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and Bistable Synapses With Spike-Timing

Dependent Plasticity
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Abstract—We present a mixed-mode analog/digital VLSI device
comprising an array of leaky integrate–and–fire (I&F) neurons,
adaptive synapses with spike–timing dependent plasticity, and
an asynchronous event based communication infrastructure that
allows the user to (re)configure networks of spiking neurons with
arbitrary topologies. The asynchronous communication protocol
used by the silicon neurons to transmit spikes (events) off-chip
and the silicon synapses to receive spikes from the outside is based
on the “address–event representation” (AER). We describe the
analog circuits designed to implement the silicon neurons and
synapses and present experimental data showing the neuron’s
response properties and the synapses characteristics, in response
to AER input spike trains. Our results indicate that these circuits
can be used in massively parallel VLSI networks of I&F neurons
to simulate real–time complex spike–based learning algorithms.

Index Terms—Address–event representation (AER), analog
VLSI, integrate-and-fire (I&F) neurons, neuromorphic circuits,
spike-based learning, spike-timing dependent plasticity (STDP).

I. INTRODUCTION

Agrowing interest in pulse–based neural networks is driving
the design and fabrication of an increasing number of

VLSI networks of integrate–and–fire (I&F) neurons [1]–[7].
These new types of devices are used to implement specific
models of cortical processing for scientific investigation [3],
[5], [6], with the aim of developing the technology and infra-
structure for engineering applications.

Several examples of successful multichip networks of spiking
neurons have been recently proposed [6], [8], [9]; however, there
are still a number of practical problems that hinder the devel-
opment of truly large–scale, distributed, massively parallel net-
works of VLSI I&F neurons. Three of the most important ones
are: 1) how to access the individual synapses of the network for
providing input signals, and how to read from each neuron for
generating output signals; 2) how to set the weight of individual
synapses in the network; and 3) how to (re)configure the net-
work topology on the same chip.

In this paper, we present a VLSI device with a one-dimen-
sional array of I&F neurons, and a two-dimensional (2-D) ma-
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trix of adaptive plastic synapses that use the “address–event rep-
resentation” (AER) [10]–[13] to transmit and receive spikes. We
will show how the use of the AER communication protocol al-
lows us to simultaneously solve problems 1) and 3) above, while
the plastic synaptic circuits allow us to cope with problem 2) by
setting the synaptic weights via a learning algorithm.

While mean rate Hebbian learning algorithms are diffi-
cult to implement using analog circuits, spike-timing-based
learning rules map directly onto silicon [4], [7], [14], [15]. A
promising class of spike-driven learning rules that is particu-
larly well suited to VLSI implementation is the one based on
the spike-timing dependent plasticity (STDP) mechanism [16],
[17]. In STDP the precise timing of spikes generated by the pre-
and postsynaptic neurons have an important role in shaping the
synaptic efficacy. If a presynaptic spike arrives at the synaptic
terminal before a postsynaptic spike is emitted, within a critical
time window, the synaptic efficacy is increased. Conversely, if
the postsynaptic spike is emitted soon before the presynaptic
one arrives, the synaptic efficacy is decreased. Several modeling
studies have developed learning algorithms based on STDP, and
demonstrated how systems that use these types of algorithms
can carry out complex information processing tasks [18]–[21].

We describe in detail the circuit implementation of the STDP
learning mechanism in Section IV, but first we describe the gen-
eral architecture of the VLSI device, the principle of operation
of the AER communication protocol in Section II, and the cir-
cuital implementation of the I&F neuron in Section III. Sec-
tion VI contains the discussion and concluding remarks.

II. VLSI DEVICE

The device, implemented using a standard AMS 0.8 m
CMOS process. It comprises a linear array of 32 low–power
I&F neurons, a 2-D array of 32 8 synaptic circuits, and
input/output AER interfacing circuits (see Fig. 1). Each
neuron receives input current from two inhibitory and six
excitatory synapses. The neuron circuitry occupies an area
of 83 31 m , while the inhibitory and excitatory synapses
measure 55 31 m and 145 31 m , respectively.

