculates thehighpass(odd) elements along the rows
, etc., whereas RP2 calculates thelowpass(even)

elements along the rows , etc. CP1 calculates
thehighpass and lowpasselements ,
etc., along odd rows, and CP2 calculateshighpass and lowpass
elements , etc., along
the even rows. Note that CP1 and CP2 start computations as
soon as the required elements are generated by RP1 and RP2.
This is further illustrated in the schedule given in Tables VIII
and IX. In general, for 2 filters using Scheme 1 factoriza-
tion, RP1 calculates thehighpassvalues, and RP2 calculates the
lowpassvalues alongall the rows. CP1 and CP2 calculate both
highpass and lowpassvalues along theodd and even rows, re-
spectively. In case of Scheme 2 factorization, the roles of RP1
and RP2, as well as CP1 and CP2, are reversed.

In the case of 4 filters, all four processors calculate either
the row or column transform at any given instant. In general,
for 4 filters with Scheme 1 factorization, RP1 and CP1 cal-
culatehighpassvalues along therowsin thefirst passand along
columnsin the second pass. Similarly RP2 and CP2 calculate
lowpassvalues. As in the 2 case, for filters with Scheme 2
factorization, the roles of the processors are reversed.

D. Transform Computation Order

In the case of 2 filters, with the row and column processors
working along the rows, the rows have to be calculated in a non-
sequential fashion in order to minimize the size of the MEM2
module and to keep column processors active continuously. For
example, in the (5, 3) filter, while performing row transform, the
zeroth, second, and first elements of a row are required to update
the first element (see Fig. 4). Therefore, while performing the
column transform, the row transform of the zeroth row and the
second row should have been completed before CP1 can start
computations along the first row. The order in which the row
processors and the column processors compute for a 99 block
is described in Table VI.

Note that each filter needs a different order in which the row
computations need to be finished. The order is determined by
the factorization matrices. For instance, for the (5, 3) filter, the

TABLE VI
ROW ORDER FORPERFORMING THETRANSFORM ON A9� 9 BLOCK

row processors calculate rows in the order 0, 2, 1, 4, 3, 6, 5, 8, 7
(see Table VI). CP1 starts computing along row 1 as soon as the
first output from row 1 is available. After completing computa-
tion along row 1, CP1 starts computing along row 3, etc. CP2
starts after the first output from row 3 is available from CP1. It
computes first along row 2, then along row 4, then row 6, etc.
For 4 filters, sequential order of calculation is sufficient.

E. Row and Column Processor Design

Each filter requires a different configuration of adders, mul-
tipliers, and shifters in the data path in order to generate two
coefficients (from different subbands) in every cycle. Table VII
lists the number of data path components required for the fil-
ters under consideration. The (5, 3) filter requires two adders
and a shifter in each processor and has the smallest require-
ment. The (13, 7) filter has the largest configuration (four adders
and two multipliers) for RP1 and CP1, whereas filter (2, 10) has
the largest configuration (five adders, two multipliers, and one
shifter) for RP2 and CP2.

From Table VII, we see that 16 adders, eightmultipliers, and
four shifters are needed in order for every filter to generate an
output each clock cycle. However, if the data path did consist
of these many resources, then for most filters, these resources
would be grossly underutilized. This prompted us to look at
a configuration that would generate two sub-band coefficients
every clock cycle for the default JPEG2000 filters [(5, 3) and (9,
7) filters]. Such a configuration has fewer resources and is more
heavily utilized. All four processors in the proposed architecture
consist of two adders, one multiplier, and one shifter, as shown
in Fig. 5. Since fewer resources are being used, two coefficients
(from two subbands) are generated inalternatecycles for the
(13, 7), (2, 10), and (6, 10) filters, whereas two coefficients are
generated ineverycycle for the (5, 3), (2, 6), and (9, 7) filters.
Note that the MUXs at input have not been shown in Fig. 5. In
order to carry out the scaling step, a shifter is connected to the
output of the RP1 and RP2 processors, and a multiplier/shifter
is connected to the output of the CP1 and CP2 processors.
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TABLE VII
HARDWARE REQUIRED TOGENERATE AN OUTPUT EACH CLOCK CYCLE

Fig. 5. Basic architecture of each processor.

