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Abstract—With the advent of new video standards such as
MPEG-4 part-10 and H.264/H.26L, demands for advanced video
coding, particularly in the area of variable block size video
motion estimation (VBSME), are increasing. In this paper, we
propose a new one-dimensional (1-D) very large-scale integration
architecture for full-search VBSME (FSVBSME). The VBS
sum of absolute differences (SAD) computation is performed by
re-using the results of smaller sub-block computations. These are
distributed and combined by incorporating a shuffling mecha-
nism within each processing element. Whereas a conventional
1-D architecture can process only one motion vector (MV), this
new architecture can process up to 41 MV sub-blocks (within a
macroblock) in the same number of clock cycles.

Index Terms—Advanced video coding (AVC), sum of absolute
difference (SAD), variable block size motion estimation (VBSME),
very large-scale integration (VLSI) architecture.

I. INTRODUCTION

THERE HAS BEEN a growing interest in the use of ad-
vanced video coding (AVC) for temporal prediction 1) in

order to obtain higher compression ratios, and 2) to improve
video quality in low-bit rate video systems. In particular, a video
frame is segmented into smaller and variable block sizes (VBSs)
to accommodate different changes in object movement within a
video frame. One way to achieve this is by splitting the video
frame using conventional fixed size macroblocks. Each mac-
roblock is then further segmented into VBSs. A typical mac-
roblock has a dimension of 16 16 pixels, with the smallest
segmented block size (base block) being 4 4. In this case, a
macroblock contains 16 base blocks corresponding to 16 mo-
tion vectors (MVs). Other VBSs correspond to derivatives of
the base block. Newer video applications such as H.264 [1] in-
clude such schemes in their standard specifications.

The purpose of this paper is to present a new one-dimensional
(1-D) very large-scale integration (VLSI) architecture for imple-
menting full-search VBS video motion estimation (FSVBSME).
An important aspect of this architecture is that it is able to per-
form a full motion search on integral numbers of 4 4 blocks
sizes. As will be discussed, this requires the same number of
clock cycles as previous 1-D architectures [2], [3]. However,
this is capable of performing searches of up to 41 submotion
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Fig. 1. Block matching.

displacements within a macroblock, as compared to one motion
displacement, in previous 1-D systems. The architecture pre-
sented achieves this by incorporating multiplexers and latches
plus a small additional amount of computational hardware in
the processing element (PE) data path.

The structure of the paper is as follows. Section II provides
a brief overview of previous research on ME architectures and
builds on this to develop a new architecture for a full search
VBSME. The proposed architecture is then presented in more
detail in Section III. The results of silicon design studies based
on this are then given in Section IV, with the main conclusions
presented in Section V.

II. BACKGROUND

ME algorithms exploit the temporal redundancy of a
segmented video sequence, as described by Jain and Jain
[4]. Among all the estimation algorithms, the full-search
block-matching algorithm has been shown to produce the
best results in terms of finding displacement vectors (MVs),
as depicted in Fig. 1. Such algorithms are implemented in
two stages, namely the calculation of the sum of absolute
differences (SAD) for each displacement vector, followed
by methods for finding the smallest SAD values. This is
summarized by (1) and (2)

(1)

(2)
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Fig. 2. Segmented macroblock.

Here, and represent the current
picture frame and search region’s macro-block displacements,
respectively.

The computational requirements for block matching are
high and a real-time video application usually requires a direct
mapped hardware architecture. Direct mapped architectures
also have important advantages in terms of reduced power dis-
sipation. Full-search algorithms, typically, can be implemented
using regular 1-D or 2-D systolic or systolic-like architectures
as described by Pirsch [5]. 1-D systems offer a number of
attractive features over their full 2-D counterparts, in particular
much less complex data scheduling and simpler structures.
These architectures are therefore attractive for portable devices
because of their lower silicon area and thus size. Kuhn [3] has
also demonstrated that flexible 1-D systems can be used to
implement other fast matching algorithms, such as a three-step
search (TSS) and pel subsampling.

To date, conventional VLSI architectures for computing
VBSME have been based on 2-D processor systems. For
example, the architecture by described Vos [6] uses a 2-D
array with appropriate through masking of PEs. However, this
results in low processor utilization. Shen’s architecture [7]
uses a smaller 2-D array with partial-sum SAD calculations
performed sequentially using the smallest block size, 8 8.
However, these architectures do not incorporate the capability
to process all the VBSs that the architecture presented in this
paper does.