The 6 32 excitatory synapses are divided into two groups
that have independent bias settings for the synaptic weights
parameters. All other bias parameters are global. The two sets
of independent bias settings for the excitatory synapses allow us
to model populations of synapses with different characteristics
(e.g., long and short time constants, weak and strong excitatory
weights, etc.). In addition to the synaptic input, the neurons
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Fig. 1. Block diagram of the chip’s architecture. Squares represent excitatory (E) and inhibitory (I) synapses; trapezoids represent I&F neurons. When an AER
input signal arrives, the column and row encoders generate an input pulse on the addressed synapse. The I&F neuron’s output spikes are sent to the on–chip AER
output circuits which generate address–event signals.

in the array can be stimulated by direct current injection.
The injection currents are applied through 32 parallel p-type
transistors driven by a common gate voltage. Each of the 32
neurons’ output spikes are transmitted off-chip via the AER
output circuits and so can be routed to an arbitrary number
of input synapses either on the same chip or on a different
one, via an AER-based communication infrastructure. In AER,
each spiking element is assigned an address that is written on
a digital bus, using asynchronous logic, each time a spike is
emitted. A four-phase handshaking protocol is used to manage
the asynchronous communication. Input and output spikes
(events) are transmitted as real–time asynchronous binary
data streams that carry analog information in their temporal
structure. Event collisions (cases in which multiple sending
nodes generate events at the same time) are handled by on-chip
arbitration circuits. Systems containing multiple AER chips
can be constructed by implementing special purpose off–chip
arbitration schemes [13], [22]. Once in the digital domain, ad-
dress events can be remapped from multiple sending nodes to a
single receiving node, or from a single sending node to multiple
receiving nodes, allowing the user to arbitrarily reconfigure
the network connectivity within the constraints imposed by the
resources available.

III. VLSI DEVICE’S NEURONS

Generally, VLSI I&F neurons integrate presynaptic input
currents and generate a voltage pulse when the integrated
voltage reaches a threshold. A very simple but influential
circuit implementation of this model is the “Axon–Hillock”
circuit, proposed by Mead in the late eighties [23]. In this
circuit, an integrating capacitor is connected to two inverters, a
feedback capacitor, and a reset transistor driven by the output

inverter. A spike is emitted when the integrated voltage crosses
the switching threshold of the first inverter. The Axon–Hillock
circuit is very compact, comprising only six transistors and two
capacitors, but it has a major drawback: it dissipates significant
amounts of power. This dissipation occurs because the input to
the first inverter (the voltage on the capacitor) changes typically
with time constants of the order of milliseconds, with the result
that the inverter spends a large amount of time in the region
in which both transistors conduct a short-circuit current. A
further drawback is that the Axon–Hillock circuit has a spiking
threshold that depends only on CMOS process parameters (the
switching threshold of the inverter), and does not model addi-
tional neural characteristics, such as spike-frequency adaptation
properties or refractory period mechanisms [24].

An alternative design in which an explicit threshold voltage
can be set and which implements spike-frequency adaptation is
proposed in [25]. This design, however, also has large power
consumption for the same reasons as the Axon–Hillock circuit.
In [26], van Schaik proposed a circuit with an amplifier at
the input that compares the voltage on the capacitor with a
desired spiking threshold voltage. When the input exceeds the
spiking threshold, the amplifier drives the inverter strongly,
making it switch very rapidly. This circuit consumes less power
than previously proposed ones, but still lacks spike-frequency
adaptation.

An I&F circuit optimized with respect to power consump-
tion, but still lacking spike-frequency adaptation, refractory pe-
riod and spiking threshold modulation capabilities, was recently
proposed in [27]. Here, we propose a compact leaky I&F circuit
optimized for power consumption based on the design proposed
in [27], that implements spike-frequency adaptation as well as
a tunable refractory period, and voltage threshold modulation.
The spike frequency adaptation mechanism used in our silicon
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Fig. 2. Circuit diagram of the I&F neuron. See Section III-A for a detailed description of circuit operation.

neuron models the effect of calcium-dependent afterhyperpolar-
ization potassium currents ( ) present in biological neurons
[28] (see Section III-A). Continuous improvements in VLSI
technology allow for the fabrication of AER devices containing
vasts numbers of spiking elements operating in parallel. These
devices will be practically realizable only if the spiking neuron
circuits have minimal power consumption locally, implement
pulse-frequency saturation (refractory periods) for limiting the
power consumption globally, and contain spike frequency adap-
tation mechanisms to reduce communication bandwidth for the
transmission of address-events.