F. Schedule

We have generated a detailed schedule for each of the fil-
ters by hand. The schedules are resource constrained list-based
schedules, where the resources consist of an adder, a multiplier,
and a shifter. It is assumed that the delay of the adder and shifter
is one time unit and that the delay of the multiplier is four time
units. This is justified since the multiplier is typically three times
slower than an adder, and an additional addition operation is re-
quired to round the product. A snapshot of the schedule for the
(5, 3) filter applied on a 9 9 block is provided in Tables VIII
and IX.

The schedule in Table VIII should be read as follows. In the
seventh cycle, Adder1 of RP1 adds the elements and
stores the sum in register RA1. The shifter (Shifter column)
reads this sum in the next cycle (eighth cycle), carries out the
required number of shifts (one right shift in this case as

), and stores the data in register RS. The second adder
(Adder2) reads the value in RS and subtracts the element
to generate in the next cycle (ninth cycle). The output of
the second adder is stored in a suitable memory location in
MEM2 module and is also supplied to RP2 using REG1. Thus,
to process a row of a 9 9 block, the RP1 processor takes four
cycles. Adder 1 in RP2 starts computation in the sixth cycle.
The gaps in the schedule for RP1 and RP2 are required to read
the zeroth element of each row. Adder1 in CP1 starts in the
13th cycle to absorb the first element of row 1 computed by
RP1 in the 14th cycle. Adder1 of CP2 starts after CP1 com-
putes the first element in row 3 (25th cycle). The total time re-
quired to calculate an block using the (5, 3) filter is

cycles, where
is the delay of an adder, and is the delay of a shifter.

G. Memory

The proposed architecture consists of two memory modules:
MEM1 and MEM2. The MEM1 module consists of two banks

TABLE VIII
PART OF THE SCHEDULE FORRP1AND RP2FOR (5, 3) FILTER

APPLIED ON A 9� 9 BLOCK

TABLE IX
PART OF THE SCHEDULE FORCP1AND CP2FOR (5, 3) FILTER

APPLIED ON AN 9� 9 BLOCK

and MEM2 module consists of four banks. All the banks have
one read and one write port. Further, we assume that two
accesses/cycle are possible. The memory module structure is
shown in Fig. 6.



ANDRA et al.: VLSI ARCHITECTURE FOR LIFTING-BASED FORWARD AND INVERSE WAVELET TRANSFORM 973

Fig. 6. Memory structure required for (5, 3) and (9, 7) filters.

1) Memory Organization:
MEM1 Module: The MEM1 module consists of two banks

(MEM1 and MEM1 ), as shown in Fig. 6. Each bank con-
tains either odd samples or even samples of a row. The data is
stored into banks to minimize the number of ports needed. For
example, in the case of the (5, 3) filter, MEM1contains the
odd samples, and MEM1contains the even samples. Due to
this arrangement, we need one read access for MEM1to feed
RP1 and two read accesses for MEM1to feed RP1 and RP2.
However, with additional registers, the even terms read by RP1
can be supplied to RP2, thereby decreasing the port requirement
to one read port on MEM1. Both banks need one write port for
Ext.MEM to write the raw input or for CP2 to write LL sub-band
data at the end of each level. In the case of the (9, 7) filter, in the
first pass, CP1 and CP2 write highpass and lowpass terms from
the row transform to MEM1 simultaneously. Since dual access
per cycle is possible, one write port on each bank is sufficient.

MEM2 Module: The MEM2 module consists of four
banks (MEM2, MEM2 , MEM2 , and MEM2 ), as shown in
Fig. 6. In the case of 2 filters, the banks contain a complete
row of data. RP1 and RP2 write to the MEM2, MEM2 , and
MEM2 banks in a special order (see Table XI). These banks
supply inputs to CP1 and CP2. CP1 writes to MEM2, and it
is read by CP2. Four banks are required due to the nature of
the calculation of the column transform along the rows. For
example, during calculation of and using the (5,
3) filter (see Table VIII), two memory accesses are required
by RP1: one for the even term and the other for the odd term.
This is assuming there are two registers at the input of RP1,
two registers at the input of RP2, and six registers for the
even values required by RP2. On the other hand, consider
calculation of column transform values and (see
Table IX). Here,
and . It can be seen that buffers at the
input of RP1 are not useful, as a new row is accessed in every
cycle. Therefore, all three inputs to CP1 have to be supplied
by the MEM2 module. For CP2, one input can be buffered, but
two inputs have to be supplied by MEM2. In conclusion, row
processors needtwo inputs from the memory andfour from the
registers, whereas the column processors needfive inputs from