In AVC, a macroblock is further segmented with the smallest
block size being 4 4, as shown in Fig. 2. This has two modes,
the macroblock mode and the 8 8 mode, as illustrated in
Fig. 3(a) and (b), respectively. VBSs must be accommodated,
namely 4 4, 4 8, 8 4, 8 8, 16 8, 8 16, and 16 16.
Referring to Fig. 3(b), it will be noted that there are four
quarter-blocks in a macroblock, each of which contains nine
block patterns i.e., a total of 36 block patterns. However, as
will be observed in Fig. 3(a), each macroblock contains another
nine block patterns, with four of the 8 8 blocks common with
the equivalent 8 8 blocks in Fig. 3(b). Therefore, the total
number of block patterns, to be processed is
i.e., a total of 41 MVs.

(a)

(b)

Fig. 3. (a) Macroblock mode. (b) 8� 8-mode.

Fig. 4. One-dimensional array VBSME architecture.

Fig. 5. CMD raster scan.

III. PROPOSED ARCHITECTURE

The architecture presented in this paper is based on 1-D
array processor, in this case containing 16 PEs, in general, N
for an N N macroblock. This is summarized in Fig. 4. A key
aspect of the approach proposed is that it incorporates within
the basic PE the means to accumulate the partial SAD values
through shuffling. The scheduling of the current macroblock
data (CMD) and search region data (SRD) is similar to a
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TABLE I
DATA FLOW SCHEDULE

conventional 1-D architecture [2] with the CMD arranged in
a raster scan sequence and the SRD arranged in a dual raster
scan sequence, as shown in Fig. 5. Applying this approach
to the macroblock shown in Fig. 2 results in 16 SADs being
computed, each with block size 4 4. The stored SADs are
then re-used to compute SAD values for other block sizes. This
is done by shuffling and combining the computed sub-block
SAD values appropriately to derive SADs for each of the
other larger blocks sizes. For example, the results of two 4 4
sub-block computations can be combined to derive results for
an 4 8 or 8 4 computation, and so on. This avoids the need
to compute each of these from scratch and allows the overall
computational requirements to be significantly reduced by
avoiding the need to derive sub-block computation values that
already have been established. As discussed below, this allows
up to 41 VBS SAD values to be processed in a single processor.

The circuit shown in Fig. 4 operates by scheduling the CMD
through a delay line and broadcasting two sets of SRD data on
each clock cycle. The PEs accumulate the absolute difference
(AD) between the CMD and SRD on every clock cycle, with
the CMD and SRD data flow within each PE summarized in
Table I, the CMD being denoted by , and the SRD data
being denoted by .

If the pixel values in the CMD are labeled to then it
will be noted that the computation of the SAD value for block b0
involves pixels to to to and to . In
the case of block b1, this involves pixels to to
to and to , and so on (see Fig. 6).

These computations are performed using the internal PE cir-
cuitry, details of which are shown in Fig. 7. This uses a three-
stage process, provides 100% PE efficiency and allows SAD
value computation to be choreographed directly with the data
flow within the image. The first stage in the PE contains hard-
ware to derive absolute difference values between the CMD and
the SRD. These values are then latched to a second stage where
they are multiplexed appropriately and stored in one of eight
registers. The function of the registers and Mux C is to ensure
that once computations have been performed these are stored
and fed back in the correct order to compute the overall AD

Fig. 6. CMD pixel values in base blocks b0 and b1.

values for each of the sub-blocks to . For example, the
AD value involving and the corresponding pixel in the SRD
are fed back after the first cycle and accumulated with the AD
value involving pixel and the corresponding SRD value. The
result is then passed to register 0 in the first stage of the PE. This
process then repeats for and . In the following cycle, the
AD value involving pixel and the corresponding SRD pixel
is computed. However, these values correspond to sub-block
rather than and thus these must be accumulated and stored
separately. This is done by assigning these values to register 1.
The process then repeats for , and . Having done so, the
AD value derived from the next set of four pixels is then as-
signed to register 2, the next set of four to register 3, and so
on, up to register 7. This data shuffling process then repeats
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Fig. 7. PE.

for the next row of the image, with the AD values involving
the first four pixels in the second row being accumulated and
stored in register 0. The same applies to the next four pixels
in this row, with these results being stored in register 1, and so
on. This process then repeats with AD results for sub-blocks
to being assigned to registers 0 to 7, respectively. With this
approach, and ignoring processor latency, the base block SAD
values b0, b1, b2, b3, b4, b5, b6, b7 , (Fig. 2) then become
available on clock cycles 51, 55, 59, 63, 115, 119, 123, 127 ,
respectively. Once computed, each of the values for these 4 4
sub-blocks is then immediately latched down to the second stage
within the PE. This frees up the first stage and on successive
cycles allows it to perform identical operations to derive SAD
values for the 4 4 blocks in the second half of the array in
Fig. 2, i.e., b8, b9, b10, b11, b12, b13, b14, b15 . These results
then become available on clock cycles 179, 183, 187, 191, 243,
247, 251, 255 , respectively.