A. I&F Circuit Operation

The circuit diagram of the I&F neuron we propose is shown
in Fig. 2. The circuit comprises an integrating capacitor ;
a source follower M1-M2, used to control the spiking threshold
voltage; an inverter with positive feedback M3-M7, for reducing
the circuit’s power consumption; an inverter with controllable
slew-rate M8-M11, for setting arbitrary refractory periods; an
inverter M12-M13, for generating digital pulses; a current inte-
grator M15-M19, for spike-frequency adaptation, the transistor
M20 for setting a leak current; and M21-M22 for receiving and
producing the AER handshaking signals /ACK and /REQ, re-
spectively.

The input current is integrated by onto . In the
current implementation is 432 fF, and its layout occupies
an area of 244 m . Typical injection currents are of the order
of tens of picoamperes. The source-follower M1-M2, produces

, where is a constant subthreshold
bias voltage and is the subthreshold slope coefficient [29].
As increases and approaches the switching voltage of
the first inverter, the feedback current starts to flow through

M6-M7, increasing and more rapidly. The positive
feedback has the effect of making the inverter M3-M5 switch
very rapidly, reducing dramatically its power dissipation.

When increases enough to make the first inverter
switch, the voltage is driven to , and the AER request
signal /REQ is pulled to ground (i.e., a request to transmit is
signaled to the output AER circuits). Provided that the AER
handshaking signal /ACK (driven from the output AER circuits)
is low, is brought to , the membrane capacitor is
quickly discharged back to ground through the reset transistor
M14, and the voltage is reset to zero. During the spike
emission period (while is high), a current with amplitude
set by is sourced into the gate-to-source parasitic capaci-
tance of M19 on node . Thus, the voltage increases with
every spike, but when there is no spiking activity slowly
leaks to zero through leakage currents. As increases, a neg-
ative adaptation current that is exponentially proportional
to is subtracted from the input, and the spiking frequency
of the neuron is reduced over time. When is discharged
to ground is driven back to , thus turning M10 fully on.
The voltage is then discharged through the path M10-M11,
at a rate set by (and by the parasitic capacitance on node

). As long as is sufficiently high, the reset transistor
M14 is active and is clamped to ground. During this
“refractory” period, the neuron cannot spike, as all the input
current , typically smaller than the reset current, is absorbed
by M14.

We tested the response properties of the I&F neurons in the
array by injecting constant currents to the neurons (bypassing
the synapses) and measuring their firing rates, for different
settings of the refractory period bias voltage . We gener-
ated currents exponentially proportional to the gate-to-source
voltage of the p-fets connected to each neuron in the array,
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Fig. 3. (a) Mean response of all neurons in the array to increasing values of a global input current, for four different refractory period settings (set by biasing
V of Fig. 2 to 0.30, 0.35, 0.40, and 0.45 V, respectively). The error bars represent the standard deviation of the responses throughout the array. (b) Raster plots
showing the activity of the whole array in response to the input current set by V = �0:575 V, for the same four increasing values of V (counterclockwise
from the bottom left box).

Fig. 4. (a) Raster plot showing the response of the array of neurons to a step input current, with spike-frequency adaptation activated (V = 4:15 V).
(b) Instantaneous firing rate as a function of spike count, averaged throughout the array. The error-bars represent the standard deviation of the neurons’ firing rates
throughout the array.

and measured their mean firing rates (see Fig. 3). Given the
exponential relationship between and the injected current
[29], Fig. 3(a) shows how the firing rate increases linearly with
the input current, saturating at higher asymptotic values for in-
creasing values of (decreasing refractory period duration).
Fig. 3(b) shows four raster plots of the activities of all neurons
in the array in response to uniform input current, for increasing
(clockwise from the top left box) refractory period durations.