TABLE X
NUMBER OF READ ACCESSES TOMEMORY AND REGISTERS TOGENERATE A

PAIR OF LOWPASS ANDHIGHPASSCOEFFICIENTS

the memory andoneinput from a register. MEM2and MEM2
supply two of the five inputs, and MEM2and MEM2 supply
the remaining three. Therefore, a dual read operation has to be
performed on one of the banks: either MEM2or MEM2 . In
the case of the (13, 7), (2, 6), and (2, 10) filters, a dual read
operation is also required on the MEM2bank.

In the case of 4 filters, only the MEM2 and MEM2 banks
are used, and they contain either even or odd terms. RP1 writes
to MEM2 , and RP2 writes to MEM2. Both banks supply data
to CP1. The data for CP2 is supplied through internal registers.

The number of memory and registerread accesses for row
processors and column processors to generate a highpass and a
lowpass coefficient is given in Table X. Note that for the (13, 7)
and (2, 10) filters, the accesses are spread over two cycles. For
the (9, 7) and (6, 10) filters, accesses are spread over two passes.
In the case of 2 filters, the row processors require two write
accesses to the MEM2 module, whereas column processors re-
quire one write access to the MEM1 module. For 4filters, row
processors require two write accesses to the MEM2 module in
both passes, whereas column processors require two write ac-
cesses in the first pass and one write access in the second pass,
both to the MEM1 module.

2) Memory Size:
a) MEM1 Module: The memory banks in the MEM1

module read in the whole block in the beginning during the
forward transform and read in the whole block at the last level
during the inverse transform. Therefore, the memory banks are
of size each.

b) MEM2 Module: As mentioned earlier, the 2 filters
need four banks of memory in the MEM2 module. We can de-
termine the size of the memory required in each of the banks
based on when a particular bank is being updated and when the
row data present in that bank is being used by CP1 or CP2. In
other words, the size of the memory is a function of the lifetime
of a row of data. For example, consider the (5, 3) filter. The
order in which the rows are calculated is given in Table VI, and
the order in which these rows are written into the MEM2 banks
is given in Table XI.

In Table XI, indicates the transform of row generated
by the RP1 and RP2 processors. Similarly, indicates the
column-wise transform generated along the rowby CP1. The
table can be read as follows: Data of is written into MEM2 ,
data of into MEM2 , and data of into MEM2 . CP1
uses the data from all these three banks, calculates, and
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TABLE XI
PATTERN IN WHICH DATA IS WRITTEN INTO MEM2 BANKS FOR

FORWARD (5, 3) FILTER

writes into MEM2 and to Ext.MEM. Once the data from
is available, CP2 calculates using and and
writes the LL subband data to MEM1 and HL subband data
to Ext.MEM. It can be observed from Table XI that the data
available in a bank is used up before the next row of data is
written into it. Therefore, it can be concluded that one row of
data is required in each of the banks.

For the 4 filters, the size of the two banks MEM2and
MEM2 can be estimated from the maximum of the difference
of the latencies between the RP1 and CP1 processors and the
RP2 and CP2 processors. The total memory required for the
filters is given in Table XII. For and ,
the (9, 7) filter requires 17 elements to be stored in the banks
MEM2 and MEM2 . In contrast, the (5, 3) filter requires an
entire row to be stored in all the four MEM2 banks.

H. Register Files

We need register files between the processors to minimize the
number of memory accesses (as explained in previous section).
The outputs from RP1 are stored in REG1 and are used by RP2.
Similarly, REG2 acts as buffer between CP1 and CP2. For (2,
6) and (2, 10) filters, a partial sum has to be held for a time
proportional to the multiplier delay. Table XIII lists the number
of registers required for all the filters with and

.