The function of the second stage of the array is twofold. The
first is simply to pass, on successive cycles, the values b0 to b15
downwards through the PE cell. The second is to combine these
values appropriately to compute results for larger block sizes
such as 8 4, 4 8 etc. For example, as discussed above and
summarized in Table II, the SAD value for b0 becomes avail-
able on clock cycle 51 and that for b1 on clock cycle 55. These
can therefore immediately be combined to derive a SAD value
for MV 3. The same applies to MV 6 which can be computed

TABLE II
BUS LINE ALLOCATION

on cycle 64 following the availability of the values for b2 and
b3. This is done in a similar manner to stage 1 i.e., shuffling
and combining results using a combination of multiplexing and
adder circuitry, with results and intermediate results, in this case,
being assigned to one of six registers, and so on.

The sequence of events is as follows. At the end of cycle 51,
the b0 SAD value is moved from register 0 in stage 1 to the
adder in stage 2 where it undergoes a null operation, i.e., added
to zero indicated by the “0” value. This is then piped to stage
2 where it is stored in, in this case, register 13 and then output
via bus 0. The b0 SAD value then follows four cycles later. The
availability of both the b0 and b1 SAD values then means that
it is then possible to derive values for the first 8 4 block by
simply adding these values together. This is achieved on clock
cycle 56 by using Mux A to output the value on register 0 and
Mux B to output the value form register 1, and these are then
added and output via bus number 2. This sequence of events
then continues as summarized in Table II.
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TABLE III
REGISTER SELECTION

The third stage in the PE has a similar function to the second
stage, but in this case feeding back the SAD values stored in the
stage 2 registers via Mux D and Mux F. As an example, consider
clock cycle 122. In this case, register 8 contains the SAD value
for b0 and b4 (block size 4 8) and register 9 contains the SAD
value for b1 and b5 (also 4 8). These are then combined to
derive results for the appropriate 8 8 block, with this being
made available via bus 5. As before, these processes continue
according to Table II with other 8 8 blocks and the 16 16
block derived in a similar manner. The net result is that by clock
cycle 261 (256 cycles plus 5 cycles internal cell latency) all 41
candidate MVs are available from each PE.

Once all the values from an image block have been input then
the data from a new block can immediately be input to each PE.
This thus provides a continuous streaming process that directly
synchronizes with a constant flow of image data and means that
each PE is 100% utilized.

With 16 PEs working concurrently, the architecture described
allows a total of 256 candidate MVs (16 16 search region) per
sub-block to be processed in parallel with each PE producing
all the information needed for a full search every 256 clock cy-
cles—the same as existing architectures. However, in this case,
this is done through the derivation of 41 MVs rather than one for
each macroblock. Repeating this a further 16 times means that
up to 4096 clock cycles are required to complete a full search.

The determination of the most appropriate MV is achieved
using the buses shown in Fig. 4. These are used to perform si-
multaneous and adjacent comparison of SAD values. The best
vectors from each bus are thus established and can then be sup-
plied to appropriate post-processing circuitry. On the face of
the control required for this architecture may appear to be quite
complex. However, a detailed examination of the shuffling re-
quired shows that this is highly regular. In the case of Mux C
(Fig. 7), which is used to reshuffle the accumulator registers,
the data flow is as described in Table III. This scheduling can be
implemented using a 7-bit modulo counter, which counts from

TABLE IV
VBSME CHIP PERFORMANCE

0 to 127. Three of the counter bits [6], [3], [2] then control the
top level registers used for accumulation and MUX C. The op-
eration of the other multiplexers can then be programmed using
look-up tables (LUTs). The same approach applies for all the
other PEs. However, because the operation of each of these is
delayed by one cycle with respect to one another, this can be
implemented using a simple delay line.

IV. SILICON DESIGN

The architecture described has been captured using VER-
ILOG in a manner that allows it to be easily ported to a range
of silicon fabrication technologies. For the purpose of this re-
search, we have used this to synthesize an ASIC demonstrator
design based on the TSMC’s 130 nm CMOS standard cell tech-
nology (1.2 V). The circuit design is based on a 16 PE 1-D
array, has a search range of 16 16 and can handle
the VBSs listed in Table IV. If a wider search range of 32 32

is required, then a 4 search can readily be per-
formed. The input wordlengths used were 8 bits. This is consis-
tent with common video standards. The memory scheme used
is similar to that described in [2] and [3].