To show the effect of spike-frequency adaptation, we plotted
in Fig. 4(a) spike raster plots measured immediately after the
onset of a constant stimulus input current to the whole array,
with the adaptation rate set to V. As the capac-
itor used to store the adaptation bias voltage is very small (a
parasitic capacitance in the layout), mismatch in adaptation cur-
rent is quite high. Fig. 4(b) shows the instantaneous firing rate
of all neurons in the array as a function of spike count averaged
throughout the array. The error-bars, representing the standard
deviation of the firing rate, show that there is a much higher
variability across the array of I&F neurons when they fire in
their adapted state [compare also with the error-bars of Fig. 3(a),
where the spike frequency adaptation was switched off]. The
raster-plot data of Figs. 3 and 4 was collected using a custom

PCI–AER board, able to interface AER chips to workstations,
and to record the address events generated by the chip [22].

B. Modeling the Neuron’s Subthreshold Behavior

The circuit shown in Fig. 2 does not implement a simple linear
model of an I&F neuron. Rather its positive feedback and spike-
frequency adaptation mechanisms represent additional features
that increase the model’s complexity (and its computational ca-
pabilities). The overall current integrated by is

, where is the circuit’s external input
current, is a leakage current set by a constant bias voltage

, is the positive feedback current and is the adapta-
tion current generated by the spike-frequency adaptation mecha-
nism. We can use the transistor’s weak-inversion equations [29]
to compute the adaptation current

(1)

where is the transistor’s dark current [29] and is the
thermal voltage. A similar equation can be written for , with

in place of .
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If we denote with the parasitic gate-to-source capacitance
on node of M19, and with the parasitic gate-to-drain
capacitance on M19, then

(2)

where is given by the capacitive divider ratio
and is the steady-state voltage stored on , updated with
each spike.

To model the effect of the positive feedback we can assume,
to first order approximation, that the current mirrored by M3,M7
is

(3)

where is a constant current flowing in the first inverter when
both M4-M5 conduct, and is the output
of the source-follower M1-M2.

The equation modeling the subthreshold behavior of the
overall circuit is

(4)

where is the total capacitance seen at the
input node. Substituting and with the equations derived
above we obtain

(5)

For values of the above equation simplifies to

(6)

where is the net input current (the injection current minus
the leak current). This simplified equation has been shown to
correctly fit experimental data [30] and can be used to reliably
simulate (in software) arbitrary networks of spiking neurons im-
plemented using the circuit of Fig. 2.

C. Power Dissipation Characteristics

The main sources of power dissipation of the integrate and
fire neurons are the short-circuit currents that flow through the
inverters during the switching time and the DC current that
flows through the source-follower M1-M2 during the periods
in which (see Fig. 2). When no input
current is applied (in resting conditions) the leakage current
brings to zero, transistor M1 of the source follower
does not conduct, and the inverters do not switch. In this
condition the power dissipation is nil. When input current is
applied, the power dissipation is a function of firing rate, of
the source-follower bias , and of the power supply voltage

Fig. 5. Mean power dissipation of the neuron as a function of V for an
average output firing rate of about 100 Hz and typical operating condition
bias settings (see text for details). The error bars represent the data’s standard
deviation measured over 100 trials.

. We measured the circuit’s power dissipation in a device
implemented using a 0.35 m CMOS technology. With optimal
bias settings the whole neuron, including spike frequency
adaptation, refractory period, and source-follower circuits,
dissipates approximately 900 pJ per spike.

We also measured the circuit’s power dissipation in typical
operating conditions: refractory period set to limit the maximum
firing rate to about 200 Hz ( mV), and spike fre-
quency adaptation enabled ( V). Under these con-
ditions we show, in Fig. 5, how the power disspiation depends
on the circuit’s source-follower’s bias . The power supply
voltage was 3.3 V and the injection current was adjusted to
generate spike trains at a mean rate of approximately 100 Hz.
As expected, the mean power dissipation increases with , for
high bias values. Power dissipation is also high for very low
values of due to the fact that the source follower acts as a
low-pass filter on the falling edge of the spike, thus increasing
the switching time of the inverter M4-M5 of Fig. 2. For compar-
ison, simulations of the Axon–Hillock circuit under similar op-
erating conditions predicted average power-dissipation values
more than two orders of magnitude larger.