I. Control

Control signals are needed primarily to maintain the steady
flow of data to and from the processors. Our design consists of
local controllers in each of the processors, which communicate
with each other by hand shaking signals. Each local controller
consists of three components

1) counter;
2) memory signal generation unit;
3) address generation unit.

Counter: Counters keep track of the number of rows and
the number of elements in each row that have been processed.
They are primarily used to generate the memory read and write
signals. All the counters are capable of counting up to a max-
imum of .

Memory Read and Write Signals Generation Logic:The
logic required for memory reads is driven by the counter output
(i.e., row, element values). One of the inputs to the second adder

TABLE XII
SIZE OF MEM2 MODULE BANKS

TABLE XIII
SIZES OFREGISTERFILES

TABLE XIV
TIME REQUIRED FORONE LEVEL OF DECOMPOSITION OF AN � N BLOCK

(in all the processors) has to be read from memory, and the
memory write signals are generated based on this signal.

Address Generation Unit:For MEM1 module, an “in
place” addressing scheme is required in case of both 2
and 4 filters. Note that if a simple addressing scheme (ex.
incrementing by 1) is used for read (write), then the address
generation is complex for the write (read) operation.

For the 2 filters, data from the row processors is written
in consecutive locations in the MEM2 banks, but extra logic is
required to generate the pattern in which the three banks are
accessed [the pattern for the forward transform of (5, 3) filter can
be observed in Table XI]. For the 4 filters, RP1 and RP2 write
in consecutive locations in MEM2and MEM2 , respectively.

V. TIMING

The total time required for one level of decomposition of an
block for all the filters is given in Table XIV. Here,

is the delay of the adder, is the delay of the shifter, and
is the delay of the multiplier. To obtain the latency for a filter,
we need the start time of CP2, which depends on the number of
rows CP1 has to finish before CP2 can start and the start time of
CP1. The first factor would be a multiple or , and the latter
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TABLE XV
PRELIMINARY GATE COUNT ESTIMATES AND NUMBER OF COMPONENTS

USED IN THE PROPOSEDARCHITECTURE

factor would be a multiple of or based on whether
data is generated every cycle [(5, 3), (9, 7), and (2, 6) filters] or
in every alternate cycle [(13, 7) and (2, 10) filters].

For example, the latency for the (5, 3) filter is
. Since we need cycles to complete one

level of transform in both the dimensions on an block,
the time required for the (5, 3) filter is

.

VI. I MPLEMENTATION

We have developed a behavioral VHDL model of an architec-
ture capable of carrying out the forward and inverse transform
of (5, 3) and (9, 7) filters. The memories are simulated as ar-
rays. The data path is 16 bits wide. The adder and shifter are
assumed to have a one clock cycle delay, where as the multi-
plier has a four cycle delay and is pipelined to four levels. The
VHDL simulations and the C code simulations match exactly.
The data path units have been synthesized. The preliminary gate
count (2-inputNAND gate equivalents) of the data path units
and number of units used in the architecture are provided in
Table XV. The memory required, assuming a 129129 block,
is also provided in the table. The estimated area of the proposed
architecture, assuming control is 20% of datapath area, in 0.18

technology is 2.8 mm square. The estimated frequency of op-
eration is 200 MHz. The frequency is set by the time required
for the dual access in a dual port memory.

VII. CONCLUSION

In this paper, we propose a VLSI architecture to implement
the seven filters recommended in the upcoming JPEG2000 stan-
dard using the lifting scheme. The architecture consists of two
row processors, two column processors, and two memory mod-
ules, each consisting of four banks. The processors are very
simple and consist of two adders, one multiplier, and one shifter.
The width of the data path is determined to be 16 bits for loss-
less/near lossless performance. The architecture has been de-
signed to generate an output every cycle for the JPEG2000 part
I default filters. Details of the schedule and timing performance
have been included in the paper. The architecture has been im-
plemented using behavioral VHDL. The estimated area of the
proposed architecture in 0.18technology is 2.8 mm square,
and the estimated frequency of operation is 200 MHz.

APPENDIX

•

where
and for the filter, where

for the filter.
•

where .
• For , see the matrices at the bottom of the next

page. where and
.
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•

where
, and .

•

where

and
.
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