An important aspect in terms of silicon area is the wordlength
used at different stages in the PE. In the case of the first stage,
this involves the computation of the AD between 8 bit pixels
and thus can be accommodated with 8 bits. The second stage
computation involves the accumulation 16 ADs, and thus the
wordlengths grow to 12 bits. Up to 16 bits are then required in
the third stage with the exact number varying from register to
register depending on the number of computations required. In
the most general case, it might be assumed that a total of 16
busses would be required to handle the SAD values emerging
from each processor cell. However, it will be observed from
Table II that such values only become available on specific cy-
cles. This can therefore be exploited to reduce the number of
busses needed. Specifically, it will be observed from Table II
that in a 16 clock cycle, the worst-case scenario that occurs is
when SAD values are output on 13 out of the 16 cycles i.e., be-
tween cycles 243 and 258. As a result, the number of busses
needed can be reduced from 16 to 13. This is obviously benefi-
cial in terms of reducing silicon area.
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TABLE V
TRADEOFFS BETWEEN PROCESSING RATES AND NUMBER OF PEs

The design created contains 61-K gates and can operate at
frequencies of up to 294 MHz. Typical video applications cover
a range of specifications in terms of resolution and frame rates.
In order to determine the performance of the motion estimator
described two normalized units have been derived. The first is
the normalized power consumption, which is defined in terms
of the power dissipation (in microwatts) per macroblock of data
processed (MB) per frame per second (fps). The second deter-
mines the number of fps that can be processed at a specific res-
olution. For the circuit designed, these values were determined
to be 0.008 mW/MB/fps and 181 fps/CIF, respectively.

For a typical video application, requiring QCIF at 30 fps,
then, the circuit will dissipate 23.76 mW. Alternatively,
11.88 mW at 15 fps. Conversely, if operated at maximum clock
speed then up to 181 fps can be processed in a system with CIF
video resolution or 45 fps in a 4-CIF system. The focus to this
point has been on a system in which full block searches are
undertaken. This is typically required in applications requiring
high-quality video e.g., digital TV/HDTV. For some applica-
tions, where very low power dissipation is a key requirement
(e.g., for portable devices) then an important trade off that can
be made, that significantly reduces computational complexity
and thus power dissipation, is to use a reduced complexity
search algorithm such as TSS. The basic circuit presented and
its principles of operation can readily be adapted to incorporate
this rather than a full search algorithm.

The presentation to this point has also focused on a full 16 (in
general, ) PE linear array. The hardware complexity of such a
system can, of course, be reduced by mapping the computational
functions described onto a folded array. This provides a mech-
anism to provide tradeoffs between hardware complexity and
performance, albeit with the expense of additional multiplexing
and scheduling circuitry. For practical applications, this pro-
vides the means to minimize the hardware requirement needed
to achieve a desired performance, for example for a standard
video specification. Table V provides a guide to the performance
achievable using a reduced number of processors. More specific
figures require detailed chip designs to be undertaken.

A comparison between this circuit and previous VBSME cir-
cuits is presented in Table VI. An exact comparison is compli-
cated by the fact that these have been implemented with dif-
ferent technologies and exhibit variations in their specifications
and capabilities. Nevertheless, it will be noted that the design
presented exhibits the highest level of flexibility in terms of
block sizes catered for. It offers the highest clock rates and has
a gate count which is roughly a quarter that of the most flexible
alternative—that of Vos [6]. In addition, it should be pointed

TABLE VI
COMPARISON WITH OTHER VBSME CHIP DESIGNS

out that the flexibility of the architecture presented means that
it is easy to reprogram the latches to cater for other block sizes,
should these be needed in future video standards.

V. CONCLUSION

In this paper, a new 1-D VLSI architecture for FSVBSME is
presented. This architecture can process up to 41 variable block
MVs in a macroblock in the same number of clock cycles as
conventional 1-D architectures i.e., 256 (in general N N cy-
cles) A key aspect is the incorporation within each PE of mecha-
nisms for shuffling, and combining the partial SAD values. This
allows SADs for larger block sizes to be computed using the
results derived for 4 4 blocks and avoids having to compute
these from scratch. Design studies show that this is very suit-
able for the next generation of AVC. The concepts presented can
be extended to half and quarter pixel ME for FSVBSME. They
can also be extended to systems in which reduced complexity
search algorithms (e.g., TSS) are employed, for example to re-
duce power dissipation. Research on this is currently underway
and will be discussed in a future paper.
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