IV. VLSI DEVICE’S SYNAPSES

Silicon synapses are circuits typically used in VLSI networks
of I&F neurons for implementing models of biological synapses
[12], [31]–[34]. Recent developments in the neuroscience com-
munity provide evidence that synapses are not simple inter-
facing elements for transmitting signals between neurons, but
play an important computational role in biological neural net-
works [35]. One of the key properties of biological synapses
is their ability to exhibit short– and long–term plasticity. The
former type of plasticity produces dynamic modulation of the
synaptic strength by the timing of the input stimulation [36];
while the latter produces long term changes in synaptic strength,
induced by the spiking activity of the pre- and postsynaptic pro-
cesses [37], [38].
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Fig. 6. Excitatory synapse circuit. The bistability circuit compares the voltage V to a threshold and drives it to one of two asymptotic values (V or V ).
The STDP circuit increases (or decreases) V with every post- (pre-) synaptic spike provided the pre- (post-) synaptic spike was emitted shortly before. The STD
circuits implement short-term depression decreasing the synaptic weight V with every presynaptic spike, at a rate set by V . The CMI circuit implements a
current-mirror-integrator and generates a postsynaptic current that is injected into the neuron.

Fig. 7. (a) Spike traces obtained by stimulating the short-term depressing synapse with an input train of 100 Hz, for increasing values of the adaptation bias V .
(b) EPSP height as a function of spike count, for three different values of V (see text for details).

Silicon implementations of synapses that exhibit short-term
plasticity are suitable for evaluating the computational roles of
synaptic adaptation in large networks of spiking neurons using
complex stimuli and in real-time [39], [40]. Implementations
of long-term plasticity circuits allow us to implement learning
algorithms and set synaptic weights of synapses automati-
cally, without requiring dedicated pins or wires for individual
synapses.

The excitatory synaptic circuit we propose (see Fig. 6)
implements both types of plasticity mechanisms. In this circuit,
long–term plasticity is implemented using the “STDP” and
“bistability” blocks (described in Sections IV-B and IV-C,
respectively), while short–term plasticity is implemented by
the “STD” block (described in Section IV-A). The integrating
properties of the synapse itself are achieved by using a cur-
rent–mirror integrator (CMI) circuit [12]. Functionally, the
CMI circuit operates in the following way: each time an input
spike arrives on the node “pre” of Fig. 6, an amount of charge
set by the synaptic weight voltage is injected into the CMI’s
integrating capacitor and the current is increased accord-
ingly. In the absence of spikes, the charge decays through the
diode connected transistor and the synaptic current goes to
zero. A thorough analysis of this compact and elegant non-
linear integrator circuit, in which an explicit analytical solution

that does not require a steady-state assumption is derived, is
presented in [34].

In the device proposed here, 32 6 synapses are excitatory
and plastic (as shown in Fig. 6), while 32 pairs of synapses
are inhibitory, do not exhibit learning properties, and are im-
plemented using a cascoded n–type CMI. The output currents

of all eight synapses connected to a specific neuron are
integrated in the corresponding neuron’s membrane capacitor
( of Fig. 2).

A. Short–Term Depression (STD) Circuit

The STD circuit is used to implement local gain control for
stimulus specific adaptation and for nonlinear temporal sum-
mation. These characteristics occur also in biological synapses
[38], [41] and provide useful computational operators for net-
work processing [42].

The circuit acts on the synaptic weight voltage of Fig. 6:
At steady state, settles to the voltage , set by the STDP
circuits. During stimulation (applied by a sequence of spikes on
the “pre” node) the synaptic weight is gradually reduced at a
rate set by the bias voltage . As a consequence the synapse
has a high-pass response: its weight is maximum at the onset of
the stimulation, and it gradually decreases throughout the du-
ration of the stimulation. Fig. 7(a) shows spike traces obtained
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Fig. 8. Synaptic efficacy STDP circuit.

by stimulating an excitatory synapse with a 100-Hz input spike
train, for three different values of the short-term depression bias

. As shown, the neuron requires an increasing number of
spikes to reach threshold with increasing rates of short-term de-
pression (set by ). The initial change in the slope of the
membrane potential traces [around 0.2 s in Fig. 7(a)] is due to
the fact that the weight decreases to a low steady-state value.
Conversely, the increase in the slope of the membrane potential
traces when they are close to the spiking threshold is due to the
positive feedback current generated by the neuron [see (3)
of Section III-B].

Fig. 7(b) shows the excitatory postsynaptic potential (EPSP)
height as a function of the spike count. This data was derived by
analyzing the derivative of the traces of Fig. 7(a). The disconti-
nuity in the bottom plot of Fig. 7(b), is due to the fact that the
neuron being stimulated produced an output spike upon arrival
of the thirteenth input spike. The STD circuit decreases the ini-
tial value of the synaptic weight to a steady-state value pro-
portional to the depression rate itself. A detailed analysis of the
STD block, with comparison to models of biological depressing
synapses is described in [40].

B. STDP Circuits

The circuit required to implement STDP in a network of I&F
neurons is shown in Fig. 8. This circuit increases or decreases
the analog voltage , depending on the relative timing of the
pulses pre and /post. The circuit of Fig. 8 is fully symmetric:
upon the arrival of a presynaptic pulse pre, a waveform
(for potentiating ) is generated. Similarly, upon the arrival of
a postsynaptic pulse /post, a complementary waveform
(for depotentiating ) is generated. Both waveforms have a
sharp onset and decay linearly with time, at a rate set, respec-
tively, by and . The pre- and postsynaptic pulses also
switch on two gates (M8 and M5) that allow the currents
and to flow, resulting in a weight increase or decrease. The
bias voltages on transistor M6 and on M7 set an upper

bound for the amount of current that can be injected into or re-
moved from the capacitor . If transistors M4 – M9 operate
in the subthreshold regime [29], the analytical expressions for

and are

(7)

(8)

where and are the times at which the pre- and postsy-
naptic spikes are emitted. The change in synaptic efficacy
is then

if

if
(9)

where is the pre- and postsynaptic spike width, and
are the parasitic capacitances of nodes and , re-

spectively (not shown in Fig. 8).
Experimental data showing how changes as a function

of for different values of and are
plotted in Fig. 9(a). Similarly, Fig. 9(b) shows plots of
versus for three different values of and three different
values of . As there are four independent control biases, it is
possible to set the maximum amplitude and temporal window
of influence independently for positive and negative changes in

.
The data of Fig. 9 were obtained from a device implemented

in a 1.6- m CMOS process, using a paired-pulse protocol
similar to the one used in physiological experiments [16]: One
single pair of pre- and postsynaptic spikes was used to measure
each data point, by systematically changing the delay

and by separating each stimulation session by a
few hundreds of milliseconds (to allow the signals to return
to their resting steady-state). Data obtained from the device
presented in this paper, showing the characteristics of STDP at
the network level, are presented in Section V.
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Fig. 9. Changes in synaptic efficacy, as a function of the difference between pre- and postsynaptic spike emission times �t = t � t . The curves in the
left plot were obtained for six different values of V , V (see Fig. 8), while the curves in the right plot were obtained for six different values of V and V .

C. Bistability Circuit

This circuit, that drives the synaptic weight to one of two pos-
sible states on long time scales, was implemented in order to
cope with the problem of long term storage of analog values in
CMOS technology. Conventional VLSI capacitors are not ideal
in that they slowly leak the charge they are supposed to store.
Several solutions have been proposed for long term storage of
synaptic efficacies in analog VLSI neural networks. One of the
first suggestions was to use the same method used for dynamic
RAM: to periodically refresh the stored value. This involves dis-
cretization of the analog value to discrete levels, a method for
comparing the measured voltage to the levels, and a clocked
circuit to periodically refresh the value on the capacitor. An al-
ternative solution is to use analog-to-digital (ADC) converters,
an off–chip RAM and digital-to-analog converters (DAC), but
this approach requires bulky ADC and DAC circuits, as well as
discretization of the values to states. A more recent sugges-
tion is to use floating gate devices [31]. These devices can store
very precise analog values for an indefinite amount of time using
standard CMOS technology [29], but for spike-based learning
rules they would require a control circuit (and, thus, a large area)
per synapse. To implement dense arrays of neurons with large
numbers of dendritic inputs the synaptic circuits should be as
compact as possible.

An approach that uses a very small amount of area per
synapse is to use bistable synapses. These synapses contain
minimum feature-size circuits that locally compare the value
of the synaptic efficacy stored on the capacitor with a fixed
threshold voltage and slowly drive that value either toward a
high analog voltage or toward a low one, depending on the
output of the comparator [3]. The assumption that on long
time scales synaptic efficacy can only assume two values is
not too severe given networks of neurons with large numbers
of synapses. It has been argued that the efficacy of biological
synapses can indeed be discrete on long time-scales. These
assumptions are compatible with experimental data [37] and
are supported by experimental evidence [43]. From a theoret-
ical perspective, it has been shown that the performance of

associative networks is not necessarily degraded if the dynamic
range of the synaptic efficacy is reduced even to the extreme
(two stable states), provided that the transitions between stable
states are stochastic [44].

The bistability circuit of Fig. 6 generates a constant leak cur-
rent. In the absence of activity (and, hence, learning) this current
will drive the weight toward one of two stable states; if the STDP
circuits decrease the synaptic weight below the threshold
( ), the bistability circuits generate a negative current
that actively drives the weight toward the analog value encoding
its depressed state . Conversely, if the bista-
bility will source a positive current into driving toward

. The signal is a threshold voltage that can be set exter-
nally. The bistability circuit drives in two ways, depending
on the difference between the value of and the asymptote:
if the bistability circuit drives toward

linearly, where represents either or , depending
on the sign of

if

if
(10)

where is the capacitor of Fig. 8 and

As gets close to the asymptote and ,
begins to approach the asymptote exponentially

if
if

(11)
Over long time scales, the dynamics of are governed by

the bistability circuit, while on short time-scales they are gov-
erned by the STDP circuits and the precise timing of pre- and
postsynaptic spikes.

When the STDP circuits drive the weight from the low
state to a value above and the bistability circuits maintain

in a high state, we say that LTP has occurred. Conversely,
we say that LTD occurs when the STDP circuits drive the weight
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from the high state to a value below and the bistability
circuits maintain in a low state.

V. LEARNING EXPERIMENTS

Positive and negative updates of the synaptic weight are
generated by the STDP circuits in response to both the pre-
and postsynaptic activities. The number of these updates af-
fects the probability of crossing the bistability threshold ,
i.e., the LTP and LTD probabilities. Positive weight updates

are triggered by postsynaptic spikes and occur only if
at least one presynaptic spike is emitted within a time window
of width before the postsynaptic spike. It is important to
note that in our circuit implementation only the last presynaptic
spike contributes to the update of the weight. Given a postsy-
naptic Poisson-distributed spike train of mean frequency ,
the mean number of positive updates per second is

(12)

where is the probability of having at least one
presynaptic spike in a time window of width . Given a presy-
naptic Poisson spike train of mean frequency ,

is defined as

(13)
Negative weight updates are triggered by presynaptic

spikes and occur only if at least one postsynaptic spike is emitted
within a time window of width before the triggering event.
As for the positive updates, only the last postsynaptic spike
counts for generating . The mean number of negative up-
dates per second is given by

(14)

where is the probability of having at least one
postsynaptic spike in a time window of width

(15)
When the synaptic weight is low, LTP can occur if the

number of positive updates is large enough to overcome
the effect of both negative updates and leak current ,
thereby driving above the bistability threshold . When
the weight is high, LTD occurs if is large enough to
overcome the effect of and , thus driving below
the bistability threshold.

In spite of a symmetric weight change mechanism for a single
pair of pre- and postsynaptic spikes (as shown in Fig. 9), there
is an inherent asymmetry in our STDP circuits when multiple
spikes are involved. This asymmetry tends to favor LTP if the
presynaptic firing rate is lower than the postsynaptic one, and
LTD if the presynaptic firing rate dominates. Let us consider
the first case , assuming that pre- and postsynaptic
spike trains are uncorrelated. For a single presynaptic event sev-
eral postsynaptic spikes are likely to occur in the LTP and LTD
time windows with the same probability. While multiple post-
synaptic spikes in the LTP time window produce multiple up-
ward weight updates, only the last of the postsynaptic spikes

in the LTD time window produces a downward weight update,
therefore biasing the learning dynamics toward LTP. The same
reasoning can be applied for presynaptic rates higher than the
postsynaptic ones: in this case the learning dynamics will be bi-
ased toward LTD. Furthermore, for low values of and ,
irrespective of , the probabilities of LTP and LTD
tend to zero as and become
negligible [see (13) and (15)].

To characterize the learning properties of the VLSI synapses
experimentally, we measured the probabilities of potentiating
the synaptic efficacies (LTP) or depressing them (LTD) as a
function of mean pre- and postsynaptic firing rates. We stim-
ulated each synapse on the chip with Poisson-distributed spike
trains via the PCI–AER board, and generated postsynaptic firing
rates by injecting constant currents into the neurons. To measure
the probability for LTP of a synapse we first reset its weight to
its low asymptotic value ( of Fig. 6). We then applied pre-
and postsynaptic stimulation for 2.5 s. We subsequently deter-
mined the state of the synapse by clamping the weight to its
learned asymptotic value (i.e., by setting of Fig. 6 to 1 V),
and by measuring the response of the postsynaptic neuron to a
regular presynaptic spike train. We repeated this procedure 50
times and averaged the data across trials. To measure the prob-
ability for LTD of a synapse we applied a similar experimental
protocol, but first initializing the synapse’s state to its high value

.
Fig. 10 shows the mean probabilities of LTP and LTD mea-

sured from the chip as a function of mean pre- and postsynaptic
firing rates. The particular shape and the position of the region
where LTP/LTD occurs can be modified by varying the param-
eters of the bistability and the STDP circuits. For these experi-
ments we biased the synaptic circuits to produce an asymmetric
weight update curve, with a large and a short , and
a small and a long . As expected, for low values of
mean postsynaptic firing rates LTP does not occur [see
Fig. 10(a)], while for high and increasing values of the
probability of LTP varies with a bell-shape dependence on the
mean presynaptic firing rates . The measured probability of
LTD shown in Fig. 10(b) is also in accordance with our theoret-
ical predictions.

The data of Fig. 10 were averaged over all synapses of all neu-
rons in the array. The LTP and LTD probability distributions of
single synapses are qualitativey similar to the curves of Fig. 10
and do not deviate significantly from the mean.

VI. CONCLUSION

We presented a VLSI array of low-power, adaptive I&F neu-
rons with bistable, plastic, and adaptive synapses that use the
Address–Event Representation to receive and transmit spikes.
We showed that the low power neurons respond to constant cur-
rents in a consistent and reliable way throughout the array. Using
a PCI–AER board we stimulated the plastic synapses of the
array with address–events and demonstrated their learning prop-
erties. The weight of any synapse in the array can be changed
by setting the pre- and postsynaptic mean firing rates to appro-
priate values. This property allows us to implement learning
mechanisms useful for real–time unsupervised learning tasks,
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Fig. 10. (a) Mean probability of LTP over all STDP synapses in the array, as a function of pre- and postsynaptic firing rates. (b) Mean probability of LTD. The
relevant circuit bias parameters used for this set of data are: V = 3:9 V, V = 0:65 V, V = 4:36 V, and V = 0:33 V (see Fig. 8).

or to arbitrarily set (bistable) synaptic weights in a supervised
way, without requiring dedicated wires for each synapse. The
STD subcircuits in the synapses can be activated during or after
learning to implement local gain-control mechanisms and intro-
duce an additional degree of adaptation.

The chip proposed was fabricated using a standard 0.8- m
CMOS process, and implemented a network with 32 neurons
and 256 synapses in an area of mm . We are currently de-
signing new chips using a more advanced 0.35- m technology.
These chips implement networks with 32 neurons and 8000
synapses using less than mm of silicon real-estate. The cir-
cuits proposed are to a large extent technology independent and
operate fully in parallel. In principle networks of this type can
scale up to any arbitrary size. In practice the network size is
limited by the maximum silicon area and AER bandwidth avail-
able. Given the current speed and specifications of the AER in-
terfacing circuits [45], and the availability of silicon VLSI tech-
nology, there is room for increasing network size by at least two
orders of magnitude.

Our results indicate that the circuits proposed can be used in
massively parallel VLSI networks of I&F neurons for real–time
simulation of complex spike–based learning algorithms. Fur-
thermore these types of devices, when interfaced to neuromor-
phic AER sensors such as silicon retinas [27], [46], [47] or sil-
icon cochleas [48], are ideal for constructing compact VLSI sen-
sory systems with adaptation and learning capabilities.
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